The present invention relates to a system and method for moulding metal parts, the main advantage of which is based on the use of a die having mechanical properties that are good enough to withstand the demands of the centrifugal moulding of large-sized parts.
When producing cast metal parts today, there are a number of methods known in the prior art that allow such production, such as, for example, sand moulding, ceramic moulding, centrifugal casting, etc., but said means have several drawbacks, particularly in relation to the mass production of different parts and the associated economic cost, as well as the need to have several hard-to-store moulds.
For example, sand moulding has the main drawback of being scarcely versatile as regards the design, which is a huge limitation when producing parts with a high degree of specification. This type of moulding furthermore has the additional drawback of requiring a wooden model for obtaining the sand mould of the part to be produced, meaning that the wooden model will be permanent. This requires having a given storage space and furthermore has to be made with a parting line, i.e., it must be made in two parts.
Furthermore, the possibility of sand getting into the part must be considered, which makes it necessary to trim away the excess material, etc., so said method generates a considerable cost increment when it is chosen as the means for producing the parts.
Another known example in the prior art is the use of a ceramic mould using polystyrene moulds injected onto an aluminium mould or the like, whereby avoiding having to store the moulds once they are used, providing more efficient solutions for machining and for moulding unitary parts.
Once the polystyrene mould is obtained, ceramic application step starts, in which the polystyrene mould is impregnated with ceramic material to subsequently be dried at a given temperature, and said operation can be repeated as many times needed, depending on the specific needs for producing the part.
Centrifugal casting is generally used for casting parts having a surface of revolution and a simple geometry (such as, for example, balls, tubes, etc.) by means of using metal dies, and it has endless advantages, among which it is necessary to point out that it reduces possible volume defects occurring while casting, that no process for removing excess material is required, and that it is a much more energy-efficient process than the other mentioned processes, but in turn it has the main drawback being scarcely versatile for producing parts with more complex geometries.
Example of methods for obtaining parts from moulds is international patent application WO9717150, which describes a method of preparing a shell mould for moulding hollow parts, in which a layer of refractory material is applied on a pattern of flexible elastically deformable material. A shell or die reproducing a negative of the pattern of the elastic mould is thereby obtained. Said mould is removed once said refractory layer is applied based on its deformability due to its elastic properties. Then pouring steel into said shell together with centrifugation will allow reproducing the hollow part that was initially intended to be moulded.
The technical problem that the present invention solves is that it makes a die having mechanical properties that are good enough to withstand the demands of the centrifugal moulding of large-sized parts. To that end, the system and method for moulding metal parts object of the present invention comprises a first metal structure or base which is integrally attached to a rotating machine, said machine rotating the assembly at a high speed, and where said structure is associated with a cover and with a plurality of fastening nuts and bolts, and where, in turn, the structure is integrally attached to a cylindrical metal die containing a ceramic mould and hardened sand for filling said die.
As a result of the method and system herein described, high-quality parts can be obtained with a low level of internal defects and/or impurities and no volume defects. Furthermore, highly versatile parts may be obtained because part design is not limited with the use of this method.
Once the dies have been used, they could be reused for producing other parts simply by applying ceramic materials on them, thereby reducing costs associated with the mould, and hence, with producing the parts.
Likewise, liquid shrinkage will gradually be offset with the material that is driven out by centrifugal force, so the incorporation of feed systems that increase the economic cost of making the part and that subsequently involve process for trimming away impurities, even further increasing the economic cost of the process of producing the part, is avoided.
Throughout the description and the claims the word “comprises” and variants thereof are not meant to exclude other technical features, additions, components or steps. For the persons skilled in the art, other objects, advantages and features of the invention will be inferred in part from the description and in part from putting the invention into practice. The following examples and drawings are provided by way of illustration and do not mean to restrict the present invention. Furthermore, the present invention covers all the possible combinations of particular and preferred embodiments herein indicated.
A series of drawings that help to better understand the invention and which expressly relate to an embodiment of said invention provided as a non-limiting example thereof is very briefly described below.
The attached drawings show a preferred embodiment of the invention. More specifically, it comprises a first metal structure or base (4) which is integrally attached to a rotating machine, said machine rotating the assembly at a high speed, and where said structure (4) is associated with a cover (3) and with a plurality of fastening nuts (1) and bolts (2), and where, in turn, the structure is integrally attached to a cylindrical metal die (5) containing a ceramic mould (7) and hardened sand (6) for filling the die (5).
The method of moulding ceramic parts includes:
Number | Date | Country | Kind |
---|---|---|---|
P201431450 | Oct 2014 | ES | national |
This application is a national stage entry of PCT/ES2015/070513 filed Jul.1, 2015, under the International Convention claiming priority over Spain Patent Application No. P201431450 filed Oct. 2, 2014.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/ES2015/070513 | 7/1/2015 | WO | 00 |