This application is related to the following co-pending, commonly assigned U.S. patent applications: “Slide-in Connector Plate for Avionic Unit Rack,” Ser. No. 10/086,568; “Electronic Equipment Module Mounting Apparatus and Method,” Ser. No. 10/086,482; “Retractable Panel Interface Cable Device and Method,” Ser. No. 10/086,590; “Electronic Equipment Module Apparatus and Method,” Ser. No. 10/086,578, each of which the disclosure is herein incorporated by reference in its entirety.
The invention relates to mounting devices and methods of mounting electronic equipment. Specifically, this invention relates to mounting devices and methods of mounting avionic equipment in an aircraft.
In aviation, there is an increasing presence of computerized and electronic equipment for applications such as instrumentation and navigation. The term avionics refers generally to electronics in an aviation setting. In aviation, electronic sensors are used to monitor airspeed, electronic transmitters are used for communications, and newer applications such as use of global positioning systems (GPS) are being utilized in aircraft of all sizes.
Pricing of equipment for aircraft is competitive, and not all aircraft require the same combination of instrumentation options. To lower costs and to increase the number of end user options, more flexibility in avionic equipment is needed. In response to the need for flexibility, the electronic instrumentation industry has evolved to a largely modular system. For example, a communication system, a transponder, and a navigation system are each manufactured in a module. Modules are individually selected for an aircraft based on cost and need for a particular application. The modules are also individually replaceable, which allows aftermarket upgrades, and inexpensive replacement should a single module become damaged.
Because of limited space available on any given aircraft, designers and manufacturers have located electronic modules in areas of the aircraft where space is at less of a premium. Some currently used areas include the rear of the aircraft, or a nose compartment of the aircraft. Because the pilot or other operator is seated at a location remote from the modules, controls for the modules and displays of data from the modules must be linked to the operator through communication lines such as wires, fiber optics or the like.
While space constraints are eased by locating electronic modules in remote areas of the aircraft, these locations make installation, repair, and replacement difficult. Additionally, when the electronic modules are located remotely from the aircraft instrument panel, longer communication lines are needed to exchange data and commands with the cockpit. Longer communication lines increase the difficulty of installation and they increase the risk of line failure between the module and the cockpit.
In some aircraft, the electronic modules have been located directly in the cockpit instrument panel with a display and controls located on the front of the module, similar to a car stereo. This configuration reduces problems due to long communication lines, however it introduces a further set of limitations.
Because each module mounted on the cockpit instrument panel contains its own display screen, the space available for information display and operator command controls is forced into a modular configuration. The controls and displays tend to become cluttered and confusing when several modules are positioned near each other, each with it's own display.
Also, when mounting modules on the cockpit instrument panel, space considerations become more significant due to the additional presence of aircraft controls behind the instrument panel such as the yoke controls and ductwork housed behind the cockpit instrument panel. Space issues are also a concern in front of the instrument panel. Displays and controls for the modules must be located in a tight space below the top of the instrument panel, so as not to impair the pilot's vision. Additionally, other gauges or features on the instrument panel must be avoided when mounting a display or control unit. Fitting a group of modules, displays, and controls in a given area requires a flexibility in mounting configurations that is lacking in current designs.
What is needed is a device and method to mount avionics modules in a location that is convenient for installation and repair or replacement. What is also needed is a device and method of mounting avionics equipment that is flexible to allow more location options of displays and controls. What is also needed is a device and method of mounting avionics equipment that allows integration of displays and controls resulting in a less confusing presentation to the operator.
The above mentioned problems with installation and repair or replacement, along with the need for mounting flexibility of avionics equipment, are addressed by the present invention and will be understood by reading and studying the following specification. Systems, devices and methods are provided for mounting various configurations of avionic equipment. The systems, devices, and methods of the present invention offer a more convenient and more flexible configuration of mounting that also allows integration of displays and controls.
An avionic instrument mounting system is provided that includes a first mounting frame adapted for mounting to an avionic mounting surface. A plurality of electronic modules are coupled to the first mounting frame. In one embodiment, they are coupled to the first mounting frame by a second mounting frame located between the electronic modules and the first mounting frame, the second mounting frame being adjustable along a range of mounting locations. A display unit is located directly in front of the plurality of electronic modules and in communication with the electronic modules. The display unit is flexibly mounted, and located along a display range of mounting locations with respect to the electronic modules.
In one embodiment a front face of each electronic module includes a long axis and a short axis, and each electronic module is coupled to the second frame with the long axis oriented vertically. The electronic modules can be any number of several types of modules. One type of module may include circuitry for a global positioning system (GPS).
Another embodiment of the invention includes a first mounting frame adapted for mounting to an avionic mounting surface. A second mounting frame is mounted to the first mounting frame, the second mounting frame being adjustable along a range of mounting locations. A display unit is located directly in front of the first mounting frame. The display unit is flexibly mounted, and located along a display range of mounting locations with respect to the first mounting frame.
One embodiment of the mounting system mounts to a cockpit instrument panel although mounting to other surfaces is within the scope of the invention. Another embodiment of the invention provides a display unit that includes a flat panel display. In one embodiment, the display unit includes a liquid crystal display (LCD) unit.
Ranges of mounting locations are provided that include many ranges of flexibility in mounting. In one embodiment, the display unit is adapted for mounting in a vertical range of mounting locations with respect to an electronic module. In one embodiment, the electronic module is mountable in a horizontal range of mounting locations with respect to a mounting frame.
Among other options detailed below, the avionic instrument mounting system also includes an embodiment where a motherboard is coupled between the electronic modules and the display unit.
A method of mounting an avionic system is also described. The method includes coupling an electronic module to a mounting surface. A display unit is mounted directly in front of the electronic module along a first range of mounting locations with respect to the electronic module, and communication is established between the display unit and the electronic module.
A method of mounting along ranges of mounting locations is provided that include many ranges of flexibility in mounting. In one method, the display unit is mounted in a vertical range of mounting locations with respect to an electronic module. In one embodiment, the electronic module is mounted in a horizontal range of mounting locations with respect to a mounting frame.
These and other embodiments, aspects, advantages, and features of the present invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art by reference to the following description of the invention and referenced drawings or by practice of the invention. The aspects, advantages, and features of the invention are realized and attained by means of the instrumentalities, procedures, and combinations particularly pointed out in the appended claims.
In the following detailed description of the invention, reference is made to the accompanying drawings which form a part hereof, and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. In the drawings, like numerals describe substantially similar components throughout the several views. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural, logical, and electrical changes may be made without departing from the scope of the present invention.
References to directions, such as up, down, above, or below, etc. will have their normal meaning with the ground being downward when referring to embodiments not used in aircraft. When referring to embodiments mounted to an aircraft, downwards will refer to the direction towards a bottom surface of the airplane, regardless of the orientation of the airplane during flight. When referring to embodiments of the invention that are mounted adjacent to a mounting surface, such as an airplane instrument panel, references to in front of the panel will refer to a side of the panel that is operator accessible, while behind the panel will refer to the side of the panel that is normally towards the nose of the aircraft, and not easily accessible to an aircraft operator.
In one embodiment, the following device and method for mounting an avionic instrument system is used in an aircraft, and is attached to a mounting surface within the aircraft. Although this setting is used as an example, the mounting system described can be used in other settings as well without departing from the scope of the invention.
The display unit 140 is shown mounted separately from the electronic modules 130. In general, mounting of the display unit 140 is followed along arrow 146. Having the display unit mounted separately accomplishes two objectives.
Separate mounting allows for more flexibility in mounting locations. One important flexibility of mounting allows the display unit 140 and the mounting frame 100 to be mounted along a first range of mounting locations 104 relative to each other. In one embodiment, the first range of mounting locations is a vertical range, however with a separate mounting configuration, any of a number of three dimensional ranges of mounting locations are possible.
In addition to mounting flexibility, having a separately mounted display unit 140 allows greater flexibility in the information displayed and greater flexibility in locations of controls 144. A single display unit 140 for a number of electronic modules 130 allows information from several modules to be displayed in a more organized, integrated manner on the single display. In contrast, prior configurations had a display attached to each electronic module, which forced each display and set of controls to be dedicated to its module. Integration of data from multiple modules on a single display was not possible in prior configurations.
The use of a motherboard 320 allows for greater ease of electrically connecting communication lines 370 from the modules 330 to the display unit 340. A separate unit frame is not needed in this configuration. However, the use of a motherboard embodiment dedicates a board connector 322 to each electronic module 330, which is a tradeoff in one range of flexibility of mounting locations for the electronic modules 330. The display unit 340 in one configuration is still separately mounted from the mounting frame 300 and flexibility in mounting the display unit is available along a vertical range of mounting locations.
Returning to
Thus has been shown an improved device and method for mounting an avionic system. The inventive concept of allowing varying locations of key components allows a single mounting system to be used with several varieties and configurations of aircraft, within the crowded confines of the instrument panel. Ranges of flexibility with this system include the ability to arrange modules horizontally, and the ability to locate the display unit vertically. The multi-dimensional mounting flexibility of the mounting system shown allows electronic modules 130 to be mounted in close proximity to a display unit 140, which greatly increases accessibility of the modules 130 over prior configurations where modules 130 were housed in the nose or rear of an aircraft. Installation, repair, and replacement are all greatly simplified with this configuration.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiment shown. This application is intended to cover any adaptations or variations of the present invention. It is to be understood that the above description is intended to be illustrative, and not restrictive. Combinations of the above embodiments, and other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention includes any other applications in which the above structures and fabrication methods are used. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
Number | Name | Date | Kind |
---|---|---|---|
3533045 | Henschen | Oct 1970 | A |
3676747 | Jorgensen et al. | Jul 1972 | A |
3859724 | Folkenroth | Jan 1975 | A |
4217764 | Armbruster | Aug 1980 | A |
4253225 | Wright et al. | Mar 1981 | A |
4313150 | Chu | Jan 1982 | A |
4385333 | Hasler | May 1983 | A |
4493146 | Cronin | Jan 1985 | A |
4547695 | Rath | Oct 1985 | A |
4598336 | Hehl | Jul 1986 | A |
4702712 | Ghorbani et al. | Oct 1987 | A |
4736910 | O'Quinn et al. | Apr 1988 | A |
4743200 | Welch et al. | May 1988 | A |
4800462 | Zacher et al. | Jan 1989 | A |
4815984 | Sugiyama et al. | Mar 1989 | A |
4821145 | Corfits et al. | Apr 1989 | A |
4830235 | Miller | May 1989 | A |
4871134 | Oikawa | Oct 1989 | A |
4996631 | Freehauf | Feb 1991 | A |
5010642 | Takahashi et al. | Apr 1991 | A |
5019947 | Pelzl | May 1991 | A |
5091823 | Kanbara et al. | Feb 1992 | A |
5106033 | Phan | Apr 1992 | A |
5211459 | Wu | May 1993 | A |
5272601 | McKillip | Dec 1993 | A |
5307238 | Marcus | Apr 1994 | A |
5321962 | Ferchau et al. | Jun 1994 | A |
5351176 | Smith et al. | Sep 1994 | A |
5388030 | Gasser et al. | Feb 1995 | A |
5414594 | Hristake | May 1995 | A |
5430615 | Keeth et al. | Jul 1995 | A |
5438482 | Nakamura et al. | Aug 1995 | A |
5501605 | Ozaki et al. | Mar 1996 | A |
5513068 | Girard | Apr 1996 | A |
5530302 | Hamre et al. | Jun 1996 | A |
5534665 | Long | Jul 1996 | A |
5644551 | Carmichael et al. | Jul 1997 | A |
5659297 | Tatavoosian | Aug 1997 | A |
5724227 | Hancock et al. | Mar 1998 | A |
5737193 | LaRiviere et al. | Apr 1998 | A |
5739470 | Takeda | Apr 1998 | A |
5793614 | Tollbom | Aug 1998 | A |
5812377 | Golbach | Sep 1998 | A |
5885107 | Sluss et al. | Mar 1999 | A |
5896273 | Varghese et al. | Apr 1999 | A |
5912799 | Grouell et al. | Jun 1999 | A |
5946196 | Baek | Aug 1999 | A |
5947753 | Chapman et al. | Sep 1999 | A |
5993247 | Kidd | Nov 1999 | A |
6067225 | Reznikov et al. | May 2000 | A |
6075694 | Mills et al. | Jun 2000 | A |
6102501 | Chen et al. | Aug 2000 | A |
6144549 | Moss et al. | Nov 2000 | A |
6159030 | Gawron et al. | Dec 2000 | A |
6161909 | Huang | Dec 2000 | A |
6246585 | Gunther et al. | Jun 2001 | B1 |
6257897 | Kubota | Jul 2001 | B1 |
6272016 | Matonis et al. | Aug 2001 | B1 |
6317334 | Abruzzini et al. | Nov 2001 | B1 |
6320744 | Sullivan et al. | Nov 2001 | B1 |
6322122 | Burnes et al. | Nov 2001 | B2 |
6356441 | Claprood | Mar 2002 | B1 |
6359775 | Revis | Mar 2002 | B1 |
6373713 | Jensen et al. | Apr 2002 | B1 |
6381130 | Yen | Apr 2002 | B1 |
6381146 | Sevier | Apr 2002 | B1 |
6385053 | Parizi et al. | May 2002 | B1 |
6422399 | Castillo et al. | Jul 2002 | B1 |
6456495 | Wieloch et al. | Sep 2002 | B1 |
6490157 | Unrein | Dec 2002 | B2 |
6529371 | Laio | Mar 2003 | B1 |
6535397 | Clark et al. | Mar 2003 | B2 |
6549424 | Beseth et al. | Apr 2003 | B1 |
6560114 | Berry et al. | May 2003 | B2 |
6578720 | Wang | Jun 2003 | B1 |
6590848 | Chen | Jul 2003 | B1 |
6592387 | Komenda et al. | Jul 2003 | B2 |
6622366 | Luffel et al. | Sep 2003 | B2 |
6654253 | DiMarco | Nov 2003 | B1 |
6695520 | Sarno et al. | Feb 2004 | B1 |
6771514 | Elg | Aug 2004 | B1 |
6778381 | Bolognia et al. | Aug 2004 | B1 |
6801769 | Royalty | Oct 2004 | B1 |
6927983 | Beseth et al. | Aug 2005 | B1 |
6984784 | Nagasaka et al. | Jan 2006 | B2 |
7008233 | Ruff et al. | Mar 2006 | B1 |
20020024802 | Chikawa et al. | Feb 2002 | A1 |
Number | Date | Country |
---|---|---|
5-8121880 | Jul 1983 | JP |
4-4166499 | Jun 1992 | JP |
2001-190010 | Oct 2001 | JP |