The present disclosure relates to full duplex communications and more specifically to providing compatibility of full duplex communication devices and systems with existing half duplex devices and systems.
Current wireless communications systems cannot transmit and receive on the same frequency at the same time, i.e., these networks do not operate in a full-duplex fashion. As a result, such networks are either time-division duplex (e.g., WiFi) or frequency-division duplex (e.g., cellular). A challenge in achieving full-duplex communication is a large power differential between the “self-interference” created by a node's own radio transmission and the signal of interest. This large power differential exists because the self-interference signal has to travel much shorter distances compared to the signal of interest. The large power differential swamps the signal of interest due to finite resolution of analog-to-digital conversion.
Previous efforts to suppress self-interference have reported success for only very short range line-of-sight (LOS) channels like those encountered in personal area networks such as Bluetooth and Zigbee. Such small range abilities continue to remain a bottleneck for including full-duplex in practical wireless networks. By overcoming the limitations associated with previous systems, full-duplex communications can extend communication range while increasing bandwidth.
However, initial introduction of full-duplex communications requires coexistence with regular, half duplex communication systems. To take full advantage of full duplex communications while continuing to comply with existing half duplex communications, the Medium Access Control (MAC) protocol which regulates access to the shared medium requires modification. MAC protocols can help decide when a node accesses a shared medium, resolve potential conflicts between competing nodes, correct communication errors, and control the flow of network traffic.
Disclosed are systems, methods, and non-transitory computer-readable storage media for a modified MAC protocol which can facilitate communications with both full-duplex and half-duplex devices. A system configured according to the disclosed method can enable communications between an Access Point (AP) and a client in either full duplex or half duplex. The system can similarly enable peer-to-peer communications in both full duplex and half duplex communication modes.
As an example, consider two full duplex capable nodes seeking to converge upon a mode where both nodes are transmitting and receiving simultaneously. A first node begin transmitting at a higher rate, then upon receiving a communication from the second node the first node immediately drops the current frame while reducing the communication rate to a reduced rate. While ideally both nodes could transmit at a full rate simultaneously in the same spectrum, due to imperfect cancellation of self-interference, full duplex communications can require a reduced rate. By dropping the current frame and immediately switching to a reduce rate, the system can avoid the signaling and ‘hand-shaking’ otherwise required. This improves the step down time required to shift from a high data rate to a reduced rate.
In addition, each full duplex node can train its receiving path for self-interference cancellation at all times. Because self-interference cancellation is done in the receiving path only when transmitting, this avoids the need for a two-way signaling mechanism to turn training on and off. The overhead due to extra training is comparatively less than signaling-based training involving multiple nodes. Various embodiments of the disclosure are described in detail below. While specific implementations are described, it should be understood that this is done for illustration purposes only. A person skilled in the relevant art will recognize that other components and configurations may be used without parting from the scope of the disclosure.
The system bus 110 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. A basic input/output (BIOS) stored in ROM 140 or the like, may provide the basic routine that helps to transfer information between elements within the computing device 100, such as during start-up. The computing device 100 further includes storage devices 160 such as a hard disk drive, a magnetic disk drive, an optical disk drive, tape drive or the like. The storage device 160 can include software modules 162, 164, 166 for controlling the processor 120. Other hardware or software modules are contemplated. The storage device 160 is connected to the system bus 110 by a drive interface. The drives and the associated computer readable storage media provide nonvolatile storage of computer readable instructions, data structures, program modules and other data for the computing device 100. In one aspect, a hardware module that performs a particular function includes the software component stored in a non-transitory computer-readable medium in connection with the necessary hardware components, such as the processor 120, bus 110, display 170, and so forth, to carry out the function. The basic components may vary depending on the type of device, such as whether the device 100 is a small, handheld computing device, a desktop computer, or a computer server.
Although the exemplary embodiment described herein employs the hard disk 160, it should be appreciated by those skilled in the art that other types of computer readable media which can store data that are accessible by a computer, such as magnetic cassettes, flash memory cards, digital versatile disks, cartridges, random access memories (RAMs) 150, read only memory (ROM) 140, a cable or wireless signal containing a bit stream and the like, may also be used in the exemplary operating environment. Non-transitory computer-readable storage media expressly exclude media such as energy, carrier signals, electromagnetic waves, and signals per se.
To enable user interaction with the computing device 100, an input device 190 represents any number of input mechanisms, such as a microphone for speech, a touch-sensitive screen for gesture or graphical input, keyboard, mouse, motion input, speech and so forth. An output device 170 can also be one or more of a number of output mechanisms known to those of skill in the art. In some instances, multimodal systems enable a user to provide multiple types of input to communicate with the computing device 100. The communications interface 180 generally governs and manages the user input and system output. There is no restriction on operating on any particular hardware arrangement and therefore the basic features here may easily be substituted for improved hardware or firmware arrangements as they are developed.
For clarity of explanation, the illustrative system embodiment is presented as including individual functional blocks including functional blocks labeled as a “processor” or processor 120. The functions these blocks represent may be provided through the use of either shared or dedicated hardware, including, but not limited to, hardware capable of executing software and hardware, such as a processor 120, that is purpose-built to operate as an equivalent to software executing on a general purpose processor. For example the functions of one or more processors presented in
The logical operations of the various embodiments are implemented as: (1) a sequence of computer implemented steps, operations, or procedures running on a programmable circuit within a general use computer, (2) a sequence of computer implemented steps, operations, or procedures running on a specific-use programmable circuit; and/or (3) interconnected machine modules or program engines within the programmable circuits. The system 100 shown in
Having disclosed some components of a computing system, the disclosure now turns to
In this example, the node starts in a ‘TX and RX Idle’ 202 state, where it waits for either an ‘RX Interrupt’ 248 or data to transmit. Where the node receives data to transmit, as indicated by a ‘Frame to Send Interrupt’ 260, and has not received an ‘RX Interrupt’ 248, the protocol shifts from ‘TX and RX Idle’ 202 to the ‘TX Frame (FR)’ 206. In this mode the node operates following WLAN design, transmitting at a high rate or full rate. The node transmits the signal 264, then ‘Waits for IFS/ACK’ 244. Upon receiving acknowledgement of the transmitted communication, the protocol determines if the signal needs to continue to transmit via the ‘End of the packet’ 208 state. If so, the protocol goes to a ‘Wait’ 246 state, whereas if not the protocol continues to transmit 206 and wait for acknowledgement 244. If the node, while in the ‘TX Frame (FR)’ 206 state, receives an ‘RX Interrupt’ 248, the protocol drops the current frame (‘Drop Current Frame’ 204) and proceeds to ‘RX and FD-TX (RR)’ 218.
The node detects an ‘RX Interrupt’ 248 upon receiving energy at the Rx antenna associated with the node. When an ‘RX Interrupt’ 248 is detected, at any point in the protocol, the protocol immediately jumps to ‘RX and FD-TX (RR)’ 218, which represents receiving and full duplex transmitting at a reduced rate. This immediate transition can and will often result in dropping a current frame if it has not finished being transmitted.
When a protocol operating in the ‘RX and FD-TX (RR)’ 218 state receives an interrupt indicating an incorrect frame header 258, the protocol can ‘Queue NACK, Keep TX’ 212, which indicates that a negative acknowledgement is placed in the queue of data to be transmitted to the other node. Upon transmitting this negative acknowledgement, the protocol determines if additional data needs to be transmitted to communicate the incorrect header (‘End of TX packet?’ 216). If so, the protocol ‘Waits for IFS/ACK’ 214, then determines if additional information is being received (‘End of RX packet?’ 210), and cycles into either continuing to queue and send NACK (‘Queue NACK, Keep TX’ 212) or moving into a transmit only mode at a full rate (‘TX frame (FR)’ 206). If no additional data needs to be transmitted to communicate the incorrect header (‘End of TX packet?’ 216) the protocol determines if there is ongoing receiving (‘Is any RX ongoing?’ 226). If not, the protocol goes into ‘Wait’ 246 mode, then cycles into ‘TX and RX idle’ 202. Otherwise the protocol proceeds to continue receiving and transmitting at a reduced rate (‘RX and FD-TX (RR)’ 218).
When a protocol operating in the ‘RX and FD-TX (RR)’ 218 state receives an interrupt indicating Abnormal Frame End 256, the protocol continues to transmit and receive new data while queuing a NACK to be transmitted (‘TX Frame, listen for new RX, Queue NACK’ 220). The protocol then transmits the NACK 262, waits for IFS/ACK while continuing to receive (‘Wait for IFS/ACK, Keep RX’ 222), then determines if the transmissions are continuing (‘Is TX Packet Over?’ 224). If not, the protocol goes to RX and FD-TX (RR)’ 218; however, if the transmissions continue then the protocol determines if there is ongoing receiving (‘Is any RX ongoing?’ 226). If not, the protocol goes into ‘Wait’ 246 mode, then cycles into ‘TX and RX idle’ 202. Otherwise the protocol proceeds to continue receiving and transmitting at a reduced rate (‘RX and FD-TX (RR)’ 218).
Where a protocol operating in the ‘RX and FD-TX (RR)’ 218 state receives an interrupt indicating that the RX frame is over 250, the protocol determines if the received frame is good (‘Is RX frame good?’ 228). If so, the protocol queues an ACK while continuing to transmit (‘Queue ACK, Keep TX’ 232). If not, the protocol queues a NACK while continuing to transmit (‘Queue NACK, Keep TX’ 230). When the received packet is incomplete (‘Is RX packet over’ 234), the protocol can return to ‘RX and FD-TX (RR)’ 218 or, when there is no additionally received data, determine if there are continuing transmissions (‘Is any TX ongoing?’ 236). If not, the protocol goes into ‘Wait’ 246 mode, then cycles into ‘TX and RX idle’ 202. If there are continuing transmissions, they are transmitted at a reduced rate while listening for newly received data (‘TX frame RR, RX listen’ 238). At this point the protocol can return to a transmit only mode (‘Tx Frame (FR)’ 206, via ‘Wait for IFS/ACK’ 244 and ‘End of Packet?’ 208).
Where a protocol operating in the ‘RX and FD-TX (RR)’ 218 state receives an interrupt indicating a header jam at a client 254, the protocol stops the current transmission 242, then the protocol goes into ‘Wait’ 246 mode, then cycles into ‘TX and RX idle’ 202. Where the protocol operating in the ‘RX and FD-TX (RR)’ 218 state receives an interrupt indicating collision 252 from multiple clients sending data, it stops transmission and sends jam signal 240, then the protocol goes into ‘Wait’ 246 mode, then cycles into ‘TX and RX idle’ 202.
From this receive state 378, if a collision is detected 386, the node can queue and transmit a jam signal (‘Send Jam Signal’ 388), then return to the idle state 202. If, in the receive state 378, an interrupt indicating an incorrect header 380 is received, the node can queue a NACK (‘Queue NACK’ 382), and upon determining that the received packet is received (‘End of RX packet?’ 384), transmit the NACK (‘TX frame (FR)’ 206).
Should the protocol, while in the receive state 378, detect an abnormal packet end 368, the protocol waits for additional data (‘Listen for new RX’ 364), which is identified by an ‘RX Interrupt’ 266. Alternatively, should the protocol, while in the receive state 378, detect that the frame is over 370, the protocol determines if the received frame is good (‘Is RX Frame Good?’ 372), then sends a corresponding ACK or NACK (‘Transfer ACK/NACK’ 374). At that point, the protocol determines if the received packet is complete (‘Is RX packet over?’ 376). If so, the protocol can return to the full duplex states (‘RX and FD-TX (RR)’ 218). Otherwise it can continue to receive only (‘RX Frame’ 378).
Having disclosed some basic system components and concepts, the disclosure now turns to the exemplary method embodiment shown in
For example, a system 100 configured to practice a method according to this disclosure can utilize the protocol illustrated in
In addition, the system 100 can prepare self-interference cancellation while communicating the first transmission data, and then apply that self-interference cancellation when receiving the received-data. By preparing self-interference cancellation based on transmissions and previously estimated passive suppression, the system 100 can avoid signaling the actual interference received at any given moment, thereby providing improved cancellation capabilities by utilizing fewer resources.
When the system 100 drops the current frame upon stopping communication, the system 100 can later retransmit the dropped frame or, alternatively, cannot retransmit the dropped frame. In addition, the system 100 can, upon detecting a collision, stop communication of the first transmission data and the second transmission data, instead communicating a jam signal. The jam signal can then be communicated to multiple nodes, even if those nodes are hidden to one another. This in turn can cause all full duplex clients in communication with the node to stop any transmission. Because WLAN have, prior to full duplex, always been half duplex communication, they used CSMA/CA (collision avoidance) rather than CSMA/CD (collision detection). The change from collision avoidance rather than collision detection will result in improved communication capabilities, and is captured, at least in part, in
Embodiments within the scope of the present disclosure may also include tangible and/or non-transitory computer-readable storage media for carrying or having computer-executable instructions or data structures stored thereon. Such non-transitory computer-readable storage media can be any available media that can be accessed by a general purpose or special purpose computer, including the functional design of any special purpose processor as described above. By way of example, and not limitation, such non-transitory computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code means in the form of computer-executable instructions, data structures, or processor chip design. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or combination thereof) to a computer, the computer properly views the connection as a computer-readable medium. Thus, any such connection is properly termed a computer-readable medium. Combinations of the above should also be included within the scope of the computer-readable media.
Computer-executable instructions include, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. Computer-executable instructions also include program modules that are executed by computers in stand-alone or network environments. Generally, program modules include routines, programs, components, data structures, objects, and the functions inherent in the design of special-purpose processors, etc. that perform particular tasks or implement particular abstract data types. Computer-executable instructions, associated data structures, and program modules represent examples of the program code means for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represents examples of corresponding acts for implementing the functions described in such steps.
Those of skill in the art will appreciate that other embodiments of the disclosure may be practiced in network computing environments with many types of computer system configurations, including personal computers, hand-held devices, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, and the like. Embodiments may also be practiced in distributed computing environments where tasks are performed by local and remote processing devices that are linked (either by hardwired links, wireless links, or by a combination thereof) through a communications network. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.
The various embodiments described above are provided by way of illustration only and should not be construed to limit the scope of the disclosure. For example, the principles herein can be applied cellphone communications, satellite communications, and both line-of-sight and non-line-of-sight communications. Those skilled in the art will readily recognize various modifications and changes that may be made to the principles described herein without following the example embodiments and applications illustrated and described herein, and without departing from the spirit and scope of the disclosure.
The present application is a continuation of U.S. patent application Ser. No. 14/886,631, filed Oct. 19, 2015, now U.S. Pat. No. 9,826,552, issued Nov. 21, 2017, which is a continuation of U.S. patent application Ser. No. 14/456,381, filed Aug. 11, 2014, now U.S. Pat. No. 9,167,601, issued Oct. 20, 2015, which is a continuation of U.S. patent application Ser. No. 13/549,214, filed Jul. 13, 2012, now U.S. Pat. No. 8,804,583, issued Aug. 12, 2014, the content of which are incorporated herein by reference in their entirety. The present application is related to U.S. patent application Ser. No. 13/549,189, filed on Jul. 13, 2012, the contents of which are incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
7466676 | Gupta et al. | Dec 2008 | B2 |
7673075 | Masiewicz | Mar 2010 | B1 |
8462671 | Rinne et al. | Jun 2013 | B2 |
8472467 | Oyman et al. | Jun 2013 | B2 |
8804583 | Aggarwal et al. | Aug 2014 | B2 |
8842584 | Jana et al. | Sep 2014 | B2 |
9094196 | Aggarwal | Jul 2015 | B2 |
9137788 | Khojastepour | Sep 2015 | B2 |
9167601 | Aggarwal | Oct 2015 | B2 |
9825753 | Jana | Nov 2017 | B2 |
9826552 | Aggarwal | Nov 2017 | B2 |
20010050913 | Chen | Dec 2001 | A1 |
20020071448 | Cervello et al. | Jun 2002 | A1 |
20060149963 | Lu et al. | Jul 2006 | A1 |
20070060158 | Medepalli | Mar 2007 | A1 |
20070110029 | Gilmore | May 2007 | A1 |
20070153760 | Shapira | Jul 2007 | A1 |
20070177435 | Beach | Aug 2007 | A1 |
20080008126 | Shirakabe et al. | Jan 2008 | A1 |
20080080553 | Hasty | Apr 2008 | A1 |
20080112517 | Parts et al. | May 2008 | A1 |
20090017762 | Jovicic | Jan 2009 | A1 |
20100232324 | Radunovic et al. | Sep 2010 | A1 |
20100329131 | Oyman | Dec 2010 | A1 |
20110051796 | Khayrallah | Mar 2011 | A1 |
20110116401 | Banerjea | May 2011 | A1 |
20110182216 | Ono et al. | Jul 2011 | A1 |
20110244790 | Kwak et al. | Oct 2011 | A1 |
20110317633 | Tan et al. | Dec 2011 | A1 |
20120008599 | Marin | Jan 2012 | A1 |
20120106371 | Abraham | May 2012 | A1 |
20120147790 | Khojastepour et al. | Jun 2012 | A1 |
20120155336 | Khojastepour et al. | Jun 2012 | A1 |
20120177017 | Gong | Jul 2012 | A1 |
20120182867 | Farrag | Jul 2012 | A1 |
20120201153 | Bharadia et al. | Aug 2012 | A1 |
20120320887 | Chintalapudi | Dec 2012 | A1 |
20130051335 | Adachi | Feb 2013 | A1 |
20130155912 | Khojastepour | Jun 2013 | A1 |
20130188760 | Subramanian et al. | Jul 2013 | A1 |
20130201857 | Bhargava et al. | Aug 2013 | A1 |
20130215805 | Hong et al. | Aug 2013 | A1 |
20130223294 | Karjalainen et al. | Aug 2013 | A1 |
20130244720 | Hsia et al. | Sep 2013 | A1 |
20130250866 | Hui et al. | Sep 2013 | A1 |
20130301487 | Khandani | Nov 2013 | A1 |
20140010145 | Liu et al. | Jan 2014 | A1 |
20140016515 | Jana et al. | Jan 2014 | A1 |
20140016516 | Aggarwal et al. | Jan 2014 | A1 |
20140044038 | Zhang | Feb 2014 | A1 |
20140078940 | Aggarwal et al. | Mar 2014 | A1 |
20160044712 | Aggarwal | Feb 2016 | A1 |
20160323885 | Kazmi | Nov 2016 | A1 |
20170180103 | Min | Jun 2017 | A1 |
20180076948 | Jana | Mar 2018 | A1 |
20180077727 | Aggarwal | Mar 2018 | A1 |
Entry |
---|
IP.com search in Patents; Jul. 1, 2019 (Year: 2019). |
IP.com search in NPL; Jul. 1, 2019 (Year: 2019). |
IEEE Explore search; Jul. 1, 2019 (Year: 2019). |
Everett et al., “Empowering full-duplex wireless communication by exploiting directional diversity,” Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2011, Nov. 6-9 2011, pp. 2002-2006; ISBN: 978-1-4673-0321-7. |
S. Sen, R. R. Choudhury, and S. Nelakuditi. CSMA/CN: Carrier Sense Multiple Access with Collision Notification. In Proceedings of ACM Mobicom, Illinois, USA, Aug. 2010. |
A. Sahai and G. Patel and A. Sabharwal. Pushing the limits of Full-duplex: Design and Real-time implementation. In arXiv.org: 1107.0607, 2011. |
S. Sen, R. R. Choudhury, and S. Nelakuditi. No time to Countdown: Migrating Backoff to the Frequency Domain. In Proceedings of ACM Mobicom, Nevada, USA, Sep. 2011. |
N. Singh and D. Gunawardena and A. Proutiere and B. Radunovia and H.V. Balan and P. Key. Efficient and Fair MAC for wireless networks with self-interference cancellation. In Proceedings of WiOpt, Princeton, NJ, 2011. |
J. Choi and M. Jain and K. Srinivasan and P. Levis and S. Katti. Achieving Single Channel, Full Duplex Wireless Communication. In Proceedings of the ACM Mobicom, Illinois, USA, 2010. ACM New York, NY, USA. |
M. Duarte, A. Sabharwal. Full-Duplex Wireless Communications Using Off-The-Shelf Radios: Feasibility and First Results. Forty-Fourth. Asilomar Conference on Signals, Systems, and Computers, 2010. |
M. Jain, J. Choi, T. Kim, D. Bharadia, K. Srimvasan, S. Seth, P. Levis, S. Katti and P. Sinha, Practical, Real-time, Full Duplex Wireless, In Proceedings of the 17th Annual International Conference on Mobile Computing and Networking (Mobicom 2011). |
Number | Date | Country | |
---|---|---|---|
20180077727 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14886631 | Oct 2015 | US |
Child | 15818174 | US | |
Parent | 14456381 | Aug 2014 | US |
Child | 14886631 | US | |
Parent | 13549214 | Jul 2012 | US |
Child | 14456381 | US |