During preparation of a well, a wellbore is drilled and a perforation procedure is carried out to facilitate fluid flow in the surrounding reservoir. The perforation procedure relies on a perforating gun loaded with charges and moved downhole into the wellbore. Once the perforating gun is located proximate the desired reservoir, the charges are ignited to perforate the formation rock that surrounds the wellbore.
The charges are mounted in a “straight” orientation that directs the shot or blast outwardly into the surrounding formation perpendicular to the perforating gun. As a result, ignition of the charges and the resulting controlled explosion creates substantial forces in the perforating gun and other associated, downhole equipment. In fact, the shock induced by the perforating procedure can cause a great deal of damage to the equipment. This potential for damage is most severe when the perforating procedure is carried out with relatively long perforating guns used to form perforations along a substantial region of the wellbore.
In general, embodiments in the present application provide a system and method by which the detrimental forces created during perforating are mitigated. A perforating gun is provided with charges mounted in a tilted manner so as to mitigate the detrimental forces acting on the perforating gun and other downhole equipment during a perforation procedure. The charges are tilted relative to an axis of the perforating gun, and this eliminates the potential for creating the most severe consequences when the charges are ignited downhole.
Certain embodiments will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements, and:
In the following description, numerous details are set forth to provide an understanding of embodiments according to the present invention. However, it will be understood by those of ordinary skill in the art that the present invention may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
The present application relates to a system and methodology for mitigating shock effects during perforation procedures. The charges used to create perforations and penetrate the formation surrounding a given wellbore are oriented to provide an axial counterbalancing force to the force loads created during perforating. By orienting at least some of the charges with an appropriate axial tilt, the detrimental force loads acting on the perforating gun and other perforating string equipment are reduced.
Referring generally to
Perforating string 24 comprises a perforating gun 32 and may comprise a variety of other perforating string components, including gauges, sensors, connectors, and other components that can be utilized in a perforation procedure. The perforating gun 32 is deployed downhole from a wellhead 34 disposed at a surface 36, such as a seabed floor or a surface of the earth. Perforating gun 32 is moved downhole until it is positioned at a desired location within a surrounding formation 38 that is to be perforated.
A plurality of charges 40 are mounted along the perforating gun 32 and directed outwardly toward formation 38. The arrangement of charges 40 can be selected according to the specific perforation procedure anticipated. For example, the number of charges, charge spacing, charge phasing and size of the charges can vary from one application to another. Additionally, the length and diameter of perforating gun 32 can be selected according to the perforating procedure, wellbore size and environment in which the procedure is performed. Regardless of the configuration, the charges 40 are mounted at corresponding charge receptacle sites 42.
The perforating gun 32 can be constructed in a variety of configurations and with a variety of components. As illustrated in the embodiment of
Referring generally to
The tilted orientation of the charge 40 is better demonstrated by an exaggerated tilt angle 54, as illustrated in
If all of the charges 40 are straight, i.e. not tilted, during perforation, large detrimental forces are created along loading tube 46 and perforating gun 32, as represented by force arrow 66 (see
The size of the charge reaction force 68 generated during a perforation procedure is affected by the tilt angle 54 at which charges 40 are oriented. Additionally, the mitigating reaction force is affected by the length of the perforating gun, the number of charges mounted along the perforating gun, the number of those charges that are oriented with an axial tilt, and the arrangement of those charges along the perforating gun. For example, longer perforating guns typically have more charges that can be used to provide larger reactive forces. In fact, in many applications, a beneficial reaction force or forces can be created with a relatively minimal tilt angle employed by several charges. For example, use of a tilt angle between zero and ten degrees is appropriate in many applications.
Furthermore, the orientation of the charges can be selected to create a variety of different dynamic loads along the length of the perforating gun. For example, the orientation, or the percentage of angled charges, can be adjusted to provide differing dynamic loads at opposite ends of perforating gun 32.
As illustrated in
In other applications, the charges 40 can be tilted differently at opposite ends of the perforating gun or at specific regions along the loading tube 46 to create different dynamic loads at different regions along the perforating gun. As illustrated in
As further illustrated in
A variety of models and calculations can be used to determine tilt angles and charge arrangements, however relatively crude assessments also can be used because many applications do not require an exact counterbalance to the detrimental forces. Even partial reduction of the detrimental loads can create a significant improvement by substantially reducing the potential for damage to the perforating equipment.
In one example, a desired reaction force can be estimated and used to design an appropriate charge arrangement able to create the desired reaction force. For a perforating gun of a given length deployed to a region of the wellbore having a given pressure, the shock that would result from a perforating procedure conducted with straight charges can be determined. The shock/forces create an impulse at the upper end of the perforating gun because the forces are unmatched at the bottom end due to detonation cord delay during ignition of the charges. The undesirable impulse resulting from perforating can be estimated by multiplying the force load by the time delay created by the detonation cord. The calculated impulse is then used to determine the number of charges and the tilt angle of those charges to create a desired reactive force.
In this example, the number of charges used in the perforating gun can be counted, and the momentum for the jet that results from each tilted charge can be estimated by multiplying the average velocity of the jet times the mass of the charge. This momentum value is multiplied by the number of charges that will have an axial tilt to obtain the overall reactive momentum. A desired tilt angle can then be calculated simply by taking the arcsin of the undesirable impulse (that runs axially along the perforating gun) over the collective momentum of the tilted charges (discharged at an axial tilt angle relative to the outward orientation of a “straight” charge). It should be noted that a variety of other methods for estimating or determining the desired angle of tilt relative to the straight orientation can be used. For example, other factors can be utilized in determining actual tilt angles of specific charges to create differing reactive forces at different regions of the perforating gun.
The system and technique for the axial counterbalancing of undesirable force loads and the mitigation of their detrimental effects can be utilized in a variety of perforating systems and applications. Additionally, the type and size of the charges can vary. Furthermore, the arrangement/mixture of axially tilted charges and straight charges can be adjusted according to the specific application and the desired reactive forces. In many applications, all of the charges can be positioned at one or more desired axial tilt angles.
Accordingly, although embodiments have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings according to this invention. Accordingly, such modifications are intended to be included within the scope of this invention as defined in the claims.
Number | Name | Date | Kind |
---|---|---|---|
3016014 | Lebourg | Jan 1962 | A |
4961365 | Rytlewski | Oct 1990 | A |
5095801 | Lopez de Cardenas | Mar 1992 | A |
5662178 | Shirley | Sep 1997 | A |
5816343 | Markel | Oct 1998 | A |
5952603 | Parrott | Sep 1999 | A |
6125946 | Chen | Oct 2000 | A |
6173773 | Almaguer | Jan 2001 | B1 |
6347673 | Dailey | Feb 2002 | B1 |
6523449 | Fayard | Feb 2003 | B2 |
6591911 | Markel | Jul 2003 | B1 |
20050194181 | Barker et al. | Sep 2005 | A1 |
20050247447 | Spring et al. | Nov 2005 | A1 |
Number | Date | Country |
---|---|---|
833164 | Apr 1960 | GB |
2350379 | Nov 2000 | GB |
2410785 | Oct 2005 | GB |
2420804 | Jun 2006 | GB |
2430479 | Mar 2007 | GB |
2005093208 | Oct 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20090159284 A1 | Jun 2009 | US |