This invention relates to a system and method for monitoring condition of rail car components including wheels, brakes and bearings.
Rail car brakes are generally fail safe systems. That is, when a portion of the system fails, the brakes are usually applied automatically as a safety precaution. This can result in brakes being applied when not intended. Likewise, if the brakes are set (e.g., calibrated) while the car is heavily loaded and then not reset after unloading, the brakes may be applied when not intended.
Rail car brakes that are applied when not intended or more than necessary or desired are subject to more wear, and reduced life, and may result in earlier failure of the brake and/or other components of the rail car. Additionally, rail car bearings and/or other components of the rail car may fail separately from the rail car brakes. When one or more components of a rail car fail, the result may include an increased or disproportional wear or stress on the rail car wheel and/or its other components, which may result in further components of the rail car or wheel failing.
An embodiment of this invention relates to a system for monitoring a condition of at least one rail car wheel, at least one rail car brake and/or at least one rail car bearing. The system includes a thermal sensor focused on a top portion of the at least one rail car bearing and an image capture device, wherein the at least one rail car wheel, the at least one rail car brake and/or the at least one rail car bearing are visible in an image captured by the image capture device.
Another embodiment of this invention relates to a system for monitoring a condition of at least one rail car wheel, at least one rail car brake and/or at least one rail car bearing. The system includes a thermal sensor focused on a lower portion of the at least one rail car wheel and an image capture device, wherein the at least one rail car wheel, the at least one rail car brake and/or the at least one rail car bearing are visible in an image captured by the image capture device.
Another embodiment of this invention relates to a method for monitoring the condition of at least one rail car wheel, at least one rail car brake and/or at least one rail car bearing. The method includes measuring the temperature of a top portion of the at least one rail car bearing with a first thermal sensor, measuring the temperature of a portion of the rail car wheel with a second thermal sensor, capturing at least one image of the at least one rail car wheel, the at least one rail car brake and/or the at least one rail car bearing with an image capture device and comparing the measured temperatures and/or the captured image to an expected result or stored data.
These and other features and advantages of various exemplary embodiments of systems and methods according to this invention are described in, or are apparent from, the following detailed descriptions of various exemplary embodiments of various devices, structures and/or methods according to this invention.
Various exemplary embodiments of the systems and methods according to this invention will be described in detail, with reference to the following figures, wherein:
It should be appreciated that, while portions of this description are outlined as being related to detecting a failing rail car wheel, a failing rail car brake or a failing rail car bearing individually, such systems and methods may be usable together to determine a failing rail car wheel, a failing rail car brake and/or a failing rail car bearing either simultaneously or separately. Likewise, the exemplary embodiments of systems and methods of this invention may be usable for other purposes, such as, for example, departure inspections, arrival inspections and/or the like.
The Federal Railroad Administration (FRA), an administration within the United States Department of Transportation, among other things, enforces rail safety regulations. The FRA currently requires brake shoe inspection on rail cars for every 1,000 miles of travel. These inspections are typically performed by railroad personnel who visually inspect the brakes. These manual, visual inspections can be lengthy and may require that the rail car be slowed, stopped and/or removed from service, at least temporarily.
Likewise,
In general, in the traditional systems shown in
The known systems shown in
Likewise, the known systems may have a scanning area (e.g., scanning region 18) that is relatively large (e.g., as wide as two feet or more). The scanning area of the known systems must then be averaged, which may result in a less accurate reading that does not account for small local changes in temperature. For example, if the rail car or the rail on which it is riding are hotter than expected for any reason, and a portion of the rail car and/or the rail on which it is riding, with its elevated temperature, is within the scanning area of a thermal sensor of the known system, then the averaged temperature determined by the thermal sensor may be higher than expected despite the temperature of the rail car wheel and/or rail car bearing possibly not being higher than expected.
Further, the known systems for detecting a failing bearing, having a thermal sensor that is attached to the rail, are directed toward the bottom surface of the rail car bearing. It has been found that the bottom surface of the bearing is generally cooler than a top portion, sometimes referred to as the “Loading Zone,” where forces from the side frames are transferred to the wheel axles. By measuring the top portion of the bearing, as outlined in the exemplary embodiments below, compromised or failing bearings may be identified more readily and/or earlier which may result in earlier warning prior to a failed or near failed bearing.
Furthermore, rail car bearings are generally cylindrical in shape. As such, the known systems, which are directed toward the bottom surface of a rail car bearing, may not be able to precisely detect the temperature of the rail car bearing. The known systems measure temperatures as if on a flat surface and the measurements are typically required to be calibrated or adjusted to correct for the cylindrical shape of the rail car bearing. As a result of the correction, the final calculation may be an approximation rather than a more reliable direct reading.
For example, a failed or failing rail car bearing may cause a rail car wheel to wear unevenly, which may result in the rail car wheel failing sooner than when being worn evenly. By identifying a failed, failing or otherwise compromised bearing sooner, the uneven wearing of the rail car wheel may be detected earlier, which may result in a longer or more optimal life span of the rail car wheel and/or any other components of the rail car wheel. Additionally, a rail car wheel that is wearing unevenly may indicate other problems with the rail car that can be identified and corrected earlier if the unevenly wearing wheel is identified earlier.
Similar to how a failing bearing is identified in the above-outlined and other embodiments, a higher- or lower-than-expected temperature of a rail car wheel may indicate a failing rail car brake or other component of a rail car. For example, if the temperature determined by either or both of first thermal sensor 20 and second thermal sensor 22 is elevated, and it is known that a rail car brake of rail car wheel 16 is not intentionally applied, the elevated temperature may indicate that the rail car brake is stuck or being inadvertently applied due to a failed component, improper calibration or other factor. In various embodiments, the operator of the rail car may be notified of the condition and further inspections may be performed.
In an exemplary embodiment, a first thermal sensor, such as, for example, an infrared sensor, is positioned adjacent a rail and measures a temperature of that rail and/or of a rail car wheel as the rail car passes the first sensor. For example, the first thermal sensor may be provided within a relatively long, straight portion of the rail (e.g., two miles or more without significant turns). The first thermal sensor may then be able to measure a base reading of the temperature of the rail car wheel and/or rail when the rail car brakes are not applied and have not been applied for a sufficient length of time. This base temperature can then be compared to a temperature of the rail car wheel at a later section of the track, while the brakes are applied.
It should be appreciated that, in various embodiments, multiple factors may cause elevated temperatures of a rail car wheel, such as, for example, a sliding wheel, a stuck brake, a worn brake, an improperly calibrated brake, a failed or failing bearing, etc. In various embodiments, several factors that contribute to elevated rail car wheel temperature may be identified by different heat signatures or heat patterns on the rail car wheel. For example, a sliding wheel may have an elevated temperature near a contact region between the rail car wheel and a rail, at least in comparison to a properly operating wheel. In contrast, a stuck brake may cause an elevated temperature of the rail car wheel near the rail car brake, at least in comparison to a rail car wheel with a properly working rail car brake. In various embodiments, the difference in heat signatures may be used, at least in part, to identify what, if any, component has failed or is failing.
In various embodiments, the heat signature and/or temperatures determined by a first and/or second thermal sensor are utilized with one or more images (e.g., video or still images) captured by an image capturing device. The images may include at least a portion of the rail car wheel, at least a portion of the rail car brake and/or at least a portion of the rail car bearing or end cap monitored or measured by one or more thermal sensors and may help assist a user in evaluating the status or condition of the rail car wheel, the rail car brake and/or the rail car bearing. For example, in various embodiments, the image may be used, at least in part, to help determine a position of a brake shoe of the rail car. By determining the position of the brake shoe, it can be determined whether an elevated temperature detected by the thermal sensor(s) coincides with (e.g., is the result of) application of the brake shoe to the rail car wheel.
In various embodiments, one or more images may be utilized with thermal sensor measurements or determinations to improve the accuracy of the system. For example, one or more images may be utilized to determine or approximate the distance between a brake shoe and surface of a wheel.
In various embodiments, multiple systems including one or more thermal sensors and/or one or more image capturing devices may be utilized to further improve the accuracy of monitoring, measurements and determinations. For example, determinations from multiple systems may be provided for comparison and/or improved accuracy.
In various embodiments, one or more thermal scans and/or images of one or more rail cars moving at a speed where brake shoes would not normally be applied are obtained. In various embodiments, one or more additional thermal scans of the same rail cars would then be obtained when the rail cars are moving at a speed where the brakes would normally be applied, and one or more images of the braking equipment and wheels are obtained at or about the same time. In various embodiments, the one or more images would also be obtained to help determine or approximate the distance between a brake shoe and the running surface of the wheel. By comparing the scans and distances obtained, the system may be utilized to establish the efficiency of the brake equipment on one or more individual wheels. This method (either using temperature measurements alone, or combining temperature measurements with one or more images) may be utilized to help perform an audit on the brake equipment of rail cars in a way that it will fulfill the requirements of the F.R.A. 1000 mile inspection.
Further, because the first and second thermal sensors are not attached to the rail, as in previous systems, the first and second thermal sensors may not be subject to the wear and tear associated with the vibrations and other forces felt by the rail. Furthermore, the thermal sensors may not be affected by the dynamic environment on and/or around the rail. This may result in an improved accuracy and/or an increased longevity of the thermal sensors.
A system and method for detecting failing rail car wheels, brakes and/or bearings includes at least one focused thermal sensor and at least one image capturing device. The thermal sensor(s) and image capture device(s) help determine whether there is a failure or potential failure with a wheel set of a rail car by detecting, measuring and/or comparing the temperature of various portions of the wheel set. If the temperature is higher than expected, it could be indicative of a sticking brake, a failing bearing or some other failure of the wheel set. If the temperature is lower than expected, it could be indicative of an unexpectedly unapplied brake or some other failure of the wheel set.
While this invention has been described in conjunction with the exemplary embodiments outlined above, various alternatives, modifications, variations, improvements and/or substantial equivalents, whether known or that are or may be presently foreseen, may become apparent to those having at least ordinary skill in the art. Accordingly, the exemplary embodiments of the invention, as set forth above, are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit or scope of the invention. Therefore, the invention is intended to embrace all known or earlier developed alternatives, modifications, variations, improvements and/or substantial equivalents.
This application claims priority to U.S. Provisional Application 61/229,582, filed Jul. 29, 2009, the disclosure of which is hereby incorporated in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3697744 | Howell | Oct 1972 | A |
3767146 | Gallagher | Oct 1973 | A |
3978712 | Cowan | Sep 1976 | A |
4323211 | Bambara | Apr 1982 | A |
4659043 | Gallagher | Apr 1987 | A |
5331311 | Doctor | Jul 1994 | A |
5660470 | Mench | Aug 1997 | A |
5677533 | Yaktine et al. | Oct 1997 | A |
5730526 | Davis et al. | Mar 1998 | A |
6823242 | Ralph | Nov 2004 | B1 |
6862936 | Kenderian et al. | Mar 2005 | B2 |
6955100 | Barich et al. | Oct 2005 | B1 |
20040075570 | Bartonek | Apr 2004 | A1 |
20060131464 | Hesser et al. | Jun 2006 | A1 |
20060180760 | Lane et al. | Aug 2006 | A1 |
20090040503 | Kilian et al. | Feb 2009 | A1 |
Number | Date | Country |
---|---|---|
1407162 | Apr 2005 | EP |
1600351 | Nov 2005 | EP |
WO 03008834 | Jan 2003 | WO |
Entry |
---|
International Search Report mailed Sep. 28, 2010, in International Appln. No. PCT/US10/043379. |
Number | Date | Country | |
---|---|---|---|
20110024576 A1 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
61229582 | Jul 2009 | US |