The invention concerns spraying devices such as nozzles, and more particularly to a system and method for monitoring the performance of a spraying device.
Spraying devices such as nozzles are widely used in a variety of industrial applications. In many applications, the proper performance of spraying devices is critical to the processing in which the sprays are used. The failure of a spraying device may result in defective products and cause potentially significant economic losses.
For instance, in the steel industry, spray nozzles of an internal-mixing type are used for steel cooling in a continuous casting process. An internal-mixing nozzle used in such a casting application provides a spray of a mixture of water and air, i.e., a mist. To that end, the spray nozzle has an internal mixing chamber, and water and air inlets with calibrated orifices. Water and air are fed through the inlet orifices into the internal mixing chamber, where they are mixed. The mixture is transported through a tube to a nozzle aperture that discharges the mixture in a desired spray pattern, such as a flat pattern. The spray generated by the nozzle is a function of the input water and air pressures, which may be set at different values for different applications depending on the particular requirements of the applications. For the nozzle to function properly, the input air and pressures have to be tightly controlled. Doing so, however, is not sufficient to guarantee the proper operation of the nozzle, because the air and water inlet orifices and the nozzle tip may become worn due to use or clogged, thereby preventing the nozzle from generating the desired spray output. Such performance degradation or malfunction of the internal-mixing spray nozzles can develop gradually overtime and has been difficult to monitor or detect.
In view of the foregoing, it is an object of the invention to provide a reliable way to effectively monitor the performance of a spraying device, especially an internal-mixing spray nozzle, to ensure that it is functioning properly over the course of usage.
It is a related object to detect any significant performance degradation or malfunction of a spraying device, such as an internal-mixing spray nozzle, so that spraying device can be repaired or replaced promptly to minimize any potential economic losses.
These objects are effectively addressed by the system and method of the invention for monitoring the performance of a spraying device. The spraying device has at least a first inlet for receiving a first fluid and a second inlet for receiving a second fluid. The spraying device further includes an internal mixing chamber whether the first and second fluids are mixed. The mixture is transported from the mixing chamber to a nozzle aperture, which discharges the mixture to form a spray.
In accordance with the invention, a mixture pressure sensor is disposed on the spraying device downstream of the mixing chamber to detect the pressure of the mixture. The input pressures of the first and second fluids entering the spraying device are also measured. The measured pressures of the first and second fluids are used to calculate a predicted mixture pressure based on an empirical formula. The calculated value and the measured value of the mixture pressure are then used in a comparison process to determine whether or not the spraying device is functioning properly.
Additional features and advantages are explained in more detail below with the aid of preferred embodiments shown in the drawings, of which:
The present invention provides a system and method for monitoring the performance of a spraying device that receives different fluids and generates a spray of a mixture of the fluids in a given spray pattern.
The spraying device 10 as shown in
Referring to
In accordance with a feature of the invention, a pressure sensor 30 for sensing the pressure of the mixture formed in the spraying device 10 is disposed directly on the spraying device 10 to allow accurate measurements of the pressure. To that end, in the embodiment shown in
Returning to
In accordance with a feature of the invention, the performance of the spraying device 10 is monitored by the controller 20 by comparing the measured actual pressure value of the mixture with a predicted mixture pressure, which is calculated using the measured pressures of the fluids as inputs. The predicted mixture pressure is calculated using an empirical formula that describes the relationship between the expected mixture pressure and the input pressures of the fluids. The exact form or shape of the formula can be determined/selected based on an understanding of the fluid dynamics involved and by finding a best fit of measured data with the formula.
By way of example, in one embodiment, the following formula with several linear parameters is used to predict the mixture pressure:
Pmix=b1+b2·Pair+b3·Pwaterx+b4·Pair·Pwaterx (Equation 1)
In this formula, Pair is the measured pressure for the air, Pwater is the measured pressure for the water, and Pmix is the predicted pressure of the mixture in the spraying device. This formula contains four linear parameters b1, b2, b3, and b4, which are to be determined empirically. The exponent x is a fixed number, such as 0.5. It has been found that this formula provides a reasonably good model for predicting the mixture pressure based on given input fluid pressures. It will be appreciated, however, that this formula is only one of different forms of equations that may be used, and the invention is not limited to the particular form of this formula. Also, although the use of a linear formula has the advantage of computational efficiency, non-linear equations may also be used to model the mixing behavior of the spraying device if such a formula can more accurately predict the mixture pressure and if the controller has sufficient computational power to carry out calculations involved in handling the non-linear equations.
In accordance with an aspect of the invention, the parameters in the formula in Equation 1 for calculating the mixture pressure can be learned by the controller 20 when the spraying device is “on-line,” i.e., installed in its intended operating position. In the learning process, the input pressures of the fluids are varied, and the measured values of the pressures of the first and second fluids and the mixture are used as inputs for determining the parameters. This learning operation is preferably performed when the spraying device is first put in service, under the assumption that the nozzle is performing correctly as designed during this phase. Once the parameters of the formula for predicting the mixture pressure are determined in this learning phase, they can be used by the controller 20 in the subsequent operations of the spraying device to calculate the expected mixture pressure based on measured input pressures of the fluids. The expected mixture pressure value can then be used with the measured actual mixture pressure in a comparison process to determine whether the spraying device is operating properly.
In one embodiment, the learning of the parameters of the empirical formula is done via a recursive least square parameter estimation algorithm, as set forth in the following equations:
where y(t)=measured mixture pressure at the moment t;
ŷ(t)=prediction of measured mixture pressure at the moment t based on information before the moment t;
P(t)=inverse covariance matrix;
ψ(t)=input values (input measurements, air and water pressure)
θ(t)=parameter vector (b1, b2, b3, b4)
λ=forgetting factor (=1)
After the parameters in the mixture pressure formula are determined using the recursive least square algorithm, the formula is ready to be used by the controller 20 for monitoring the performance of the spraying device. When the controller 20 detects a significant deviation of the measured mixture pressure in the spraying device from the predicted or expected mixture pressure and if the deviation lasts for a sufficiently long time, it generates a fault signal to get the attention of the operator of the processing line so that the possible cause of the deviation can be investigated, and the spraying device may be repaired or replaced if necessary.
In one embodiment, a combination of static and dynamic techniques is used to determine if a fault signal should be generated. In this fault determination process, measurements are taken periodically at regular intervals. For each measurement interval, a static error state Si at a certain moment in time (ti) is calculated as follows:
Thus, the static error state Si is determined based on three threshold levels: a pre-selected fixed level Pabs, and two variable levels Pr1i and Pr2i that depend on the values of the measured input liquid pressures. The values of Pabs and Erel are chosen depending on the accuracy of the sensors and the stability of the signals. A good choice for Pabs is, for example, 3 times the standard deviation on Perr, measured on a large number of points (e.g. 1000) in the normal operating range of the nozzle. In that case, the Pabs is calculated based on the following equations:
The type of error causing the pressure deviation depends on the sign of Perr. If the sign is positive, the measured actual pressure is lower than the predicted pressure. This may happen if either the calibrated orifices are blocked or the tip is worn out. On the other hand, if the sign is negative, the measured pressure is higher than the predicted pressure, which may occur if either the calibrated orifices are worn out or the tip is blocked. Thus, based on the sign of Perr, the possible cause of the pressure deviation can be determined.
The dynamic error state (Di) is then calculated using the following algorithm:
The following factors using in the decisions above have to be chosen, and are depending on the dynamics of the system:
The process of setting up the spraying device 10 and the controller 20 and the subsequent monitoring operation are summarized in the flowchart in
In view of the many possible embodiments to which the principles of this invention may be applied, it should be recognized that the embodiments described herein with respect to the drawing figures are meant to be illustrative only and should not be taken as limiting the scope of the invention. Therefore, the invention as described herein contemplates all such embodiments as may come within the scope of the following claims and equivalents thereof.