1. Field of The Invention
The present invention relates to CNC (Computer Numerical Controlled) machines. More particularly, the present invention relates to a system and a method for monitoring production status and information of CNC machines.
2. Description of Related Art
CNC (Computer Numerical Controlled) machines have been extensively used to machine and fabricate mechanical parts, work pieces, instruments etc. Typically, machining programs should be loaded or edited to the CNC machines prior to machining the work piece. A person who manages a factory generally hopes to obtain production information of the CNC machines located in the factory through a terminal. This production information may include machine operation states, and machine operation data such as current machining programs, operator information, machine utilizations etc.
Especially, when there are various or many CNC machines located in different areas of the factory, the person must personally take a look at each of the CNC machines and record the operation state and information of each machine if the person wants to obtain production information of the machines. Thus, it is really inconvenient and time-consuming.
In addition, the person cannot view the instantaneous production information of all machines at once, resulting in inconvenient and non-optimum machine production scheduling. If some abnormal conditions occur during the operating duration of the machines, the machines may be abnormally stopped or mistakes may occur unless someone who immediately observes and troubleshoots the abnormal conditions. Thus, the production efficiency and output of the machines are influenced and diminished.
Therefore, there is a need to provide a system and method for monitoring production of the machines to mitigate or obviate the aforementioned problems.
An object of the present invention provides a method and a system to monitor the production of CNC machines to provide immediate and complete production information to administrators.
Another object of the present invention provides a method and a system to monitor the production of CNC machines so as to monitor remotely and conveniently production information.
A system for monitoring production of CNC machines comprises a monitoring host and a displaying device. The monitoring host comprises an NC interpreter module, a production monitor analysis module and a user interface module.
The NC interpreter module receives a piece of first format data transmitted by the CNC machines and interprets the first format data into a piece of second format data where the second format data are stored in a temporary file.
The production monitor analysis module analyzes pre-defined control codes and control code parameters contained in the temporary file to acquire current production information and status of the CNC machines.
The user interface module transforms the production information and status analyzed and acquired by the production monitor analysis module into a visible information interface. The displaying device shows the visible information interface.
A method for monitoring production of CNC machines comprises the steps of
providing a monitoring host;
utilizing the monitoring host to receive a piece of first format data transmitted by the CNC machines, interpreting the first format data into a piece of second format data, and storing the second format data in a temporary file;
analyzing pre-defined control codes and control code parameters contained in the temporary file to acquire current production information and the status of the CNC machines by a production monitor analysis module;
transforming the production information and status analyzed and acquired by the production monitor analysis module into a visible information interface by a user interface module; and
showing the visible information interface on a displaying device.
Consequently, the system and the method provide the administrator with a way to monitor the real-time machine production status and information at a remote environment such as in the office to know the whole production status and information of the factories. The collected data can also be stored in a database for statistical analysis or record tracking for information when judging an employee's performance.
Further, the present invention transforms the current production status and information into a visible information interface that is shown on the displaying device. The administrator will easily and conveniently see the information.
These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:
a and 6b illustrate schematic diagrams of inputting control identifiers of the remote control analysis module; and
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
Refer to
Refer to
Refer to
The pre-defined control codes can use numeral strings to indicate respectively the status of specific machines. For example, those numeral strings may be “O8801”, “O6801”, “O8809”, “O6809”, etc., and their indications depend on design selection. In this illustrative embodiment, the string “O8801” is a start control code that represents the machine has been started. Likewise, the string “O8809” is an end control code that represents the machine has been stopped. The numeral strings can be modified to accommodate practical machine conditions. The pre-defined control code parameters can use letter strings, such as “DATE”, “TIME”, etc. to indicate respectively machine production data items. Likewise, the letter strings can be added, deleted and modified to accommodate practical machine conditions. Some illustrative control codes and control code parameters are listed in following Table 1.
One skilled in the art would recognize that selection of the letters, strings, symbols etc. of the control codes and the control code parameters depends on design requirements. The abovementioned control codes are illustrative and part of the control codes.
The control codes or the control code parameters for monitoring production information are transmitted by the machines and are received by the NC interpreter module 110. The NC interpreter module 110 interprets the received data that is temporally stored in the temporary file. Therefore, the production monitor analysis module 120 would receive the interpreted data by accessing the temporary file for follow-up processing procedures.
Refer to
For example, the information interface 400 can be split into different areas or boxes 401 with different identifiers such as colors to show current operation status and production information of the machines on the displaying device 200. Each box 401 is split into a signal area 402, an information area 403 and a status area 404. Colors of the signal areas 402 of the boxes 401 sort the operation status of the machines. For example, red indicates the machine has broken down, green indicates the machine is operating and yellow indicates the machine has temporarily stopped (such as for changing cutters or work piece). The information area 403 comprises multiple columns that show production information, such as product number, product name, target amount, actual made amount, average time, machine utilization etc. Further, the columns could also show working program number, employee name, operation date, operation time, machine number etc. The status area 403 shows the current connection status of the machine. A person skilled in the art recognizes the selection of the boxes 401 of the information interface 400 and the columns of the areas depends on design requirements.
Consequently, the administrator could immediately monitor the operation status and information of the machines in a remote environment, such as in the office. The collected production information and machine status can be further stored in computer database so that tracing the manufacturing history of a given product or statistically analyzing the stored data will be possible in the future. This analyzed information could be used to assess employee performance.
Refer to
The remote control analysis module 140 enables the administrator to transmit and update the machining programs from a remote terminal, i.e. the monitoring host 100 to the connected machines 600. Those operations comprise uploading the machining programs from the machine 600 to the monitoring host 100 and saving the machining programs, and downloading the machining programs from the monitoring host 100 to the machine 600 by requests. For convenient illustration, the term “upload” means transmitting the machining programs from the machines 600 to the monitoring host 100, and the term “download” means transmitting the machining programs from the monitoring host 100 to the machines 600.
An operator inputs control identifiers in the machines 600, the control identifiers are transmitted and received by the monitoring host 100 to obtain the control codes as shown at step 500. The monitoring host 100 performs operations represented by the received control identifiers such as download, upload, inquiries, and update operations of machining programs. The control identifiers may use letters or strings, such as “A”, “C”, “D” etc., to represent a specific operation. In this embodiment, the control identifiers are listed in table II as follows.
Likewise, a person skilled in the art recognizes the aforementioned letters, strings, symbols, etc. are illustrative purposes only, and are not limited to the present invention. The aforementioned control identifiers are illustrative and are not limited to the present invention.
Refer to
Further, this module records file operations and writes the records into a feedback file (a log file) during file transmission process. When the operator inputs the control identifier “M900” in the machine 600, the control identifier indicates the operator does not request the monitoring host 100 to return the feedback file to the machine 600. On the other hand, when the operator inputs the control identifier “M901” in the machine 600, the control identifier indicates the operator requests the monitoring host 100 to return the feedback file to the machine 600. In addition, when the control identifier “PMS” is inputted, the control codes or control parameters for the production monitoring analysis module 120 will be appended during the file transmission process.
Refer to
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.