The invention relates to barriers for protecting personnel and equipment from falling rocks and earth, such as caused by rockfalls and landslides that may occur on a sloping surface, and more particularly, to a system and method of mitigating damage from rockfalls and landslides including at least one barrier layer and a plurality of rockfall attenuators mounted to the sloping surface.
Rockfalls are generally defined as groups of loose rocks or rock formations that become dislodged from a rock face under the influence of gravity. Rockfalls present a significant hazard for personnel and equipment that may be present in the pathway of the rockfall. An active rockfall area can be extremely hazardous; a falling rock contains a tremendous amount of energy, and even relatively small rocks can cause significant damage to equipment and structures, and can cause loss of life.
There are a number of mitigation techniques available to reduce the potential damage from rockfall. During construction practices, it is often necessary to provide temporary protection from rockfalls. One type of commonly used temporary barrier includes the use of a flexible barrier such as metal fencing or mesh that is secured by anchors to the slope at designated locations that is subject to rockfall events. If a rockfall occurs, the rock and associated debris are routed under the flexible barrier and between the mesh and the rockfall face. This channeling effect controls the fall of rocks and debris to prevent the rocks from free falling and causing potentially devastating damage to equipment and potential loss of life
An additional measure for mitigation is to excavate a catch basin at the base of the slope so any falling rocks are caught within the basin and therefore cannot fall below the location of the basin.
There are a number of US and foreign patent references that disclose barrier systems to mitigate damage from rockfalls. Some of these references provide complex flexible barrier configurations while others employ a large number of anchors or posts for supporting one or more flexible barrier members. One common theme however in most if not all of these references is that they are complex and require significant resources and manpower to install.
While there may be a number of solutions available for limiting the hazards associated with rockfalls and landslides, there are some inherent drawbacks with many of these solutions. For rockfall barriers that incorporate anchors such as metal posts to secure the metal barrier fencing, it can be very difficult to install the requisite number of posts on difficult to access sloping surfaces where rockfalls are actively occurring. Furthermore, the posts are commonly designed to break away or bend if the posts receive a direct hit from a falling rock or if the mesh experiences an excessive impact from falling rocks and debris. As a result of a direct hit or the force of many rocks striking the barrier fencing adjacent a post, the post must be replaced in many circumstances which require additional resources and manpower to repair or reset the system. For larger more catastrophic rockfalls, a number of adjacent posts may be destroyed which can further compromise the overall integrity of the barrier system, and may allow the escape of falling rocks and debris.
Therefore, there is a need to provide a rockfall barrier system that is capable of withstanding direct hits from rocks and falling debris without having to individually replace each post or anchor system that is used to hold the fencing. There is also a need to provide a rockfall barrier system that is easy to install, repair, and to minimize the length of exposure time of personnel to rockfall hazards. There is also a need to provide a rockfall barrier system that can effectively achieve dissipation of the energy associated with a rockfall in a cost-effective manner yet ensuring the safety of personnel and equipment that may be located in the rockslide area.
The invention includes a system and method for mitigating rockfalls and landslides. As used herein, the term “rockfalls” is not limited to mitigation of only falling rocks, but also associated debris such as earth and other miscellaneous debris that may be carried downward by the force of rocks that may strike a sloping surface. In order to simplify the description of the invention herein, the term “rockfall” also includes events that may be more accurately characterized as landslides in which a greater percentage of earth may move down slope as compared to rocks. Therefore, it should be understood that the system and method of the invention is equally applicable for mitigating rockfalls, landslides, or any other characterizations of objects that may fall down a sloping surface as a result of gravity.
In a preferred embodiment of a system of the invention, it includes a primary barrier layer covering a rockfall area, one or more secondary barrier layers, and a plurality of rockfall attenuators or bumpers selectively disposed along the primary barrier layer to provide structure for holding the barrier layers against the rockfall area. A rockfall area typically includes a sloping surface over which rock and debris may fall. The primary barrier layer may be made of a selected mesh material. The one or more secondary barrier layers may be made of finer and lighter mesh material as compared to the primary barrier layer. The attenuators are “free floating”, members in that they are not attached to the sloping surface.
According to one feature of the invention, the rockfall attenuators or bumpers are provided to not only hold the barrier layer(s) against a sloping surface and to provide the necessary gaps between the sloping surface and the barrier layers to trap incoming rocks from the rockfall event, but the rockfall attenuators are also employed to provide substantial energy absorption for rocks that may strike the attenuators.
According to a preferred embodiment of the attenuators or bumpers, they comprise an inflatable member made of a resilient and flexible material such as rubber, a selected thermoplastic, or combinations thereof. During a rockfall event, rocks striking the attenuators or bumpers are slowed due to a “bounce” effect in which energy is absorbed by the compression and subsequent expansion of the attenuators or bumpers. Because the attenuators are not directly attached to the sloping surface, rocks are allowed to flow beneath the individual attenuators and in the gaps between the adjacent attenuators, thereby facilitating the necessary control of rocks and debris as the material moves down slope. Further, because of the resilient nature of the bumpers/attenuators, a direct hit by a rock or other debris will not destroy the bumpers/attenuators and rather, and at least some of the energy from the strike will be directly absorbed by the struck bumper/attenuator.
A shape of the attenuators may be selected to achieve desired functionality associated with use of the attenuators at a specific job site. For example, the attenuators could be spherical shaped or cylindrical shaped in which the curved or rounded exterior surface of the attenuator would be in contact with the sloping surface to accommodate a bounce effect against the slope in response to a direct rock hit or in response to a flow of material beneath the attenuators.
The attenuators may be resilient inflatable members selectively spaced from one another to provide a necessary separation of the barrier layer from the slope. As mentioned, the attenuators also provide supplemental force resistance against a rockfall event in which the attenuators provide a reaction force due to their resilient construction.
Another advantage of using resilient and flexible attenuators is that they are capable of being installed on sloping surfaces having an infinite number of undulations or irregularities. The lower surface of the attenuators will naturally rest against any underlying surface and without the necessity of installing a dedicated post or anchor at that location. Accordingly, the attenuators allow for easy installation of the barrier system on slopes of many different configurations.
Yet another distinct advantage of the attenuators is that they may not only displace vertically away from the slope, but may also move laterally and then return approximately to their originally deployed locations. For example, a rockfall event could involve a concentrated number of rocks that may strike or otherwise envelop two or more adjacent attenuators. In this case, the attenuators may be forced to move both laterally and vertically due to the inherent unpredictable nature in which the rocks may strike the barrier. Because of the capability of the attenuators to individually move both vertically and laterally, better energy absorption can be achieved without destruction of the barrier system. After termination of the rockfall event, the attenuators will return to their approximate original deployed locations.
The invention may also include a method of mitigating rockfall events in which a barrier is provided including a plurality of resilient and flexible attenuators. The attenuators are secured to an upper portion of the mesh barrier and are capable of displacing laterally and vertically in response to a rockfall event.
A single support cable can be deployed for securing the attenuators and mesh barrier layer(s) to the sloping surface. The cable may be strung laterally across the upper ends of the barrier layer(s). The attenuators can be selectively disposed in a desired configuration such as in serial fashion, side by side, across the barrier layer(s). Two anchor points are provided for securing the support cable to the sloping surface, one located at each end of the cable. The anchor points must be robust anchors to support the system and therefore, the anchor points could comprise multiple anchoring elements. The anchor points may be drilled anchors with sufficient pull-out capacity to withstand significant forces that may be experienced in a rockfall event. Although an advantage of the invention is that only a single support cable may be required for some installations, it should be understood that multiple cables strung together between the anchor points may be another solution for purposes of attaching the attenuators and primary and secondary barrier layers. A multiple cable configuration could include cables arranged serially or in parallel to one another.
Specifically considering the above features of the invention, in one aspect, it may be considered a system for mitigating rockfall events on a sloping surface, the system comprising: a primary barrier layer having a width extending laterally across the sloping surface and a length extending down the sloping surface; a secondary barrier layer placed over the primary barrier layer, said secondary barrier layer having a width extending laterally across the sloping surface and a length extending down the sloping surface; a plurality of attenuators spaced laterally from one another and spaced laterally across the width of the primary barrier layer; a supporting cable extending laterally across the sloping surface, wherein upper portions of the primary and secondary barrier layers are attached to said supporting cable, and each of said plurality of attenuators are secured to said supporting cable; a first anchor point for securing a first end of said supporting cable; and a second anchor point for securing a second opposite end of said supporting cable.
According to another aspect of the invention, the attenuators have separate utility and can be used with other mitigation systems in order to separate any type of barrier layer(s) from a sloping surface and to provide secondary energy absorption for moving objects that strike the attenuators. In this regard, the attenuators may be considered a sub-combination of the invention or elements with separate utility. Accordingly, the attenuators in another aspect of the invention may comprise a body defining an outer surface, an interior surface and a sidewall defined as a thickness between the outer surface and interior surface; a chamber defining a hollow area within said body; a flange having a first end secured within the chamber and a second end protruding through a sidewall of the body, said second end including an eye exposed for connection to a desired implement; said body being made of a resilient and flexible material such that if the body is contacted by an external object with sufficient force, said body will compress in reaction thereto and subsequently decompressed after the force is removed.
According to yet another aspect of the invention, it may be considered a method of mitigating rockfall events on a sloping surface, the method comprising: positioning a primary barrier layer having a width extending laterally across the sloping surface and a length extending down the sloping surface; installing a plurality of attenuators that are spaced laterally from one another and spaced laterally across the width of the primary barrier layer; securing a supporting cable to extend laterally across the sloping surface, wherein an upper portion of the primary barrier layer is attached to said supporting cable, and each of said plurality of attenuators are secured to said supporting cable; installing a first anchor point for securing a first end of said supporting cable, and installing a second anchor point for securing a second opposite end of said supporting cable.
According to yet another aspect of the invention, it may be considered another system for mitigating rockfall events on a sloping surface, the system comprising: a barrier layer having a width extending laterally across the sloping surface and a length extending down the sloping surface; a plurality of attenuators spaced laterally from one another and spaced laterally across the width of the barrier layer, each of said attenuators being constructed of a resilient and flexible material, and said attenuators having an inflatable interior chamber for selected inflation or deflation thereof; a supporting cable extending laterally across the sloping surface, wherein upper portions of the primary barrier layers is attached to said supporting cable, and each of said plurality of attenuators are secured to said supporting cable; and first and second anchor points for securing opposite ends of said supporting cable to the sloping surface.
Other features and advantages of the invention will become apparent from a review of the following detailed description taken in conjunction with the drawings.
Referring to
The primary barrier layer 22 is dimensioned so to cover a desired rockfall area; accordingly, the primary barrier layer 22 may be defined as having a top or upper edge 24, a bottom or lower edge 26, and corresponding lateral side edges 28. When deployed in use, one or more fine mesh layers 30 may also be sized to cover a desired rockfall area and to extend a desired distance laterally across and vertically down the slope. Accordingly, the fine mesh layer 30 also includes a top or upper edge 32, a bottom or lower edge 34, and the corresponding lateral side edges 36. In the example of
The barrier system 20 further includes a plurality of laterally spaced attenuators or bumpers 40. The attenuators 40 are disposed at the top edges of the primary barrier layer 22 and secondary barrier layer(s) 30. Also referring to
Although the attenuators 40 are shown in a configuration in which they extend laterally across the sloping surface and being laterally spaced from one another, it should be understood that the attenuators can be selectively arranged in other configurations so that the barrier layer(s) optimally cover a sloping surface. In this regard, the barrier system 20 further includes selective configurations for the attenuators in which one or more attenuators can be positioned downslope from other attenuators in addition to laterally spaced attenuators.
When installed as shown in
Referring to
As compared to the prior art, it should be apparent that the system 20 of the present invention is significantly easier to install because only two anchor points are required to support the primary and secondary barriers as opposed requiring the installation of a plurality of anchor points on the sloping surface. Additionally, the entire barrier system can be simultaneously raised by simply securing opposite ends of the support cable and providing a force to pull the opposite ends. In this way, workers and other personnel are much better protected during the installation process because the number of workers and/or the amount of time spent at the worksite is substantially minimized.
According to a first step in preparation of the system for deployment as shown in
From the foregoing, it should be apparent that there are number of structural features of the invention that provide benefits over the prior art. The attenuators achieve an enhanced function for raising the barrier layer(s) away from the slope without requiring any of the attenuators to be actually attached to the slope. Installation or deployment of the system is simplified by use of a single support cable that may be raised to a desired height by only two anchor points. The physical force required to raise the barrier may be achieved simultaneously by opposite traveling vehicles or opposite pulling winches that pull opposite ends of the supporting cable.
There are a number of advantages of the invention. The system is easily installed since anchoring of the system is simplified with two primary anchor points in which the entire barrier can be raised with pulleys located at each anchor point. This simplified method of deploying the system makes the system a mobile solution for rockfall mitigation. The same system can be re-used in multiple installations because the attenuators are pre-secured to the barrier layers and because the attenuators are not permanently attached to the sloping surface of the rockfall area. Use of pulleys to raise and lower the barrier system allows it to be deployed and removed with existing equipment, such as jobsite vehicles, that can supply the needed force for raising and lowering the barrier system. The attenuators can be selectively arranged at various locations on the primary barrier to account for the specific shape or orientation of the sloping surface therefore enabling the system to be installed at many locations.
Although the invention is described herein with respect to one or more preferred embodiments relating to a system, method, and sub combinations of the system, it shall be understood that the invention can be modified beyond the specific disclosure of the preferred embodiments commensurate with the scope of the claims appended hereto.