This invention relates generally to a system and method for detection of signal light parameters, and more particularly to a system and method for detecting and reporting railroad signal light status.
Visual railway signals, particularly signal lamps, are important components of a modern railway system and its operation. It is desirable to be able to verify that a signal lamp is in its desired state, illuminated, dark, or flashing, i.e., periodically cycling between illuminated and dark states. It is also desirable to detect and quantify the optical power exiting the signal head. Such optical power can be reduced by several factors including bulb age, dirt on lens or reflector surfaces, and damage to lens. Previous methods monitor the current drawn by a signal lamp to detect loss of filament. Such methods do not provide insight as to the condition of the entire optical system of the signal unit (i.e. lens, reflectors). Newer methods of monitoring flashing warning lights in railroad applications primarily involve incorporating lamp status determination systems positioned at the site of the visual signal lamp that report the determined signal lamp status to a remote monitoring point. These methods are generally labor intensive to install and to calibrate and do not provide a reliable, unambiguous, long-term indication of lamp performance.
These methods have their own inherent inaccuracies and delays and it would be desirable if these inaccuracies and delays are reduced or eliminated. There is therefore need for a system and a method based on transportation of actual light signals from the site of the signal lamp to a remotely located processing and monitoring point to allow more complex, thorough, direct and upgradeable decision logic to be performed.
Briefly, in accordance with one embodiment of the invention, there is provided a system for monitoring status of a visual signal lamp. The system includes at least one optical fiber comprising a first end and a second end. The first end is positioned proximate to the signal lamp and is oriented to capture a portion of light signal emitted by the signal lamp when the signal lamp is illuminated. The system also includes a photodetector positioned proximate to the second end of the optical fiber and configured to receive the portion of light signal. The system further includes a threshold detection circuitry connected to the photodetector and configured to detect a lighting parameter in relation to the signal lamp according to a predetermined criterion.
In accordance with another embodiment of the invention, there is provided a method for monitoring status of a visual signal lamp. The method includes positioning at least one optical fiber proximate to the signal lamp and orienting the at least one optical fiber to capture a portion of light signal emitted by the signal lamp when the signal lamp is illuminated. The method also includes capturing a portion of light signal emitted by the signal lamp using the at least one optical fiber when the signal lamp is illuminated. The method further includes detecting a lighting parameter in relation to the signal lamp according to a predetermined criterion.
The optical fiber 74 described in this embodiment is a fiber typically used to transmit all types of optical signals (i.e. data and communication signals) over distances. In one embodiment of the invention, the optical fiber 74 is a standard optical fiber, which is a very thin strand of ultra-pure glass and having three concentric layers of material. The innermost layer is known as ‘core’ (not shown) and is made of glass forms. Light pulses pass through this glass core. The middle layer is known as ‘cladding’ (not shown). This layer is also made of glass, but of a different grade as compared to the material of the core. The outer most layer is the ‘coating’ (not shown), made of plastic. The cladding reflects the light from the core in a ‘total internal reflection’ mode and thus serves as a barrier to keep the light within the core, functioning much like a mirroring surface. The coating is there only to provide mechanical strength and protection to the optical fiber 14. The exact dimensions of the three layers will depend on the particular intended application and the amount of protection of the fiber required. In certain embodiments, the core diameter is on the order of about 200 micron and the outer diameter is on the order of about 900 microns to about 1 centimeters. In operation, the optical fiber 14 acts like a virtual tube and light signals pass through the center of the optical fiber 14.
Referring to
The photodetector 16 as shown in
The photodetector 16 of the system 10 may be embodied in several ways. In one embodiment of the invention, the photodetector 16 is a photodiode. As is well known in the art, a photodiode is a p-n junction designed to be responsive to optical input. Typically, photodiodes can be used in either zero bias or reverse bias. In zero bias, light falling on the diode causes a voltage to develop across the device, leading to a current in the forward bias direction. In the other case, when reverse biased, diodes usually have extremely high resistance. This resistance is reduced when light of an appropriate frequency shines on the junction. Hence, a reverse biased diode is also used as a photodetector by monitoring the current running through it.
In another embodiment of the invention, the photodetector 16 is a phototransistor. As is commonly known, a phototransistor is in essence a normal bipolar transistor that is encased in a transparent case so that light can reach its base-collector diode. A phototransistor works like a photodiode, but with a much higher sensitivity for light, because the electrons that tunnel through the base-collector diode are amplified by the transistor function.
In yet another embodiment of the invention, the photodetector 16 is a photomultiplier. Photomultipliers are extremely sensitive detectors of light in the ultraviolet, visible and near-infrared frequency range. They are a type of vacuum tube in which photons produce electrons in a photocathode in consequence of a photoelectric effect and these electrons are subsequently amplified by multiplication on the surface of dynodes. A signal is produced on the anode of the device. Amplification can be as much as 108, meaning that measurable pulses can be obtained from single photons. The combination of high gain, low noise, high frequency response and large area of collection make a photomultiplier a very effective photodetector.
Referring back to
In operation, the threshold detection circuitry 18 is sensitive to a significant change in light signal from the signal lamp 12. The change may be a decrease in the light signal caused by malfunction of the light bulb or accumulation of dirt and/or dust on the bulb and/or the lens and/or the reflector. In another situation, the change in light signal may be an increase in the light signal. An increase in light signal may occur due to a damage of the reflector 28 or lens (not shown) such that more light reaches the first end 72 of the optical fiber 14. Increase in light signal level may also result from bright external sources such as sunlight, automobile headlights, etc. Moreover, an increased light signal level can also be caused by a bulb malfunction. The threshold detection circuitry 18 recognizes such conditions as fault conditions and takes measures for remedial action. This way, the threshold detection circuitry 18 applies a two-sided (high and low) threshold to the nominal signal. When the lighting parameter such as intensity or brightness or irradiance of the signal lamp 12 are sensed to go beyond predetermined acceptable limits, the threshold detection circuitry 18 sends a signal to the logical processor 22.
Referring to
As described above, the logical processor 22, in this embodiment of the invention, determines and interprets the status of the signal lamp 12 based on the output signal of the threshold detection circuitry 18. The determination and interpretation by the logical processor 22 is done in accordance with a predetermined criterion. For instance, in one embodiment of the invention, the predetermined criterion is a binary comparison of the optical power of the light signals 32 with a predetermined threshold value of intensity. In another embodiment of the invention, the predetermined criterion is comparison of the optical power of the light signals 32 with a predetermined maximum value of intensity. In yet another embodiment of the invention, the predetermined criterion is comparison of the optical power of the light signals 32 with a predetermined minimum value of intensity. Whatever be the criterion for comparison, if the sensed intensity of light signals 32 falls outside of the predetermined threshold, the logical processor 22 determines that the status of the signal lamp is not acceptable and the signal lamp 12 needs attention. In that event, the logical processor 22 sends an alarm signal to the alerting system 22 through the electrical conductor 46 and the alerting system 22 in turn generates an appropriate alarm to a remote location (not shown). Otherwise, the operating status of the signal lamp 12 is determined by logically processing one or more lighting parameters such as brightness or intensity or irradiance of signal lamps 12. In another embodiment of the invention, the logical processor 22 is programmed to keep track of the increase and decrease of the illumination caused by the flashing of the signal lamp 12. The logical processor 22, in this embodiment of the invention, also alerts the alerting system 24 when the flash rate goes beyond nominal and expected bounds.
Referring to
In another embodiment of the invention, lamp-head voltage detection is accomplished by positioning the lamp-head voltage detection circuitry 19 proximate to the bulb of the signal lamp 12 and positioning the threshold detection circuitry 18 and/or the logical processor 22 at a remote location from the signal lamp 12. The lamp-head voltage detection circuitry 19 uses the lamp-head voltage as an input to generate light signals 35 which are placed in the optical fiber 14 along with the light signals 32 emitted by the signal lamp 12. The light signals 35 are amplitude modulated (on/off) signals at a frequency much higher than that of the light signals 32 coming from the signal lamp 12. This way, the two types of light signals 32 and 35 do not mix or interfere. At the second end 74 of the optical fiber 14, the two light signals 32 and 35 separated by using the light frequency filter 39. In another embodiment of this invention, the lamp-head voltage detection circuitry 19 uses the lamp-head voltage as an input to generate electrical signals 35 which are conducted through conductor 49 to the threshold detection circuitry 18. Measuring lamp-head voltage provides a benefit to railroad maintenance as it is required to be periodically inspected/measured. In addition, lamp-head voltage is an aid to diagnostics when combined and/or compared with other lighting parameters such as intensity levels, brightness, and irradiance of the signal lamp 12. For instance, detecting low lamp intensity and sufficient lamp-head voltage indicates a possible problem with the bulb or the reflector 28 or the lens of the signal lamp 12, while detecting low lamp voltage and low lamp intensity indicates another type of failure mode of the signal lamp 12.
The optical switch 36 is a switch that enables signal lamps 12 to be selectively chosen for monitoring. The optical switch may be embodied in several ways, including mechanical, electro-optic, and magneto-optic embodiments. For instance, in certain mechanical embodiments, an optical fiber is mechanically shifted to drive one or more alternative fibers. In other embodiments, slow optical switches, such as those using moving sources, may be used for alternate routing of an optical transmission path. Fast optical switches, such as those using electro-optic or magneto-optic effects, are also suitable to perform logic operations. The optical switch 36 is controlled by a control unit (not shown) and a particular signal lamp 12 is selected for monitoring. In other instances, the optical switch 36 selects a particular signal lamp 12 for monitoring by an automatic polling algorithm that continues until a non-compliance with operating norms is detected.
Light signals 32 emanating from the selected signal lamp 12 pass through the wavelength filter 38. The wavelength filter 38 may be embodied in a wide range of filter types that are distinguished by the specific color spectrums and wavelengths they pass. As is commonly known in the art, color or wavelength filter glasses are identified by their selective absorption of optical light signal. In general, this grouping includes many filter types such as neutral density, short pass, long pass, band pass, ultraviolet, infrared, heat absorbing, and color temperature conversion filters. Wavelength filters 38 are used to keep out unwanted light from sources other than the signal lamp 12 the system 30 is monitoring. The specific range of the wavelengths that will be allowed to pass through the wavelength filters 38 depends on relevant applications. For instance, in this embodiment of the invention, only green, red, and yellow colors are allowed to pass through the wavelength filter 38 because in a standard railroad signal there are three signal lamps emitting lights of green or red or yellow colors only. Light signals of any color other than these three are interpreted as unwanted by the system 30 and the wavelength filters 38 do not allow these rays to pass through. Examples of such unwanted light signals include ultraviolet and infrared light signals generated by incandescent signal sources. Moreover, the wavelength filters also reduce ambient light from the sun.
Light signals 32 passing through the wavelength filter 38 are focused using the lens 26 before they enter the first end 72 of the optical fiber 14. The lens 26 is a common lens coupled to the first end 72 of the optical fiber 14. The lens 26 is designed to collect and focus light from the signal lamp 12. The filtered and focused light signals 32 coming from the signal lamp 12 are captured in the first end 72 of the optical fiber 14 and then transported through the optical fiber 14 to its second end 72. Continuing, the light signals 32 coming out of the second end 74 of the optical fiber 14 are radiated onto the photodetector 16, which quantifies the intensity of these light signals 32.
Referring to
Embodiments of the invention are not limited to the above-described configuration of the system 30 that includes the lens 26 and the optical fiber 14 with two normal ends 72 and 74. In a different embodiment of the invention, the lens 26 is omitted and instead, the first end 72 of the optical fiber 14 is configured as a ‘lensed end’. Moreover, the lensed end optical fiber 14 eliminates the need for a separate lens 26 and thereby reduces return loss.
The continuity checking circuitry 62 is used for checking the continuity of optical fiber 14 used to monitor the status of one or more signal lamps 12. The continuity checking circuitry 62 is located at or proximate to the site of measurement and it houses the single test photodetector 56 or a number of photodetectors 56 for monitoring the status of the test optical signal source 52. The test optical light source 52 emits light signals 34 that enter the first end 76 of the test optical fiber 52. In a standalone mode of operation of the continuity checking circuitry 62, a portion of the light signals 34 coming out from the test light source 52 enter the first end 76 of the optical fiber 54 and are then transported by the optical fiber 54 to its second end 78. The light signals 34 coming out from the second end 78 of the test optical fiber 54 are then radiated onto the test photodetector 56. However, in the embodiment of the invention, as described in
Fiber optic splitters 64 and 66, also known as fiber optic couplers, are optical devices that split light from one fiber into multiple fibers, or combine light from more than one fiber into a fewer number of fibers. Fiber optic splitters typically divide one input between two or more outputs, or combine two or more inputs into one output. There are many suitable splitters and they are well known to those of ordinary skill in the art. The cable type compatible with fiber optic splitters 64 and 66 can be single mode or multimode in configuration. Single mode describes an optical fiber that will allow only one mode to propagate. It permits signal transmission at extremely high bandwidth and allows very long transmission distances. Multimode describes an optical fiber that supports the propagation of multiple modes. It allows the use of inexpensive LED light sources and connector alignment and this type of coupling is less critical than single mode fiber. Typically, distances of transmission and transmission bandwidth are less with single mode fiber than with multimode due to dispersion. Different embodiments of fiber optic splitters 64 and 66 include single window, dual window, or wideband. Single window splitters are designed for a single wavelength with a narrow wavelength window. Dual wavelength splitters are designed for two wavelengths with a wide wavelength window for each. Wideband splitters are designed for a single wavelength with a wider wavelength window.
Referring back to
Referring to
Embodiments of the present invention utilizing flashing lamps in railroad applications are described above, but the invention is useful in other environments as well. For example, embodiments of the invention can be used to detect status of signal lamps when lamps 12 are used in flashing obstruction lighting such as that used on towers or buildings.
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention
Number | Name | Date | Kind |
---|---|---|---|
4376910 | Peslier | Mar 1983 | A |
4775865 | Smith et al. | Oct 1988 | A |
6147620 | Remmers et al. | Nov 2000 | A |
6222446 | Hilleary | Apr 2001 | B1 |
6369704 | Hilleary | Apr 2002 | B2 |
6688561 | Mollet et al. | Feb 2004 | B2 |
7002453 | Martinez | Feb 2006 | B2 |
20020000911 | Hilleary | Jan 2002 | A1 |
20040240208 | Beasley | Dec 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20060066447 A1 | Mar 2006 | US |