The present invention relates generally to optical networks, and more particularly to a system and method for modularly scalable architecture for optical networks.
Telecommunications systems, cable television systems and data communication networks use optical networks to rapidly convey large amounts of information between remote points. In an optical network, information is conveyed in the form of optical signals through optical fibers. Optical fibers are thin strands of glass capable of transmitting the signals over long distances with very low loss.
Optical networks often employ wavelength division multiplexing (WDM) or dense wavelength division multiplexing (DWDM) to increase transmission capacity. In WDM and DWDM networks, a number of optical channels are carried in each fiber at disparate wavelengths. Network capacity is based on the number of wavelengths, or channels, in each fiber and the bandwidth of the channels. In WDM, DWDM and other optical networks, micro-electro-mechanical switches (MEMS), arrayed waveguide gratings (AWGs), interleavers, and/or fiber gratings (FGs) are typically used to add and drop traffic at network nodes and to multiplex and demultiplex traffic in various channels at network nodes.
A system and method for modularly scalable architecture for optical networks are provided. In one embodiment, a node for an optical network comprises a plurality of in-line switches connected to an optical ring and operable in a first state to both pass an optical signal received from the optical ring to an associated coupler and pass an optical signal received from the associated coupler to the optical ring. The optical signal carries traffic in a plurality of channels. A drop coupler is coupled to a first in-line switch and is operable to receive an optical signal from the in-line switch where the switch is in the first state, pass a first copy of the optical signal back to the in-line switch for passing to the optical ring, and drop a second copy of the optical signal to a distributing element. The distributing element is operable to receive the second copy and pass traffic in one or more channels of the second copy. A filter is operable to reject one or more channels of the first copy to generate a passthrough signal. A combining element is operable to receive traffic in one or more channels to be added to the optical ring and combine the received traffic to generate an add signal. An add coupler is coupled to a second in-line switch and is operable to receive the passthrough signal from the second in-line switch when the switch is in the first state, add the add signal to the passthrough signal to generate a combined signal, and pass the combined signal to the second in-line switch for passing to the optical ring.
Technical advantages of certain embodiments of the present invention include providing a plurality of in-line switches in a network element to provide a scalable architecture. For example, a network node may begin as an in-line amplification site and be upgraded to an add/drop node via the in-line switches. Further upgrading may increase the capacity of the add/drop node or allow it to be used to interface between different networks. As a result of the scaleable nature, the node has a low entry cost and may allow in-service upgrades. Other advantages of one or more embodiments may include reducing, minimizing or eliminating uncertainty in switching by deploying digital cross connects using wavelength clustering, and the digital cross connects may also provide sub-lambda granularity. One or more embodiments may also have the advantage of increasing reliability of wavelength-selective switch technology.
Network 100 includes a plurality of add/drop nodes 102 and a fiber optic ring 104. In the illustrated embodiment, an optical signal is transmitted in a clockwise direction on the ring 104. “Optical signal”, as used herein, is a signal that includes multiple channels that are each associated with a particular wavelength or a band of wavelengths and that carry traffic in network 100. As used herein, “traffic” means information transmitted in a channel. Ring 104 optically connects nodes 102, wherein each node 102 can both transmit traffic to and receive traffic from the other nodes 201. As used herein, the term “each” means every one of at least a subset of the identified items. Optical signals transmitted in network 100 may have at least one characteristic modulated to encode audio, video, textual, real-time, non-real-time and/or other suitable data. Modulation may be based on phase shift keying (PSK), intensity modulation (IM) and other suitable methodologies. Although
In the illustrated embodiment, nodes 102 are each operable to add and drop traffic to and from ring 104. At each node 102, traffic received from local clients is added to ring 104, while traffic destined for local clients is dropped from ring 104. Traffic may be added to ring 104 by inserting the traffic in one or more channels into the optical signal. Traffic may be dropped from ring 104 by making the traffic available for transmission to the local clients. Thus, traffic may be dropped and yet continue to circulate on ring 104. In particular embodiments, traffic is passively added to and dropped from ring 104. “Passive” in this context means the adding or dropping of channels without power, electricity, and/or moving parts. An active device would thus use power, electricity or moving parts to perform work. In particular embodiments, traffic may be passively added to and/or dropped from ring 104 by splitting traffic from and combining traffic with the optical signal carried around ring 104 without demultiplexing the optical signal. In an alternative embodiment of adding and dropping traffic, the nodes 102 may multiplex traffic from local clients in multiple channels for transmittal in ring 104 and may demultiplex traffic in multiple channels of the optical signal on ring 104 for clients.
In particular embodiments, the various elements of node 102 may each be implemented as a discreet card and interconnected through a backplane of a card shelf of node 102. Alternatively, the functionality of the elements of node 102 may be distributed across a plurality of discreet cards. The elements of node 102 may be coupled by direct, indirect, or other suitable connection or association. In the illustrated embodiment, the elements of node 102 are connected with optical fiber connections; however, other embodiments may be implemented in part or otherwise with planer waveguide circuits and/or free space optics.
Each in-line switch 202 is operable to selectively switch an optical signal carried in ring 104 to an associated coupler 210 or 216. In the illustrated embodiment, each in-line switch 202 comprises a 2×2 switch with a first input port 207 and a first output port 209 connected to ring 104. When an in-line switch 202 is in an open state, the first input port 207 is connected to the first output port 209 and thus the optical signal carried on ring 104 passes through the in-line switch 202 in an open state without passing through an associated coupler 210 or 216, as illustrated in in-line switches 202B to E. Each in-line switch 202 also includes a second input port 211 and a second output port 213 connected to an egress lead 203 and an ingress lead 205, respectively. When an in-line switch 202 is in a cross state, first input port 207 is connected to second output port 213 thus connecting ring 104 to ingress lead 205 of an associated coupler 210 or 216, and second input port 211 is connected to first output port 209 thus connecting egress lead 203 of an associated coupler 210 or 216 to ring 104.
Drop coupler 210 is operable to split the optical signal into two substantially identical signals and drops one signal to drop lead 217 and pass the other signal to egress lead 203. As used herein, an optical coupler is any device operable to combine or otherwise generate a combined optical signal based on two or more optical signals and/or to split or divide an optical signal into discrete optical signals. The discrete signals may be similar or identical in frequency, form, and/or content. For example, the discrete signals may be identical in content and identical or substantially similar in power, may be identical in content and differ substantially in power, or may differ slightly or otherwise in content. Any other suitable optical devices that passively splits an input signal into two substantially identical signals may be used in place of drop coupler 210. In the illustrated embodiment, drop coupler 210 comprises a 1×2 coupler that passes the optical signal to ring 104 via egress lead 203 and also drops the optical signal to a wavelength-selective switch (WSS) 212.
WSS 212 is operable to optically switch one or more individual channels of the drop signal to one or more output ports 214. Local clients nay be connected to output ports 214 and traffic sent to a particular output port 214 is destined for a local client associated with that particular output port 214. More particularly, WSS 212 switches selected wavelengths of the drop signal to selected output ports 214 while substantially rejecting all other wavelengths. For example, if the drop signal includes channels at wavelengths λ1 to λ4, WSS 212 may be operable to individually switch channels at wavelengths λ1, λ2, and λ4 among output ports 214 while rejecting λ3. For instances, WSS 212 may pass channels at wavelengths λ1, λ2, and λ4 to output ports 214A, B, and C, respectively, or alternatively to output ports 214B, C, and A, respectively. WSS 212 may provide a different channel for each output port 214, but WSS 212 may alternatively drop different subbands of the drop signal to different output ports 214. A subband, as used herein, means a portion of the bandwidth of the network comprising a subset of the channels of the network. As an example only, one embodiment of WSS 212 may be constructed as described in U.S. Pat. No. 6,097,859. Alternatively, distributing element 204 may comprise a demultiplexer 222 (e.g., array waveguide grating) in place of WSS 212 as illustrated in
After the optical signal passes through in-line switch 202A and coupler 210, the optical signal passes through switches 202B and C (which are in an open state) to wavelength blocker 208. Wavelength blocker 208 is operable to reject traffic in particular channels while passing traffic in the remaining channels through wavelength blocker 208. Wavelength blocker 208 may be based on any suitable technology such as, for example, MEMS, gratings, liquid crystals, or any other suitable elements. In particular embodiments, wavelength blocker 208 includes a separate filter associated with each incoming channel. In such a case, each filter is configured either to forward (pass) an associated channel of the optical signal or to terminate (reject) the associated channel. For example, if traffic in a particular channel is to be added to optical ring 104 by combining element 206, then wavelength blocker 208 may block traffic in that to prevent interference with the traffic being added to ring 104 by combining element 206. The optical signal remaining after the wavelength blocker 208 passes through in-line switches 202D and E (which are in an open state) and in-line switch 202F passes the optical signal to add coupler 216 for adding channels received by combining element 206.
Combining element 206 receives traffic in one or more channels via input ports 218 and combines traffic in the one or more channels to generate an add signal. In particular embodiments, each input port 218 receives traffic in a different channel. Combining element 206 forwards the add signal to add coupler 216 via add lead 220. In the illustrated embodiment, combining element 206 comprises a WSS 212. Alternatively, combining element 206 comprises a multiplexer 224 (e.g., array waveguide grating) in place of WSS 212 as illustrated in
Add coupler 216 receives the add signal from combining element 206 and adds the add signal to the optical signal carried on ring 104. In particular, add coupler 216 receives the optical signal from in-line switch 202F via ingress lead 205 and the add signal from combining element 206 via add lead 217. After add coupler 216 adds the add signal to the optical signal, add coupler 216 passes the optical signal to in-line switch 202F via egress lead 203, which is then amplified by amplifier 210.
While
In one aspect of operation of node 102, an optical signal is received at node 102 and is passed to drop coupler 210 via in-line switch 202A (since switch is in the cross state). Drop coupler 210 makes two substantially identical copies of the optical signal. Drop coupler 210 drops one of the copies to WSS 212 which optically switches traffic in particular channels to output ports 214, and drop coupler 210 passes the other copy of the optical signal to ring 104 via in-line switch 202A. The optical signal then passes through in-line switches 202B and C (since they are in the open state) to wavelength blocker 208. Wavelength blocker 208 receives the optical signal and rejects traffic in particular channels, such as traffic in channels added by combining element 206, from the optical signal and passes the traffic in the remaining channels. The optical signal remaining after wavelength blocker 208 passes through in-line switches 202D and E (since they are in the open state) to in-line switch 202F. In-line switch 202F passes the optical signal to add coupler 216 for adding additional channels received by WSS 212 to the optical signal. WSS 212 receives channels at different wavelengths via input ports 218, combines the different channels to generate an add signal, and passes the add signal to add coupler 216 via add lead 220. Add coupler 216 adds the add signal to the optical signal and passes the optical signal to ring 104 via in-line switch 202F. Amplifier 210 then amplifies the optical signal before it is transmitted from node 102 over ring 104.
For example, the maximum number of channels that may be dropped by node 102 of
Referring to
In one aspect of operation of node 102, an optical signal is received at node 102 and is passed to drop coupler 210A via in-line switch 202A (since switch is in a cross state). For example, the optical signal may comprise a WDM signal including channels at wavelengths λ1 to λ40. Drop coupler 210A splits the optical signal into two substantially identical copies of the optical signal. Drop coupler 210A drops the optical signal to WSS 212A which optically switches individual channels of the optical signal to output ports 214 while rejecting all other wavelengths. Continuing with the example, WSS 212A switches channels at wavelengths λ1 to λ8 to output ports 214A to H, respectively, while rejecting wavelengths λ9 to λ40. Drop coupler 210A passes the optical signal to ring 104 via egress lead 203 and in-line switch 202A. In the example, since drop coupler 210A passes the optical signal to ring 104, the optical signal still comprises a WDM signal including wavelengths λ1 to λ40. In-line switch 202B then passes the optical signal carried on ring 104 to drop coupler 210B via ingress lead 205. Drop coupler 210B again splits the optical signal into two substantially identical copies of the optical signal. Drop coupler 210B drops the optical signal to WSS 212B which optically switches individual channels of the optical signal to output ports 314 while rejecting all other wavelengths. Returning to the example, WSS 212B switches channels at wavelengths λ9 to λ16 to output ports 314A to H, respectively, while rejecting λ1 to λ8 and λ17 to λ40. Drop coupler 210B passes the optical signal to ring 104 via egress lead 205 and in-line switch 202B. The optical signal then passes through in-line switch 202C (since the switch is in an open state) to wavelength blocker 208.
Wavelength blocker 208 receives the optical signal and rejects traffic in particular channels, such as traffic in channels added by combining element 206, from the optical signal and passes traffic in the remaining channels to in-line switch 202D. In particular embodiments, the channels added by combining elements 206 are the same channels dropped by distributing elements 204. In the example, wavelength blocker 208 rejects traffic at wavelengths λ1 to λ16 from the optical signal, and as a result, the remaining WDM signal includes traffic at wavelengths λ17 to λ40. In-line switch 202D, which is in a cross state, passes the optical signal to add coupler 216A for adding additional channels to the optical signal. Multiplexer 224 receives channels at different wavelengths via input ports 318 and multiplexes them into a first add signal. Returning to the example, multiplexer 224 receives channels at wavelengths λ1 to λ8 via input ports 318A to H, respectively, and multiplexes the channels into a first add signal. Multiplexer 224 passes the first add signal to add coupler 216A, which adds the first add signal to the optical signal and passes the optical signal to ring 104 via egress lead 203 and in-line switch 202D. In the example, the optical signal now includes the wavelengths λ1 to λ8 and λ17 to λ40. The optical signal then passes through in-line switch 202E (since the switch in an open state) to in-line switch 202F.
In-line switch 202F passes the optical signal to add coupler 216B for adding additional channels to the optical signal. WSS 212C receives traffic at particular channels via input ports 218 and combines the channels to generate a second add signal. In the example, WSS 212C receives channels at wavelengths λ9 to λ16 via input ports 218A to H, respectively, and combines the channels into a second add signal. WSS 212C passes the first add signal to add coupler 216B, which adds the second add signal to the optical signal and passes the optical signal to ring 104 via egress lead 203 and in-line switch 202F. In the example, the optical signal now includes the wavelengths λ1 to λ40. Amplifier 210 then amplifies the optical signal before it is transmitted from node 102 over ring 104.
Referring to
In one aspect of operation of node 102, an optical signal is received at node 102 and is passed to drop coupler 210 via in-line switch 202A (since switch is in a cross state). Drop coupler 210 makes two substantially identical copies of the optical signal. Drop coupler 210 drops one of the copies to distributing element 204 which optically passes traffic in selected channels to output ports 214, and drop coupler 210 also passes the optical signal to ring 104 via an associated egress lead 203 and in-line switch 202A. The optical signal then passes through in-line switches 202B and C (since they are in an open state) to in-line switch 202D, which passes the optical signal to wavelength blocker 208 (since the switch is in a cross state). Wavelength blocker 208 receives the optical signal and rejects traffic in particular channels, such as traffic in channels added by combining element 206, from the optical signal and passes the remaining optical signal to ring 104 via egress lead 203 and in-line switch 202D. The optical signal remaining after wavelength blocker 208 passes through in-line switches 202E and F (since they are in an open state) to in-line switch 202G. In-line switch 202G passes the optical signal to add coupler 216 for adding additional channels received by combining element 206 to the optical signal. Combining element 206 receives channels at different wavelengths via input ports 218, combines the different channels to generate an add signal, and passes the add signal to add coupler 216 via add lead 220. Add coupler 216 adds the add signal to the optical signal and passes the optical signal to ring 104 via in-line switch 202G. Amplifier 210 then amplifies the optical signal before it is transmitted from node 102 over ring 104.
Referring to
In one aspect of operation of node 102, an optical signal is received at node 102 and is passed to distributing element 204 via in-line switch 202A (since switch is in a cross state). Distributing element 204 optically passes traffic in selected channels to one or more of output ports 214B through 214H and may pass a subset of the remaining channels to ring 104 via output port 214A and in-line switch 202A. The traffic passed back to ring 104 from port 214A of distributing element 204 passes through in-line switches 202B through 202F (since they are in an open to state) to in-line switch 202G. In-line switch 202G passes the optical signal to combining element 206 via input port 218H for adding additional channels received by input ports 218A to 218G to the optical signal. Combining element 206 receives channels at different wavelengths via input ports 218A through 218G and the optical signal via input port 218H, combines the different channels into one optical signal, and passes the combined signal to ring 104 via egress lead 203 and in-line switch 202G. Amplifier 210 then amplifies the optical signal before it transmitted from node 102 over ring 104.
Referring to
In one aspect of operation of node 102, an optical signal is received at node 102 and is passed to drop coupler 210. Drop coupler 210 drops a copy of the optical signal to distributing element 204A via ingress lead 205. Distributing element 204A optically passes particular channels of subbands to each of a number of distributing elements 204B. A subband, as used herein, means a portion of the bandwidth of the network comprising a subset of the channels of the network. Distributing element 204A is configured as desired such that selected channels of subbands of the received optical signal may be output at selected output ports of distributing elements 204A, which are in turn coupled to particular input ports of distributing elements 204B. As a result, each distributing element 204B receives traffic at one or more channels, and each distributing element 204B optically passes traffic in the associated channels to output ports 214.
Drop coupler 210 aso passes a copy of the optical signal transmitted on ring 104 to wavelength blocker 208. Wavelength blocker 208 receives the optical signal and rejects traffic in particular wavelengths, such as traffic being added by the plurality of combining elements 206, from the optical signal and passes the remaining traffic to add coupler 216. Each combining element 206B receives traffic at particular channels via their associated input ports 218 and combines the channels to generate an associated combined signal. Each combined signal generated by an associated combining element 206B is passed to combining element 206A via input ports 218 of combining element 206B. Combining element 206A receives the combined signals and combines the signals to generate an add signal. Combining element 206A then passes the add signal to add coupler 216 via egress lead 203. Add coupler 216 adds the add signal to the optical signal transmitted on ring 104. Amplifier 210 then amplifies the optical signal before it is transmitted from node 102 over ring 104.
Referring to
In the illustrated embodiment, XCs 502 comprises digital cross connects. Hence, optical-to-electrical (OE) and electrical-to-optical (EO) conversion may be required prior to cross-connecting traffic received at the XCs 502. If required, optical receivers may be coupled to output ports 214 and add leads 506 to perform OE conversion of traffic in ingress channels, and optical transmitters may be coupled to drop leads 504 and input ports 218 to perform EO conversion of traffic in egress channels. XCs 502 are operable to switch traffic from each of the input ports to one or more output ports and thus provide sub-lambda granularity. As a result, traffic carried on a single channel, which is received via a single output port 214 (or single ingress add lead 506), may be distributed over one or more egress drop leads 504 (or over one or more of input ports 218). XCs 502 may pass the traffic from each drop lead 504 to another optical ring and/or the same ring 104 and in the same or different channels. For example, some or all drop leads may be coupled to another ring, to add leads 506 of XC 502B for adding back to ring 104 (for example, in another channel than the channel it was received by XC 502A), or any other suitable components or devices.
In particular embodiments, each egress drop lead 504 passes traffic to be communicated in a channel different from the channels associated with the other egress drop leads 504. For example, XC 502A may receive traffic containing information blocks A, B, and C received via a channel at wavelength λ1 via output port 214A and switch blocks A, B, and C to egress drop leads 504A, G, and N, respectively, where drop leads 504 A, G, and N are associated with channels at wavelengths λ3, λ6, and λ10, respectively. Similarly, each input port 218, in particular embodiments, receives traffic associated with a channel different from the channels associated with the other input ports 218. For example, XC 502B may receive information blocks A, B, and C associated with wavelength λ1 via ingress add lead 506A and switch blocks A, B, and C to input ports 218A, D, and H, respectively, where input ports 218A, D, and H are associated with channels at wavelengths λ3, λ6, and λ10, respectively. In other embodiments, traffic carried on multiple channels, which is received via multiple output ports 214 (or multiple ingress add leads 506), may be switched to and combined at a single egress drop lead 504 (or a single input port 218).
In one aspect of operation of node 102, an optical signal is received by node 102 and is passed to drop coupler 210 via in-line switch 202A (since the switch is in a cross state). Drop coupler 210 splits the optical signal into two substantially identical copies of the optical signal. After which, drop coupler 210 drops the optical signal to distributing element 204 which optically passes traffic in selected channels of the optical signal to XC 502A via output ports 214 while substantially rejecting traffic in all other channels. XC 502A switches traffic from one output port 214 to one or more egress drop leads 504. Drop coupler also passes the optical signal to ring 104 via an associated egress lead 203 and in-line switch 202A. The optical signal then passes through in-line switches 202B and C (since the switches are in an open state) to in-line switch 202D. In-line switch 202D passes the optical signal to wavelength blocker 208, which rejects traffic in channels added by combining element 206. Wavelength blocker 208 passes traffic in the remaining channels to ring 104 via an associated egress lead 203 and in-line switch 202D. The optical signal then passes through in-line switches 202E and F (since the switches are in an open state) to in-line switch 202G. In-line switch 202G passes the optical signal to add coupler 216 for adding traffic received by XC 502B. XC 502B receives traffic via ingress add leads 506 (for example, traffic from another ring or from XC 502A) and switches traffic from one ingress add lead 506 to one or more input ports 218. The resulting channels pass to combining element 206 via input ports 218. Combining element 206 combines the individual channels into an add signal and passes the add signal to add coupler 216 via add lead 220. Add coupler adds the add signal to the optical signal and pass the optical signal to ring 104 via an associated egress lead 203 and in-line switch 202G. Amplifier 210 then amplifies the optical signal before it is transmitted from node 102 over ring 104.
Referring to
In one aspect of operation, a first optical signal is received at node 102A and is passed to drop coupler 210 via in-line switch 202A (since switch is in a cross state). Drop coupler 210 makes two substantially identical copies of the optical signal. Drop coupler 210 drops one of the copies to distributing element 204A which optically passes traffic in selected channels to output ports 214, and drop coupler 210 also passes the optical signal to ring 104A via an associated egress lead 203 and in-line switch 202A. Output ports 214 pass the selected channels to combining element 206B of node 102B for adding to a second optical ring 104B. Combining element 206B combines the selected channel into a first combined signal and passes the first combined signal to add coupler 216 of node 102B for adding the combined signal to a second optical signal transmitted on ring 104B.
Returning to node 102A, the first optical signal then passes through in-line switches 202B and C (since they are in an open state) to in-line switch 202D, which passes the first optical signal to wavelength blocker 208 (since the switch is in a cross state). Wavelength blocker 208 receives the first optical signal and rejects traffic in particular channels, such as traffic in channels added by combining element 206A, from the first optical signal and passes the remaining optical signal to ring 104A via egress lead 203 and in-line switch 202D. The first optical signal remaining after wavelength blocker 208 passes through in-line switches 202E and F (since they are in an open state) to in-line switch 202G. In-line switch 202G passes the optical signal to add coupler 216 for adding additional channels received by combining element 206A to the optical signal. Combining element 206 receives channels at different wavelengths via input ports 218 from distributing element 204 of node 102B, combines the different channels to generate an add signal, and passes the add signal to add coupler 216 via add lead 220. Add coupler 216 adds the add signal to the first optical signal and passes the first optical signal to ring 104 via in-line switch 202G. Amplifier 210 then amplifies the first optical signal before it is transmitted from node 102A over ring 104A.
Although the present invention has been described in detail, various changes and modifications may be suggested to one skilled in the art. It is intended that the present invention encompass such changes and modifications as falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5323258 | Tsushima et al. | Jun 1994 | A |
5483372 | Green, Jr. | Jan 1996 | A |
5510920 | Ota | Apr 1996 | A |
5550818 | Brackett et al. | Aug 1996 | A |
5576875 | Chawki et al. | Nov 1996 | A |
5748811 | Amersfoort et al. | May 1998 | A |
5771112 | Hamel et al. | Jun 1998 | A |
5774606 | de Barros et al. | Jun 1998 | A |
5778118 | Sridhar | Jul 1998 | A |
5903371 | Arecco et al. | May 1999 | A |
5905838 | Judy et al. | May 1999 | A |
5956319 | Meli | Sep 1999 | A |
5959749 | Danagher et al. | Sep 1999 | A |
5999291 | Anderson | Dec 1999 | A |
6025941 | Srivastava et al. | Feb 2000 | A |
6028898 | Sparks et al. | Feb 2000 | A |
6038045 | Sotom et al. | Mar 2000 | A |
6038357 | Pan | Mar 2000 | A |
6040933 | Khaleghi et al. | Mar 2000 | A |
6101012 | Danagher et al. | Aug 2000 | A |
6115156 | Otani et al. | Sep 2000 | A |
6125220 | Copner et al. | Sep 2000 | A |
6134036 | Andreozzi et al. | Oct 2000 | A |
6151356 | Spagnoletti et al. | Nov 2000 | A |
6160648 | Oberg et al. | Dec 2000 | A |
6160660 | Aina et al. | Dec 2000 | A |
6163527 | Ester et al. | Dec 2000 | A |
6166838 | Liu et al. | Dec 2000 | A |
6172801 | Takeda et al. | Jan 2001 | B1 |
6181849 | Lin et al. | Jan 2001 | B1 |
6188816 | Solheim | Feb 2001 | B1 |
6192172 | Fatehi et al. | Feb 2001 | B1 |
6192173 | Solheim et al. | Feb 2001 | B1 |
6201909 | Kewitsch et al. | Mar 2001 | B1 |
6205158 | Martin et al. | Mar 2001 | B1 |
6208440 | Jang | Mar 2001 | B1 |
6222654 | Frigo | Apr 2001 | B1 |
6226117 | Hentschel | May 2001 | B1 |
6236499 | Berg et al. | May 2001 | B1 |
6243517 | Deacon | Jun 2001 | B1 |
6249510 | Thompson | Jun 2001 | B1 |
6268951 | Chen et al. | Jul 2001 | B1 |
6275331 | Jones et al. | Aug 2001 | B1 |
6285479 | Okazaki et al. | Sep 2001 | B1 |
6288834 | Sugaya et al. | Sep 2001 | B1 |
6298038 | Martin et al. | Oct 2001 | B1 |
6331906 | Sharma et al. | Dec 2001 | B1 |
6337755 | Cao | Jan 2002 | B1 |
6351323 | Onaka et al. | Feb 2002 | B1 |
6363183 | Koh | Mar 2002 | B1 |
6400476 | Arecco | Jun 2002 | B1 |
6445850 | Zhou et al. | Sep 2002 | B1 |
6519064 | Fatehi et al. | Feb 2003 | B1 |
6529303 | Rowan et al. | Mar 2003 | B1 |
6590681 | Egnell et al. | Jul 2003 | B1 |
6597481 | Fatehi et al. | Jul 2003 | B1 |
6643042 | Nishio et al. | Nov 2003 | B1 |
6674935 | Kelly et al. | Jan 2004 | B2 |
6751375 | Meyer | Jun 2004 | B1 |
6931175 | Bock et al. | Aug 2005 | B2 |
20020030866 | Wu et al. | Mar 2002 | A1 |
20020048066 | Antoniades et al. | Apr 2002 | A1 |
20020067523 | Way | Jun 2002 | A1 |
20020094155 | Sakano | Jul 2002 | A1 |
20020101633 | Onaka et al. | Aug 2002 | A1 |
20020145779 | Strasser et al. | Oct 2002 | A1 |
20020159117 | Nakajima et al. | Oct 2002 | A1 |
20020191899 | Kelly et al. | Dec 2002 | A1 |
20030091274 | Vohra et al. | May 2003 | A1 |
20030215232 | Jahn et al. | Nov 2003 | A1 |
20030223682 | Kinoshita et al. | Dec 2003 | A1 |
20040052530 | Tian et al. | Mar 2004 | A1 |
Number | Date | Country |
---|---|---|
0 920 153 | Jun 1999 | EP |
0 949 777 | Oct 1999 | EP |
1 014 613 | Jun 2000 | EP |
1 231 728 | Aug 2002 | EP |
2002-304421 | Dec 1990 | JP |
03-053226 | Mar 1991 | JP |
09-102991 | Apr 1997 | JP |
09-329815 | Dec 1997 | JP |
11-055268 | Feb 1999 | JP |
11-289296 | Oct 1999 | JP |
2000-244953 | Sep 2000 | JP |
2000-271272 | Oct 2000 | JP |
2002-208895 | Jul 2002 | JP |
2002-214473 | Jul 2002 | JP |
WO 9847255 | Oct 1998 | WO |
WO 9965164 | Dec 1999 | WO |
WO 02073856 | Sep 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20060045528 A1 | Mar 2006 | US |