The present disclosure generally relates to metal casting and more specifically to associated processes and systems for monitoring the metal casting process.
Molten metal may be deposited into a mold to create a metal ingot. These metal ingots may be formed using, for example, direct chill (DC) casting or electromagnetic casting (EMC). In DC casting, molten metal is typically poured into a shallow water-cooled mold. The mold may include a bottom block mounted on a telescoping hydraulic table to form a false bottom. The bottom block may be positioned at or near the bottom of the mold prior to the molten metal being deposited into the mold. As molten metal is deposited into the mold, the molten metal may fill the mold cavity, and the outer and lower portions of the mold may be cooled. The molten metal may cool and begin to solidify, forming a shell of solid or semi-solid metal around a molten core. As the bottom block is lowered, additional molten metal may be fed into the mold cavity.
Before, during, and after the casting process, the mold and metal ingot may be monitored by one or more sensors. For example, a metal level sensor may measure the height of the molten metal in the mold. Many of these sensors are placed in and around the mold and often make physical contact with the ingot or the mold. To mitigate the risk of having an operator enter the casting environment and having sensors in contact with the ingot, it may be desirable to monitor the casting process from outside the casting environment using a system that does not make contact with the ingot.
The term embodiments and like terms are intended to refer broadly to all of the subject matter of this disclosure and the claims below. Statements containing these terms should be understood not to limit the subject matter described herein or to limit the meaning or scope of the claims below. Embodiments of the present disclosure covered herein are defined by the claims below, not this summary. This summary is a high-level overview of various aspects of the disclosure and introduces some of the concepts that are further described in the Detailed Description section below. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in isolation to determine the scope of the claimed subject matter. The subject matter should be understood by reference to appropriate portions of the entire specification of this disclosure, any or all drawings, and each claim.
Certain examples herein address systems and methods for monitoring a casting system during a casting process. Various examples utilize casting systems including a launder depositing molten metal into one or more molds during the casting process. At least one of the molds may have a number of sidewalls spanning between a top and a bottom of the mold. The top and bottom of the mold may be open, allowing molten metal to be deposited by the launder through the open top and allowing solidifying metal to exit through the open bottom. The system may include one or more cameras with at least one camera having a field of view including at least a portion of the mold. For example, the field of view of the one or more cameras may include the top of the mold. A computer system may be used to detect one or more events during a casting operation such as the level of the metal in the mold or the distance between the bottom block and a portion of the metal ingot. The computer system may determine an appropriate action and/or warning based on one or more of the detected events.
In various examples, a system for monitoring a casting operation is provided. The system may include a mold having mold walls defining an opening to receive molten metal, a launder configured to deposit the molten metal into the mold opening during the casting operation, a camera having a field of view including at least a portion of a mold wall and configured to capture optical data associated with the portion of the mold wall, and a controller including a processor configured to execute instructions stored on a non-transitory computer-readable medium in a memory. The controller may cause the processor to perform processor operations including receiving the optical data associated with the portion of the mold wall and determining, based on the optical data, a level of the molten metal in the mold.
In various examples, a method of monitoring a mold is provided. The method may include initiating a casting operation using a casting system. The casting system may include a mold including mold walls defining a mold opening. The casting operation may cause molten metal to flow into the mold opening. The method of monitoring may also include capturing, using a camera, first optical data associated with a portion of a first mold wall and determining, based on the first optical data, a level of the molten metal in the mold.
In various examples, a system for monitoring a mold is provided. The system may include a mold including mold walls defining an opening to receive molten metal, a camera having a field of view including at least a portion of a mold wall and configured to capture optical data associated with the portion of the mold wall, and a controller including a processor configured to execute instructions stored on a non-transitory computer-readable medium in a memory. The controller may cause the processor to perform processor operations including capturing first optical data associated with the portion of the mold wall and determining, based on the first optical data, a level of the molten metal in the mold.
Other objects and advantages will be apparent from the following detailed description of non-limiting examples.
The specification makes reference to the following appended figures, in which use of like reference numerals in different figures is intended to illustrate like or analogous components.
As used herein, the terms “invention,” “the invention,” “this invention,” and “the present invention” are intended to refer broadly to all of the subject matter of this patent application and the claims below. Statements containing these terms should be understood not to limit the subject matter described herein or to limit the meaning or scope of the patent claims below. The subject matter of embodiments of the present invention is described here with specificity to meet statutory requirements, but this description is not necessarily intended to limit the scope of the claims. The claimed subject matter may be embodied in other ways, may include different elements or steps, and may be used in conjunction with other existing or future technologies. This description should not be interpreted as implying any particular order or arrangement among or between various steps or elements except when the order of individual steps or arrangement of elements is explicitly described. As used herein, the meaning of “a,” “an,” and “the” includes singular and plural references unless the context clearly dictates otherwise.
While certain aspects of the present disclosure may be suitable for use with any type of material, such as metal, certain aspects of the present disclosure may be especially suitable for use with aluminum.
All ranges disclosed herein are to be understood to encompass any and all subranges subsumed therein. For example, a stated range of “1 to 10” should be considered to include any and all subranges between (and inclusive of) the minimum value of 1 and the maximum value of 10; that is, all subranges beginning with a minimum value of 1 or more, e.g. 1 to 6.1, and ending with a maximum value of 10 or less, e.g., 5.5 to 10.
The following examples will serve to further illustrate the present invention without, at the same time, however, constituting any limitation thereof. On the contrary, it is to be clearly understood that references may be made to various embodiments, modifications and equivalents thereof which, after reading the description herein, may suggest themselves to those skilled in the art without departing from the spirit of the invention.
Using the monitoring system 100, various components used in the casting process may be monitored remotely. For example, using cameras, such as cameras 110, the casting environment and/or the casting components may be monitored. Remote monitoring allows a user to remain outside of the casting environment or enter for a shorter time than would otherwise be required. Additionally, multiple aspects of the casting environment may be monitored at the same time, reducing the need for additional monitoring systems. The remote monitoring may also allow some or all of the monitoring system 100 to be positioned further away from one or more heat sources in the casting environment. For example, instead of having sensing equipment positioned near or attached to the mold 102 where they may be subjected to extreme heat from the molten metal 106, the cameras 110 may be positioned away from the mold 102 and/or the molten metal 106 in a cooler environment. Positioning the monitoring equipment away from the heat sources may additionally or alternatively reduce the amount of repairs and replacements, saving time and money.
The molds 102 may be positioned in the casting environment and receive molten metal 106 into a mold opening. The mold 102 may include material that may withstand the heat of molten metal 106 as it cools to form the ingot 108. For example, the mold 102 may include graphite. The mold 102 may have any suitable shape or design for receiving and cooling the molten metal 106. In various embodiments, the mold 102 may have a rectangular cross-section with four mold walls and an open top for receiving the molten metal 106 and an open bottom allowing for the ingot 108 to exit. In some embodiments, the mold 102 may include or cooperate with a bottom block 114 for forming the ingot 108, such as may commonly be the case in a mold 102 used in direct chill casting. The bottom block 114 may be moveable or stationary. In some embodiments, the bottom block 114 may be a starting head mounted on a telescoping hydraulic table. In alternative embodiments, the mold 102 may be any type and shape suitable for casting molten metal 106.
In various embodiments, the mold 102 may additionally or alternatively aid in the cooling of the molten metal 106 to form the ingot 108. In a non-limiting example, the mold 102 is a water-cooled mold. For example, the mold 102 may include a cooling system that uses one or more of air, glycol, or any suitable medium for cooling. In various embodiments, the mold 102 may have heated walls to retard mold wall cooling (e.g., an Ohno Continuous Caster (OCC) mold may be used).
The ingot 108 may be formed by the molten metal 106 being cooled by the walls of the mold 102. For example, the molten metal 106 may be deposited into the mold 102 and begin to solidify, forming the ingot 108. The bottom block 114 may be steadily lowered while additional molten metal 106 is added to the top of the mold 102, lengthening the ingot 108.
The molten metal 106 and/or the ingot 108 may be formed from any metal or combination of metals capable of being heated to a melting temperature. In a non-limiting example, the molten metal 106 and/or the ingot 108 includes aluminum. In various embodiments, the molten metal 106 and/or the ingot 108 may include iron, magnesium, or a combination of metals.
As mentioned above, the molten metal 106 may be deposited into the one or more molds 102 by one or more launders 104 positioned adjacent to the mold. The launders 104 may contain one or more openings for depositing the molten metal 106 into the one or more molds 102. In various embodiments, the launder 104 may be positioned above the one or more molds 102 and deposit the molten metal 106 into the one or more molds 102 from the one or more openings. The launder 104 may be any size and shape suitable for containing and dispensing the molten metal 106. As depicted, the launder 104 has a rectangular shape with a U-shaped channel for containing the molten metal 106. In some embodiments, the launder 104 may have any suitable size and shape for depositing molten metal 106 into the one or more molds 102.
In various embodiments, the launder 104 may include a flow control device 116. The flow control device 116 may control the flow rate of the molten metal 106 from the launder 104 to the one or more molds 102. As described below with respect to
One or more cameras 110 may be positioned in the casting environment to capture or detect optical data. In various embodiments, the cameras 110 may be positioned to detect optical data related to the one or more molds 102. The cameras 110 may be or include optics capable of capturing still or moving images, thermal images, infrared images, x-rays, or any suitable optical data. In various embodiments, the cameras 110 may send the optical data to the computer system 112 for processing. In some embodiments, the cameras 110 may be or include components that allow some or all of the optical data to be processed by the cameras.
The cameras 110 may have a field of view 118 that includes at least a portion of a mold 102. In some embodiments, the cameras 110 may be moveable or repositionable to change the field of view 118. For example, the cameras 110 may pivot to detect optical data associated with two adjacent molds 102. The camera 110 may be positioned facing one or more of the molds 102 or otherwise have a field of view 118 including at least a portion of the mold 102. In various embodiments, a camera 110 is positioned above the mold 102 with a field of view 118 that includes at least a portion of the top of the mold 102. A camera 110 may additionally or alternatively be positioned beneath the mold 102 with a field of view that includes at least a portion of the bottom of the mold 102.
In various embodiments, the cameras 110 may be positioned at any suitable orientation to have a field of view 118 that includes the casting environment and/or any suitable component positioned in or adjacent to the casting environment. For example, the cameras 110 may have a field of view 118 that includes the casting environment and a portion of a mold 102 positioned in the casting environment. The cameras 110 may be positioned in the casting environment or positioned outside the casting environment. In further embodiments, the orientation of the cameras 110 are adjustable to include the casting environment and/or any suitable component positioned in or adjacent to the casting environment.
The monitoring system 100 may include multiple cameras 110 working in conjunction. The multiple cameras 110 may be positioned to have adjacent or overlapping fields of view 118. For example, two cameras 110 may be mounted at different heights above the mold 102 and may have overlapping fields of view 118 of the mold 102. As another example, two or more cameras 110 may be mounted so that each camera 110 has a field of view 118 of a portion of one side of the mold 102. Each field of view 118 may be combined to form an image of an entire side of the mold 102 or other aggregate areas of interest.
A computer system 112 may receive the optical data from the cameras 110. The computer system 112 may include hardware and software for executing computer-executable instructions. For example, the computer system 112 may include memory, processors, and an operating system for executing the computer-executable instructions (
In various embodiments, the computer system 112 may be in a single physical location. For example, the computer system 112 may be hardware and software located in the same manufacturing facility as the one or more molds 102 and communicating with the cameras 110 over a local communication network (e.g., Wi-Fi or Bluetooth). In some embodiments, one or more computer systems 112 may be located in multiple physical locations and communicate with the cameras 110 via long range communication (e.g., the internet, radio waves, or satellites). For example, the computer system 112 may be a cloud computing system including any number of internet connected computing components.
The computer system 112 may contain hardware and software capable of enabling execution of the steps of: receiving optical data from the camera(s) 110, analyzing the received data, and generating operating instructions for a casting operation. Some or all of these steps may be performed by a single computer system 112 or multiple computer systems.
In various embodiments, the computer system 112 may contain hardware and software capable of enabling execution of the steps of depositing the molten metal 106 into the mold 102 as part of a casting operation, capturing optical data associated with the mold 102, determining a level of the molten metal 106 in the mold 102, comparing the level of the molten metal 106 with a baseline level, and generating operating instructions for the casting operation.
In various embodiments, the computer system 112 may alert a user based on the optical data received from the cameras 110. For example, the computer system 112 may activate an alarm in response to the optical data. The alarm may correspond to or include a bell, a light, a siren, a display, a speaker, or any other object capable of getting the attention of a user or the system and/or conveying information to the user or the system.
Other actions may be prompted in addition to or in lieu of activating the alarm. In various embodiments, a change in the flow of the molten metal 106 into the one or more molds 102 may be introduced along with or instead of activation of the alarm. For example, the flow control device 116 may be controlled to increase, decrease, or otherwise change the flow rate, amount, or other characteristic of the flow of molten metal 106 into the mold 102. In various embodiments, an alert additionally or alternatively may be displayed, logged, sent, or otherwise communicated to a user or another aspect of the system (e.g., and may be independent of or performed in conjunction with activating the alarm and/or changing the flow of the molten metal 106).
Turning to
The pin 202 may be positioned in the opening 204 of the launder 104. The opening 204 and/or the pin 202 may be tapered such that moving the pin downwards relative to the opening makes the annulus between the pin and the opening smaller. The pin 202 may be raised and/or lowered to adjust the flow of molten metal 106 out of the launder 104. For example, the pin 202 may be raised to enlarge the annulus between the pin and the opening 204, increasing the molten metal 106 flowing out of the launder 104 (e.g., as shown in solid lines). Further, the pin 202 may be lowered to shrink the annulus between the pin and the opening 204, decreasing and/or stopping the flow of the molten metal 106 out of the launder 104 (e.g., as shown in dashed lines).
The pin 202 may be raised and/or lowered by the motor 206. In various embodiments, the motor 206 may be in communication with the computer system 112 for automatic raising and/or lowering of the pin 202. In various embodiments, the pin 202 may be raised and/or lowered manually. In some examples, the manual raising and/or lowering of the pin 202 may be prompted by the computer system 112. In some embodiments, the pin 202 may be automatically raised and/or lowered to maintain the level of the molten metal 106 in the mold 102 within a range of a threshold value. The pin 202 may additionally or alternatively be automatically raised and/or lowered in response to detecting a gap between the ingot 108 and the bottom block 114. Further, the pin 202 may be automatically raised and/or lowered in response to detecting one or more of a leak in the mold, cracks in the mold, dust on the mold, rust on the mold, misalignment of the mold, moisture in the mold, metal in the mold, platen engagement, platen position, platen drift, and/or a failure of the cooling system.
In various embodiments, the pin 202 may be raised and/or lowered (e.g., the pin may be pulsed) based on one or more conditions of the molten metal 106 and/or the mold 102. For example, the pin 202 may be raised and lowered in response to the molten metal 106 pulling away from the mold 102. In some embodiments, the pin 202 may be raised and lowered at timed intervals to adjust the flow of molten metal 106 into the mold 102. Pulsing the pin 202 may cause the molten metal 106 flowing into the mold 102 to disrupt the surface tension of the molten metal in the mold 102. Disrupting the surface tension of the molten metal 106 in the mold 102 may cause molten metal to flow more readily along the surface of the molten metal in the mold. In further embodiments, the flow control device 116 may additionally or alternatively include a valve, a stop, a funnel, or other suitable structure.
Turning to
By way of example, the field of view 118 is depicted as being split into four quadrants (e.g., I, II, III, IV). However, the field of view 118 may include more or less quadrants. A single camera 110 may have a field of view 118 that includes all four quadrants. However, a single camera 110 may have a field of view 118 that corresponds to a single quadrant or subset of quadrants. Additionally or alternatively, a single camera 110 may have a field of view 118 that corresponds to a combination of quadrants. In some embodiments, a single camera 110 may have multiple fields of view 118 (e.g., each quadrant is a different field of view 118) that the camera 110 may switch between. For example, a moveable camera 110 may switch between fields of view 118 as the camera 110 pans around the top of the mold 102. In various embodiments, the quadrants may include a mark that correspond to coordinates of locations on the ingot 108 and/or the mold 102.
Examples of the processor 412 include any desired processing circuitry, an application-specific integrated circuit (ASIC), programmable logic, a state machine, or other suitable circuitry. The processor 412 may include one processor or any number of processors. The processor 412 may access code stored in the memory 418 via a bus 414. The memory 418 may be any non-transitory computer-readable medium configured for tangibly embodying code and may include electronic, magnetic, or optical devices. Examples of the memory 418 include random access memory (RAM), read-only memory (ROM), flash memory, a floppy disk, compact disc, digital video device, magnetic disk, an ASIC, a configured processor, or other storage device.
Instructions may be stored in the memory 418 or in the processor 412 as executable code. The instructions may include processor-specific instructions generated by a compiler and/or an interpreter from code written in any suitable computer-programming language. The instructions may take the form of an application that includes a series of setpoints, parameters, and programmed steps which, when executed by the processor 412, allow the controller 410 to monitor and control various components of the monitoring system 100. For example, the instructions may include instructions for a machine vision application.
The controller 410 shown in
Turning to
The field of view 118 may be positioned at a portion of the mold 102 that includes a mark 502, for example, an indicia or a scale. The mark 502 may aid in determining a level of the molten metal 106 in the mold. The mark 502 may be visible to multiple cameras 110 positioned around the mold 102 (e.g., from the top view shown in
In various embodiments, one or more of the fields of view 118 may be adjusted. For example, a field of view 118 may include a first wall of the mold 102 and be adjusted and moved to a second wall of the mold. Further, the field of view 118 may be adjusted to include more or less of the top of the mold 102. For example, the field of view 118 may include multiple walls of the mold 102 and be adjusted to include a portion of a wall of the mold, for example, a portion containing the mark 502.
Turning to
The process 700 at 702 may include depositing metal, such as molten metal 106, into one or more molds, such as mold 102. The molten metal 106 may be deposited into the mold 102 by a launder 104 as described herein. The launder 104 may deposit the molten metal 106 into the mold 102 through one or more openings in the launder 104. The amount or flow rate of the molten metal 106 entering the mold 102 may be adjusted by controlling a flow control device 116. The molten metal 106 may enter the mold 102 through an opening in the mold 102. The molten metal 106 contained by the mold 102 may contact one or all walls of the mold 102. The temperature of the molten metal 106 may decrease after entering the mold 102 and the molten metal 106 may cool and become a solid or semi-solid ingot 108.
The process 700 at 704 may include receiving optical data associated with the mold 102. The optical data may be captured or detected using cameras, such as cameras 110. The cameras 110 may have a field of view 118 that includes one or more molds 102. In various embodiments, the field of view 118 includes one or more walls of a mold 102 and/or the mark 502. Multiple cameras 110 may be positioned to have overlapping fields of view 118, a single camera may have multiple fields of view, or multiple cameras may have individual fields of view. The cameras 110 may be positioned to capture or detect optical data associated with the mold 102 and/or the molten metal 106. For example, the cameras 110 may capture optical data associated with the level of the molten metal in the mold 102. The computer system 112 may receive the optical data from the cameras 110 and/or from a database. For example, the computer system 112 may receive optical data from a database containing optical data associated with different molds.
The optical data may include the height of a wall of the mold 102 that is visible to the cameras 110. The mark 502 may aid in measuring the height of the wall of the mold 102. For example, the mark 502 may include an indicia and/or a scale that may be detected by the cameras 110. The mark 502 may include an indication of how much of the height of the wall of the mold 102 is visible. In various embodiments, the mold 102 may include a texture and/or design that aids in detecting the height of the wall of the mold 102 that is visible. For example, the mold 102 may include paint that is detectable by the cameras 110.
The process 700 at 706 may include determining a level of the molten metal 106 in the mold 102. Determining the level of the molten metal 106 may include using the optical data captured by the cameras 110. However, the level of the molten metal 106 may be determined using data received from a database. The level of the molten metal 106 may be determined using computer system 112. In various embodiments, the level of the molten metal 106 in the mold may be determined using the visible height of a wall of the mold 102. For example, if the overall height of the mold 102 (e.g., from the bottom 504 of the mold to the top 506 of the mold) is known, the height visible to the cameras 110 may be subtracted to determine the level of the molten metal 106 in the mold 102. The level of the molten metal 106 in the mold 102 may be determined using the mark 502. For example, the mark 502 may include indicia (e.g., numbers) that may be interpreted by the computer system 112 to give the level of the molten metal 106.
The process 700 at 708 may include comparing the level of the molten metal 106 with a baseline level. The baseline level may be a range that the molten metal 106 should optimally remain in. For example, the baseline level may be a range between 20 mm and 90 mm from the bottom 504 of the mold 102 (e.g., 20 mm, 30 mm, 40 mm, 50 mm, 50 mm, 70 mm, 80 mm, or 90 mm). However, the baseline level may be any suitable level or range from the top 506 and/or the bottom 504 of the mold 102. The comparison may be performed by the computer system 112. The computer system 112 may receive the baseline level from a database and/or from a user input. The baseline level may vary depending on the type of mold, metal, casting, or any suitable variable.
The process 700 at 710 may include generating operating instructions for the casting operation. The operating instructions may include instructions to make changes to the casting process or may include instructions to continue the casting operation without any changes. Operating instructions may be based on the level of the molten metal 106 in the mold 102. For example, if it is determined that the molten metal 106 is below the baseline level in the mold 102, more molten metal may be added by the launder 104, for example, by operating the flow control device 116. The operating instructions may be computer operating instructions and/or instructions for a user. For example, in response to the molten metal 106 exceeding the upper range of the baseline level, the operating instructions could instruct the flow control device 116 to stop the flow of molten metal and send a warning to a user that the flow of molten metal has been stopped. In various embodiments, the operating instructions may include instructions for a user that if not acted upon cause the computer system 112 to automatically execute the instructions. For example, the instructions may prompt a user to increase the flow rate of the molten metal 106, and if the user does not execute the instructions in a timely manner, the computer system 112 may automatically increase the flow rate of the molten metal 106.
All patents, publications and abstracts cited above are incorporated herein by reference in their entirety. The foregoing description of the embodiments, including illustrative aspects of embodiments, has been presented only for the purpose of illustration and description and is not intended to be exhaustive or limiting to the precise forms disclosed. Numerous modifications, adaptations, and uses thereof will be apparent to those skilled in the art.
Aspect 1 is a system for monitoring a mold, comprising: a mold comprising mold walls defining an opening to receive molten metal; a camera having a field of view including at least a portion of a mold wall and configured to capture optical data associated with the portion of the mold wall; and a controller comprising a processor configured to execute instructions stored on a non-transitory computer-readable medium in a memory, the controller causing the processor to perform processor operations including: capturing first optical data associated with the portion of the mold wall; and determining, based on the first optical data, a level of the molten metal in the mold.
Aspect 2 is the system of aspect(s) 1 (or of any other preceding or subsequent aspects individually or in combination), wherein capturing the first optical data comprises changing the field of view of the camera.
Aspect 3 is the system of aspect(s) 1 (or of any other preceding or subsequent aspects individually or in combination), wherein the processor operations further includes generating operating instructions for the casting operation.
Aspect 4 is the system of aspect(s) 3 (or of any other preceding or subsequent aspects individually or in combination), wherein the operating instructions are based on at least the level of the molten metal in the mold.
Aspect 5 is the system of aspect(s) 3 (or of any other preceding or subsequent aspects individually or in combination), wherein the operating instructions comprise instructions for at least adjusting a flow rate of the molten metal into the mold opening.
Aspect 6 is the system of aspect(s) 1 (or of any other preceding or subsequent aspects individually or in combination), wherein the processor operations further includes: receiving second optical data associated with the portion of the mold wall; and updating, based on the second optical data, the level of the molten metal in the mold.
Aspect 7 is the system of aspect(s) 1 (or of any other preceding or subsequent aspects individually or in combination), wherein the portion of the mold wall comprises indices visible to the camera.
Aspect 8 is the system of aspect(s) 7 (or of any other preceding or subsequent aspects individually or in combination), wherein the indices are configured to aid in determining the level of the molten metal in the mold.
Aspect 9 is the system of aspect(s) 1 (or of any other preceding or subsequent aspects individually or in combination), further comprising a launder configured to deposit the molten metal into the mold opening during the casting operation.
Aspect 10 is the system of aspect(s) 9 (or of any other preceding or subsequent aspects individually or in combination), wherein determining the level of the molten metal in the mold comprises determining a height of the portion of the mold wall.
Aspect 11 is the system of aspect(s) 3 (or of any other preceding or subsequent aspects individually or in combination), wherein the operating instructions comprise instructions for adjusting a flow rate of the molten metal into the mold opening.
Aspect 12 is the system of aspect(s) 9 (or of any other preceding or subsequent aspects individually or in combination), wherein the level of the molten metal in the mold is in a range between 20 and 90 mm from a bottom of the mold.
Aspect 13 is a method of monitoring a mold, comprising: initiating a casting operation using a casting system including a mold comprising mold walls defining a mold opening, the casting operation causing molten metal to flow into the mold opening; capturing, using a camera, first optical data associated with a portion of a first mold wall; determining, based on the first optical data, a level of the molten metal in the mold.
Aspect 14 is the method of aspect(s) 13 (or of any other preceding or subsequent aspects individually or in combination), further comprising generating, based on the determining, operating instructions for one or more components for use with the casting operation.
Aspect 15 is the method of aspect(s) 14 (or of any other preceding or subsequent aspects individually or in combination), wherein adjusting the casting operation comprises changing a flow rate of the molten metal into the mold opening.
Aspect 16 is the method of aspect(s) 13 (or of any other preceding or subsequent aspects individually or in combination), further comprising: capturing, using the camera, second optical data associated with a second portion of a second mold wall; and updating, based on the second optical data, the level of the molten metal in the mold.
Aspect 17 is the method of aspect(s) 16 (or of any other preceding or subsequent aspects individually or in combination), wherein the first mold wall and the second mold wall are different mold walls.
Aspect 18 is the method of aspect(s) 13 (or of any other preceding or subsequent aspects individually or in combination), wherein determining the level of the molten metal in the mold comprises comparing a visible height of the portion of the mold wall with a known height.
Aspect 19 is the method of aspect(s) 13 (or of any other preceding or subsequent aspects individually or in combination), wherein determining the level of the molten metal in the mold comprises distinguishing between the first optical data associated with the portion of the mold wall and second optical data associated with the molten metal.
This application claims the benefit of and priority to U.S. Provisional Application No. 62/705,948, filed on Jul. 23, 2020, and titled “MONITORING METAL LEVEL DURING CASTING,” the content of which is herein incorporated by reference in its entirety for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/042952 | 7/23/2021 | WO |
Number | Date | Country | |
---|---|---|---|
62705948 | Jul 2020 | US |