The system and method described herein uses the inherent strain on some portions of the compressor assembly to determine the cylinder pressure. The inherent strain caused by the pressure results in a lengthening of the compressor structure, and the system described herein measures this change in dimension, which is linearly proportional to pressure. The system uses similar materials to the compressor so that any thermal expansion effects of increased temperatures are compensated for. Measuring the strain over a significant length of the structure allows a substantial increase in sensor sensitivity over a strain gauge that may have a relatively low sensitivity. Multiple sensing systems placed on a cylinder can be summed to add sensitivity and to average any “wag” in the cylinder that may cause unbalanced strain. “Wag” is side-to-side movement of the cylinder assembly that would cause unequal strain on opposite sides of the chamber. There is substantial support and stiffness in the vertical direction, but less in the horizontal direction
With reference to
With continued reference to
The rod clamp 20 is preferably a two-piece clamp having an inside diameter slightly smaller than the tie bolt 18 to which the rod clamp 20 is fixed. A protrusion from the clamp is threaded to accept the target rod 24. The target rod is preferably necked down and threaded on one end to fasten to the rod clamp 20 and to be perpendicular to the clamp 20 with the necked down shoulder being perpendicular to the target rod axis.
The opposite end of the target rod 24 is perpendicular to the axis of the rod and is used as a measurement target. A circumferential groove on the rod 24 is used to indicate the correct insertion depth into the sensor clamp 22. With reference to
To install the system, the rod clamp 20 is first placed near one end of the tie bolt 18 and secured to the tie bolt 18 by tightening the clamp bolts. The target rod 24 is then firmly tightened into the rod clamp 20 (parallel to the tie bolt 18). The sensor clamp 22 is then installed on the tie bolt 18 and slid toward the target rod 24 until the target rod extends into the sensor clamp 22 to the depth indicated by the groove on the target rod 24. A sensor 26 is then assembled into the sensor clamp 22, and when inserted to the starting depth, the sensor is firmly secured in place with a jam nut against the sensor clamp 22. The process is repeated for each tie bolt 18 fitted with a device. The described method is exemplary as those of ordinary skill in the art will appreciate alternative methods or differently ordered steps, and the invention is not necessarily meant to be limited to the described method.
With reference to
The sensor 26 measures this increase in the space between the sensor 26 and the target face of the target rod 24, which is related directly to the strain on the tie bolt 18. The sensor 26 outputs its measurement to a processor such as a CPU or the like, and the processor generates output curves similar in appearance to classical pressure-volume (PV) diagrams, which are used to assess a condition of the compressor.
The compression cycle generates heat, a portion of which is radiated by the compressor cylinder and the head. As the tie bolts 18 are heated, they expand as a result of their coefficient of linear expansion. This thermal growth will also lengthen the distance between the rod clamp 20 and the sensor clamp 22. As the temperature is radiated from the cylinder, the target rod 24 also grows in response to the temperature change, and the growth reduces the distance between the sensor 26 and the target rod face, thus compensating for the ambient temperature of the device and the tie bolts 18. This is an important feature as only measuring the distance between the clamps (for example, with a laser) would not compensate for the thermal growth. The installation of the target rod 24 provides that function.
The balancing of the forces in the tie bolts 18 causes the sum of all of the bolt stress to equal the driving force, although this does not guarantee that it is equally divided among all of the tie bolts 18. The sensor outputs from a number of sensors 26 may be summed to total the force acting on the cylinder.
The monitoring system described herein uses the inherent strain on portions of a compressor assembly to determine cylinder pressure. By monitoring cylinder pressure, valuable information about the valve and packing performance can be obtained, thereby reducing the risk of a catastrophic condition.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.