Embodiments of the present invention are generally related to solving linear systems of equations.
As computer systems have advanced, processing power and speed have increased substantially. Computer systems have thus been able to solve increasing complicated problems. Iterative methods for solving large sparse linear systems of equations have become popular in many areas of scientific computing. Although direct solution methods have long been preferred because of their robustness and predictable behavior, the development of new efficient iterative solvers and the increased need for solving very large systems have caused iterative solvers to become the method of choice for solving sparse linear systems.
A wide variety of iterative algorithms exist to solve sparse linear systems of equations including stationary iterative methods (such as Jacobi, Gauss-Seidel, Successive Over-Relaxation (SOR)), Krylov subspace methods (such as Conjugate Gradient (CG), Bi-Conjugate Gradient (BiCG), Generalized Minimal Residual Method (GMRES)) and Algebraic MultiGrid (AMG) methods. Krylov subspace methods and AMG methods have been the most popular iterative methods to solve sparse linear systems arising from partial differential equations (PDEs) because of their robustness and efficiency. Unfortunately, these iterative algorithms can be sequential in nature. This sequential nature results from the dependencies between computations and thereby results in increased computation time as each computation is dependent upon the needs results from proceeding computations.
Thus, while iterative algorithms are desirable over direct solving methods because of their efficiency, the sequential nature of the computations limits performance and time saved.
Accordingly, what is needed is an efficient preconditioner or smoother that is parallel in nature thereby allowing efficient solving of systems of equations using iterative methods. Embodiments of the present invention implement a multi-color DILU preconditioner that is suitable for implementation on a parallel hardware architecture (e.g., GPU). Embodiments of the present invention are operable to use coloring to extract parallelism in a DILU smoother or preconditioner. Embodiments of the present invention are further operable to perform the multi-color DILU preconditioning in parallel thereby advantageously providing significantly enhanced performance over traditional ILU preconditioners which are difficult to parallelize. The parallelism of embodiments of the present invention advantageously allows faster completion of preconditioning or smoothing over sequential methods. Embodiments of the present invention further advantageously provide a multi-color DILU preconditioner that is strong, parallel, requires very low storage, and computationally inexpensive.
In one embodiment, the present invention is directed toward a method for preconditioning. The method includes accessing a matrix comprising a plurality of coefficients of a system of equations and accessing coloring information corresponding to the matrix. The method further includes determining a diagonal matrix based on the matrix and the coloring information corresponding to the matrix. The determining of the diagonal matrix may be determined in parallel on a per color basis. The determining of the diagonal matrix may be performed on a parallel hardware architecture (e.g., a graphics processing unit (GPU)). The method may further include accessing an initial solution and determining a preconditioning matrix based on the diagonal matrix (e.g., an incomplete lower and upper triangular decomposition with only diagonal modified (DILU) preconditioner). The method may further include determining an updated solution to the system of equations. In one embodiment, the updated solution is determined in parallel on a per color basis.
In one embodiment, the present invention is implemented as a system for preconditioning. The system includes a matrix access module operable to access a matrix corresponding to a system of equations and a coloring access module operable to access color information corresponding to the matrix. In one embodiment, the matrix corresponds to a plurality of coefficients of the system of equations. The system further includes a diagonal matrix determination module operable for determining a diagonal matrix based on the color information corresponding to the matrix in parallel on a per color basis. In one embodiment, the diagonal matrix is used to construct a preconditioner matrix that comprises the product of lower and upper triangular matrices. The diagonal matrix may be determined by a graphical processing unit (GPU).
The system may further include a solution access module operable for accessing an initial solution to the system of equations and an updated solution determination module operable for determining an updated solution based on the matrix, the initial solution, and the color information. In one embodiment, the determining of the updated solution is determined in parallel based on a per color basis. In one exemplary embodiment, the updated solution module is operable to determine the updated solution based on a lower triangular solving phase and an upper triangular solving phase. The determining of the updated solution may be determined by a GPU.
In another embodiment, the present invention is directed to a method for solving a system of equations. The method includes accessing a matrix comprising coefficients of a system of equations and accessing coloring information corresponding to the matrix. The method further includes determining a diagonal matrix based on the coloring information and the matrix. In one embodiment, the determining of the diagonal matrix is computed in parallel (e.g., by a GPU) for each respective color of the coloring information. The method further includes determining an updated solution to the system of equations. In one embodiment, the determining of the updated solution is based on an incomplete lower and upper triangular decomposition with only diagonal modified (DILU) preconditioner performed by a graphics processing unit (GPU) and the updated solution is computed in parallel on a per color basis. The determining of the updated solution may be based on an initial solution, the matrix, and the diagonal matrix. In one exemplary embodiment, the updated solution is determined based on a lower triangular solving phase and an upper triangular solving phase. In another embodiment, the updated solution is determined based on a common sparse matrix vector multiplication function. The determining of the updated solution may be a portion of an algebraic multigrid (AMG) iterative method.
Embodiments of the present invention are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements.
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of embodiments of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be recognized by one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the embodiments of the present invention.
Notation and Nomenclature:
Some portions of the detailed descriptions, which follow, are presented in terms of procedures, steps, logic blocks, processing, and other symbolic representations of operations on data bits within a computer memory. These descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. A procedure, computer executed step, logic block, process, etc., is here, and generally, conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the present invention, discussions utilizing terms such as “processing” or “accessing” or “executing” or “storing” or “rendering” or the like, refer to the action and processes of an integrated circuit (e.g., computing system 100 of
The CPU 101 and the GPU 110 can also be integrated into a single integrated circuit die and the CPU and GPU may share various resources, such as instruction logic, buffers, functional units and so on, or separate resources may be provided for graphics and general-purpose operations. The GPU may further be integrated into a core logic component. Accordingly, any or all the circuits and/or functionality described herein as being associated with the GPU 110 can also be implemented in, and performed by, a suitably equipped CPU 101. Additionally, while embodiments herein may make reference to a GPU, it should be noted that the described circuits and/or functionality can also be implemented and other types of processors (e.g., general purpose or other special-purpose coprocessors) or within a CPU.
In one exemplary embodiment, GPU 110 is operable for General-purpose computing on graphics processing units (GPGPU) computing. GPU 110 may execute Compute Unified Device Architecture (CUDA) programs and Open Computing Language (OpenCL) programs. GPU 110 may thus be used for a variety of computing applications including simulations of molecular dynamics, computational fluid dynamics, reservoir simulations, and finite structural problems. It is appreciated that the parallel architecture of GPU 110 may have significant performance advantages over CPU 101.
System 100 can be implemented as, for example, a desktop computer system or server computer system having a powerful general-purpose CPU 101 coupled to a dedicated graphics rendering GPU 110. In such an embodiment, components can be included that add peripheral buses, specialized audio/video components, IO devices, and the like. Similarly, system 100 can be implemented as a handheld device (e.g., cellphone, etc.), direct broadcast satellite (DBS)/terrestrial set-top box or a set-top video game console device such as, for example, the Xbox®, available from Microsoft Corporation of Redmond, Wash., or the PlayStation3®, available from Sony Computer Entertainment Corporation of Tokyo, Japan. System 100 can also be implemented as a “system on a chip”, where the electronics (e.g., the components 101, 115, 110, 114, and the like) of a computing device are wholly contained within a single integrated circuit die. Examples include a hand-held instrument with a display, a car navigation system, a portable entertainment system, and the like.
Embodiments of the present invention implement a multi-color DILU preconditioner that is suitable for implementation on a parallel hardware architecture (e.g., GPU). Embodiments of the present invention are operable to use coloring to extract parallelism in a DILU smoother or preconditioner. Embodiments of the present invention are further operable to perform the multi-color DILU preconditioning in parallel thereby advantageously providing significantly enhanced performance over traditional ILU preconditioners which are difficult to parallelize. The parallelism of embodiments of the present invention advantageously allows faster completion of preconditioning or smoothing over sequential methods. Embodiments of the present invention further advantageously provide a multi-color DILU preconditioner that is strong, parallel, requires very low storage, and computationally cheap. The low-storage of embodiments of the present invention advantageously allows for the solution of larger systems of equations on a system with finite amount of memory.
Embodiments of the present invention further provide an efficient preconditioner or smoother operable for use with a variety of iterative methods (e.g., iterative methods that utilize preconditioners or smoothers). Embodiments of the present invention are operable for use with a variety of simulations including molecular dynamics, computational fluid dynamics, reservoir simulations and finite structural problems. For example, in a fluid flow simulation, the system of equations may be used to predict how a fluid behaves as the fluid flows over an object.
The efficiency and robustness of iterative methods (e.g., Krylov subspace iterative methods) can be improved by using a preconditioner. Preconditioning is a way to transform the original linear system into one which has the same solution, but which is likely to be easier to solve with an iterative solver. In general, the reliability of iterative techniques, when dealing with various applications, depends much more on the quality of the preconditioner than on the particular iterative method used. Popular preconditioners include stationary iterative methods such as Jacobi and Gauss-Seidel and incomplete (LU) factorization methods (hereinafter ILU preconditioners). It is noted that LU and ILU factorization factorizes a matrix as the product of a lower triangular matrix and an upper triangular matrix.
In the context of algebraic multigrid (AMG) methods, the preconditioner may be used as a smoother, whose objective is to damp the oscillatory components of the error. It is appreciated that good preconditioners are generally good smoothers in the context of AMG methods. It is further appreciated that an efficient preconditioner or smoother is one that requires low storage, facilitates reduction of the number of iterations of the iterative solver (e.g., Krylov subspace method or AMG method) and is computational cheap.
Embodiments of the present invention are described herein with reference to exemplary sparse linear system Ax=b. It is noted the exemplary sparse linear system Ax=b is used for explanatory purposes. It is further noted that embodiments of the present invention are operable for use with linear systems of equations (e.g., sparse linear system of equations) and not intended to be limited. For example, in the smoothing step of an AMG algorithm, the solution is updated using the preconditioning matrix M as follows:
xk+1=xk+M−1(b−Axk),
where xk+1 is the updated solution, xk is the initial or previously updated solution, M is the preconditioning matrix, b is a vector, and A is a matrix.
For the preconditioner to be computationally cheap, the preconditioning matrix M needs to be easily invertible. In an ILU preconditioner, M=
It is noted that that the amount of memory required to store the preconditioning matrix M of the ILU(0) preconditioner is the same amount of memory required to store matrix A. To further reduce the memory requirements, a variant of the ILU(0) preconditioner has been proposed, often referred to as a DILU preconditioner. The DILU preconditioner is a form of ILU preconditioners, and hence much better numerically than naïve smoothers (e.g., Jacobi or Gauss-Seidel). In a DILU preconditioner, the preconditioning matrix M has the following form:
M=(E+L)E−1(E+U),
where L and U are the strict lower and upper triangular parts of A, and E is a diagonal matrix that is constructed such that diag(M)=diag(A).
It can be shown that the DILU preconditioner is equivalent to the ILU(0) preconditioner when the product of the strict-lower part and the strict-upper part of A consists only of diagonal elements and fill-in elements, which is true for example for the standard 5-point difference approximations to second order partial differential operators. The main advantage of the DILU preconditioner over the ILU(0) is that it requires only one extra diagonal of storage (to store that diagonal matrix E).
With the DILU preconditioner, the matrix E can be obtained recursively by realizing that:
diag(A)=diag(M)=diag((E+L)E−1(E+U))=diag(E+LE−1U)
so that E can be obtained as:
E11=A11
E22=A22−L21E11−1U12
E33=A33−L31E11−1U13−L32E22−1U23
E44=A44−L41E11−1U14−L42E22−1U24−L43E33−1U34
It is appreciated that the above equations reflect the sequential nature of conventional solutions for determining the diagonal matrix E.
In the smoothing step, since M=(E+L)E−1(E+U) (a LU decomposition of M), the product
M−1(b−Axk)
can be obtained by successively solving a lower-triangular system followed by an upper triangular system. In other words, one needs to compute
z=M−1(b−Axk)=(E+U)−1E(E+L)−1(b−Axk)
which can be obtained by solving
1) Lower triangular solve
(E+L)y=b−Axk
2) Upper triangular solve
(E+U)z=Ey
With reference to
At block 202, data corresponding to a system of equations is accessed. The data corresponding to the system of equations may be operable for use in solving the system of equations (e.g., a matrix A of the values of coefficients corresponding to the system of equations, a vector x corresponding the unknowns of the system of equations, and the right hand vector b for the linear system of equations Ax=b)
At block 204, a first preconditioner is selected. The first preconditioner may be a multi-color DILU preconditioner, as described herein, or may be any of a variety of preconditioners or smoothers selected based on the iterative method being used.
At block 206, a first updated solution is determined based on the first preconditioner. Block 206 may be performed multiple times thereby using the first preconditioner to determine a plurality of updated solutions, each of which are better approximations or those having less error. Block 212 may be performed based on the updated solution converging to a value within a tolerance.
At block 208, a second preconditioner is selected. The second preconditioner may be a multi-color DILU preconditioner, as described herein, or may be any of a variety of preconditioners or smoothers selected based on the iterative method being used.
At block 210, a second updated solution is determined based on the second preconditioner. Block 210 may be performed multiple times thereby using the updated solution from the first preconditioner to determine further updated solutions which are better approximations or those having less error. Block 204 may be performed for an iterative method that utilizes both the first preconditioner and second preconditioner more than once. Embodiments of the present invention are operable for use with iterative methods that iterate between two or more preconditioners or smoothers.
At block 212, a solution is output. In one embodiment, the solution may be a better approximate solution or updated solution which may be used with other portions of an iterative method (e.g., additional preconditions in process 200). In another embodiment, the solution output may be a final solution to the iterative method. The solution may be output based on a convergence to a solution that falls within some tolerance.
Unfortunately, with the DILU preconditioner, the setup phase including the computation of the E matrix is very sequential in nature. Embodiments of the present invention are operable to extract parallelism during the setup phase (e.g. computation of the diagonal matrix E) by using coloring to implicitly renumber the rows (e.g., the order of processing the rows) of the system of equations (e.g., matrix A).
At block 302, a matrix is accessed. In one embodiment, a matrix of the coefficients of the system of equations is accessed (e.g., matrix A for the system Ax=b).
At block 304, a coloring or color information of the matrix is accessed. The coloring of the rows of a matrix (e.g., matrix A) allows the extraction of parallelism in its processing. The coloring is constructed such that different colors are independent and rows of the same color can be computed in parallel. In one embodiment, the coloring may assign a color to each unknown. Since there is a one-to-one relation between the unknowns (e.g., in vector x), the rows, and the columns of matrix A, this means that each row and each column of matrix A is assigned a particular color. The coloring may be used to renumber the rows and columns of the matrix, e.g., typically according to ascending color. For example, the processing order may indicate that first all rows of color 0 are processed then all rows of color 1, etc. and columns are processed in an order such that only columns of a color smaller than the current row color are processed. In this sense a coloring corresponds to an implicit renumbering that can be used as the processing order of the rows and columns of the matrix (e.g., which is not necessarily constructed or stored in memory explicitly). The coloring can be used to reorder the matrix according to this numbering (e.g., to store a reordered matrix). In one embodiment, the coloring information or other coloring information which corresponds to a renumbering of the coefficients of the corresponding systems of equations (e.g., matrix A) facilitates parallel computation of a diagonal matrix (e.g., matrix E). Embodiments of the present invention are operable for accessing coloring information that is determined by an external module.
The color information may include respective colors corresponding to unknowns that can be computed independently. For example, in a 4×4 matrix, rows 1 and 2 may correspond to the color red while rows 3 and 4 may correspond to the color green indicating that rows 1 and 2 can be computed in parallel and rows 3 and 4 can be computed in parallel.
At block 306, a coloring of the matrix is determined. In one exemplary embodiment, a coloring of matrix for the coefficients of the systems of equations is determined. The coloring of the matrix may be determined based on well known coloring methods.
At block 308, a diagonal matrix is determined. The diagonal matrix has non-zero values only on the diagonal of the matrix. In one embodiment, the coloring of the matrix and the matrix (e.g., matrix A) are used to determine a diagonal matrix (e.g., matrix E). Embodiments of the present invention are operable to determine a diagonal matrix (e.g., matrix E) in parallel on a per color basis. The diagonal matrix may be determined via a parallel hardware architecture (e.g., GPU).
In one embodiment, the amount of parallelism is now of order m/p, where m is the number of rows in A, and p is the number of colors. For example, for a 4×4 matrix, where unknowns 1 and 2 are colored red and unknowns 3 and 4 are colored black the available parallelism is twofold in each color. An exemplary setup phase of the DILU preconditioner would be:
E11=A11
E22=A22
E33=A33−L31E11−1U13−L32E22−1U23
E44=A44−L41E11−1U14−L42E22−1U24
Elements E1,1 and E2,2 can be computed in parallel in the first step and elements E3,3 and E2,2 can be processed in parallel in the second step. It is appreciated that this can be generalized for multiple colors and multiple unknowns per color. In one embodiment, the matrix is not reordered corresponding to colors, but the above parallel processing still applies according to the implicit renumbering (e.g., the processing order of the matrix performed based on the color and thus with increased parallelism).
In one embodiment, the setup phase is performed by the pseudo code of Table I. The pseudo-algorithms listed herein describe how the “construction” of a preconditioner that can be implemented efficiently on massively parallel devices. It is noted that most research on parallel preconditioners focuses on their application, not their construction. It is appreciated that the pseudo code of Table I is operable for use with a matrix A having entries that are scalar entries or small block entries and is not intended to be limited as such.
At block 502, a preconditioning matrix is determined. In one embodiment, the preconditioning matrix (e.g., matrix M) is determined based on a diagonal matrix (e.g., matrix E) and the matrix of coefficients of systems of equations (e.g., matrix A). The preconditioning matrix may be an incomplete lower and upper triangular decomposition with only diagonal modified (DILU) preconditioner.
At block 504, an initial solution is accessed. The initial solution may be an estimate or guess solution (e.g., x), predetermined value, or fixed value (e.g., zero) for the system of equations. The initial solution may depend on the iterative method being used.
At block 506, a vector is accessed (e.g., vector b). In one embodiment, the vector is a vector from the linear systems of equations (e.g., vector b of system Ax=b).
At block 508, an updated solution is determined. In one embodiment, the updated solution is a new approximate solution that is closer to the exact solution. The updated solution may be determined based on an initial solution, a vector (e.g., the right hand side vector b) a diagonal matrix, a matrix of the coefficients of the system of equations, and color information corresponding to the matrix of the coefficients of the system of equations. The updated solution may be determined based on parallel computation of unknowns of the same color for each color. For example, for a system of equations with a million unknowns and 3 colors, on average ⅓ of the unknowns may be solved for in parallel for each color.
The updated solution may be determined based on an incomplete lower and upper triangular decomposition with only diagonal modified (DILU) preconditioner. The updated solution may be a portion of an algebraic multigrid iterative method to solve a system of equations. In one embodiment, the updated solution is determined based on the equation:
xk+1=xk+M(E)−1(b−Axk)
Where xk+1 is an updated solution (if k is the final iteration then xk+1 is the final solution vector from this iterative solver), xk is an initial solution (e.g., x0) or previously updated solution (e.g., an intermediate solution vector, for iterations k=1, 2, . . . ), M is a preconditioning matrix, E is a diagonal matrix, A is a matrix of coefficients of the system Ax=b. In one embodiment, the goal of the preconditioner is to obtain an updated solution xk+1 which is closer to the exact solution to x=A−1b, where A−1 is the inverse of A.
Embodiments of the present invention are operable, during the smoothing or solving phase, to utilize the coloring information (e.g., corresponding to the matrix of coefficients of the system of equation) to compute an updated solution in parallel on a per color basis. The updated solution may be determined via a parallel hardware architecture (e.g., a GPU). For example, the updated solution may be computed in parallel for each respective color of the coloring information. In one exemplary embodiment, each thread on a GPU is associated with respective row and the GPU can compute each row in parallel by executing each respective thread in parallel.
In one embodiment, the updated solution is determined based on a lower and upper triangular solving phase (e.g., of the smoothing phase). The lower triangular solving phase may be performed by the pseudo code of Table II.
The upper triangular solving phase may be performed by the pseudo code of Table III.
In another embodiment, the lower and upper triangular solve algorithms can be also expressed with a common sparse matrix vector multiplication function SpMV (scalar a, matrix A, vector x, scalar b, vector y) which performs the operation: y=a*Ax+b*y. The matrix A may be represented by color blocks A=(Ac,d)c,d, with c,dε{0, . . . , num_colors−1}, where Ac,d contains all matrix elements A[i][j] for which row i is of color c and column j of color d. In the corresponding vector notation, vc denotes all vector elements v[i] for which i is of color c. It is noted that with this notation the solve algorithms can be expressed in a more abstract fashion.
The lower triangular solving phase may be performed by the pseudo code of Table IV.
The upper triangular solving phase may be performed by the pseudo code of Table V.
These formulations advantageously allow the use of highly optimized sparse matrix vector multiplication functions (SpMV) for certain matrix sizes, types or hardware architectures. In one embodiment, the SpMV functions can be formulated such that the use of the sub-matrices [Ac,0, . . . , Ac,c−1] and [Ac,c+1, . . . , Ac,num_colors−1] does not require their explicit construction, although typical SpMV implementations do not allow operations on a sub-matrix with an arbitrary selection of rows and columns.
In one embodiment, a commonly available four-vector SpMV for CSR (Compressed Sparse Row) and CSC (Compressed Sparse Column) formats could be used to implement the above algorithms. The rows and columns of Ā are sorted by ascending color to obtain a new representation of the matrix denoted by Ā (e.g., stored according to the implicit renumbering based on colors). If matrix Ā is stored as CSR (or CSC) with a values array, a row offset array (or column offset array for CSC) and a column index array (or row index array for CSC), then adding a row end array (or column end array for CSC) allows performance of the SpMV operations on sub-matrices [Āc,0, . . . , Āc,c−1] and [Āc,c+1, . . . , Āc,num_colors−1] as four-vector SpMVs (e.g., using the four mentioned arrays) without the need to construct these sub-matrices explicitly.
Block 508 may be performed multiple times, each time based on the previously updated solution determined at each execution of block 508. It is appreciated that the diagonal matrix (e.g., matrix E) may be determined once (e.g., via parallel computation) and used to determine multiple updated solutions. In one embodiment, the diagonal matrix and/or preconditioning matrix can be reused for solving a plurality of systems of equations where matrix of coefficients of the system of equations (e.g., matrix A) is the same while other vectors are different (e.g., for the a plurality of systems represented by Ax1=b1 and Ax2=b2, the A matrix is the same while the x and b vectors vary). As illustrated by flowchart 200, the updated solution may then be passed on to another portion of an iterative solver (e.g., another preconditioner or smoother). Block 508 may be performed multiple times until there is convergence to a solution or may be performed multiple times and used in conjunction with other preconditioners or smoothers as part of an iterative method.
In one embodiment, the preconditioning is part of an algebraic multigrid iterative solver and the preconditioning performed by embodiments of the present invention is operable both as a smoother and coarse grid solver.
Setup module 604 includes matrix access module 606, coloring access module 608, coloring determination module 610, and diagonal matrix determination module 612. In one embodiment, matrix access module 606 operable to access a matrix corresponding to a system of equations. Coloring access module 608 is operable to access color information corresponding to a matrix (e.g., matrix A). In one embodiment, the matrix (e.g., matrix A) corresponds to a plurality of coefficients of the system of equations. As described herein, the coloring information may include groups of rows or columns that can be used for parallel computations (e.g., the rows or columns are independent and can be computed independently). Optional coloring determination module 610 is operable to determine a coloring of a matrix (e.g., matrix A which corresponds to the coefficients of a system of equations) which can be used to determine a diagonal matrix in parallel on a per color basis.
Diagonal matrix determination module 612 is operable for determining a diagonal matrix based on the color information corresponding to a matrix (e.g., matrix A) in parallel on a per color basis. In one embodiment, the diagonal matrix is operable for computing an incomplete lower and upper triangular decomposition with only diagonal modified (DILU) preconditioner matrix. The diagonal matrix may be determined by a graphical processing unit (GPU).
Solving Module 620 includes matrix access module 622, initial solution access module 624, preconditioner matrix module 626, and updated solution determination module 630. Initial solution access module 624 is operable for accessing an initial solution to the system of equations. Matrix access module 622 is operable to access matrices to be used in solving a system of equations (e.g., matrices b and x for the system Ax=b). Initial solution access module 624 is operable to access an initial solution, as described herein. Preconditioner matrix module 626 is operable to determine a preconditioning matrix (e.g., matrix M), as described herein.
Updated solution determination module 630 is operable for determining an updated solution based on the matrix (e.g., matrix A or matrix of coefficients), an initial solution (e.g., vector x0), color information, and a preconditioning matrix (e.g., matrix M). The updated solution may be determined with use of a parallel hardware architecture (e.g., GPU). In one exemplary embodiment, the determining of the updated solution is determined in parallel on a per color basis.
In one embodiment, updated solution determination module 630 includes upper solve module 632 and lower solve module 634. Upper solve module 632 is operable to determine a portion of the updated solution based on an upper triangular solving phase (e.g., UpperSolveMulticolorDILU( )). Lower solve module 634 is operable to determine a portion of the updated solution based on a lower triangular solving phase (e.g., LowerSolveMulticolorDILU( ).
The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
3904818 | Kovac | Sep 1975 | A |
4253120 | Levine | Feb 1981 | A |
4385363 | Widergren et al. | May 1983 | A |
4583164 | Tolle | Apr 1986 | A |
4646251 | Hayes et al. | Feb 1987 | A |
4739495 | Levine | Apr 1988 | A |
4771470 | Geiser et al. | Sep 1988 | A |
4829465 | Knauer | May 1989 | A |
4920428 | Lin et al. | Apr 1990 | A |
4987496 | Greivenkamp, Jr. | Jan 1991 | A |
5045940 | Peters et al. | Sep 1991 | A |
5130797 | Murakami et al. | Jul 1992 | A |
5146324 | Miller et al. | Sep 1992 | A |
5175430 | Enke et al. | Dec 1992 | A |
5206822 | Taylor | Apr 1993 | A |
5261029 | Abi-Ezzi et al. | Nov 1993 | A |
5285404 | Satou | Feb 1994 | A |
5301136 | McMillan, Jr. et al. | Apr 1994 | A |
5305994 | Matsui et al. | Apr 1994 | A |
5387982 | Kitaura et al. | Feb 1995 | A |
5387983 | Sugiura et al. | Feb 1995 | A |
5471412 | Shyu | Nov 1995 | A |
5475430 | Hamada et al. | Dec 1995 | A |
5513016 | Inoue | Apr 1996 | A |
5576958 | Kawakatsu et al. | Nov 1996 | A |
5596369 | Chau | Jan 1997 | A |
5608824 | Shimizu et al. | Mar 1997 | A |
5623311 | Phillips et al. | Apr 1997 | A |
5652621 | Adams, Jr. et al. | Jul 1997 | A |
5659362 | Kovac et al. | Aug 1997 | A |
5712809 | Girod et al. | Jan 1998 | A |
5734755 | Ramchandran et al. | Mar 1998 | A |
5768429 | Jabbi et al. | Jun 1998 | A |
5793433 | Kim et al. | Aug 1998 | A |
5822003 | Girod et al. | Oct 1998 | A |
5870310 | Malladi | Feb 1999 | A |
5878174 | Stewart et al. | Mar 1999 | A |
5898881 | Miura et al. | Apr 1999 | A |
5903273 | Mochizuki et al. | May 1999 | A |
5905530 | Yokota et al. | May 1999 | A |
5923375 | Pau | Jul 1999 | A |
5995109 | Goel et al. | Nov 1999 | A |
6016474 | Kim et al. | Jan 2000 | A |
6021420 | Takamuki | Feb 2000 | A |
6029185 | Tonomura | Feb 2000 | A |
6078331 | Pulli et al. | Jun 2000 | A |
6111988 | Horowitz et al. | Aug 2000 | A |
6118547 | Tanioka | Sep 2000 | A |
6141740 | Mahalingaiah et al. | Oct 2000 | A |
6151457 | Kawamoto | Nov 2000 | A |
6160920 | Shyu | Dec 2000 | A |
6167092 | Lengwehasatit | Dec 2000 | A |
6175430 | Ito | Jan 2001 | B1 |
6189021 | Shyu | Feb 2001 | B1 |
6223195 | Tonomura | Apr 2001 | B1 |
6252611 | Kondo | Jun 2001 | B1 |
6256038 | Krishnamurthy | Jul 2001 | B1 |
6281931 | Tsao et al. | Aug 2001 | B1 |
6289103 | Sako et al. | Sep 2001 | B1 |
6314493 | Luick | Nov 2001 | B1 |
6319682 | Hochman | Nov 2001 | B1 |
6323934 | Enomoto | Nov 2001 | B1 |
6356945 | Shaw et al. | Mar 2002 | B1 |
6392216 | Peng-Tan | May 2002 | B1 |
6396397 | Bos et al. | May 2002 | B1 |
6421695 | Bae et al. | Jul 2002 | B1 |
6438664 | McGrath et al. | Aug 2002 | B1 |
6445829 | Shyu | Sep 2002 | B1 |
6459738 | Wu et al. | Oct 2002 | B1 |
6486971 | Kawamoto | Nov 2002 | B1 |
6584202 | Montag et al. | Jun 2003 | B1 |
6683643 | Takayama et al. | Jan 2004 | B1 |
6707452 | Veach | Mar 2004 | B1 |
6724423 | Sudo | Apr 2004 | B1 |
6724932 | Ito | Apr 2004 | B1 |
6737625 | Baharav et al. | May 2004 | B2 |
6751721 | Webb, Jr. et al. | Jun 2004 | B1 |
6760080 | Moddel et al. | Jul 2004 | B1 |
6785814 | Usami et al. | Aug 2004 | B1 |
6799192 | Handley | Sep 2004 | B1 |
6806452 | Bos et al. | Oct 2004 | B2 |
6839062 | Aronson et al. | Jan 2005 | B2 |
6856441 | Zhang et al. | Feb 2005 | B2 |
6891543 | Wyatt | May 2005 | B2 |
6900836 | Hamilton, Jr. | May 2005 | B2 |
6950099 | Stollnitz et al. | Sep 2005 | B2 |
6996645 | Wiedenman et al. | Feb 2006 | B1 |
7007054 | Brady et al. | Feb 2006 | B1 |
7009639 | Une et al. | Mar 2006 | B1 |
7015909 | Morgan, III et al. | Mar 2006 | B1 |
7023479 | Hiramatsu et al. | Apr 2006 | B2 |
7088388 | MacLean et al. | Aug 2006 | B2 |
7092018 | Watanabe | Aug 2006 | B1 |
7106368 | Daiku et al. | Sep 2006 | B2 |
7133041 | Kaufman et al. | Nov 2006 | B2 |
7133072 | Harada | Nov 2006 | B2 |
7142720 | Fukuda et al. | Nov 2006 | B1 |
7221779 | Kawakami et al. | May 2007 | B2 |
7227586 | Finlayson et al. | Jun 2007 | B2 |
7245319 | Enomoto | Jul 2007 | B1 |
7305148 | Spampinato et al. | Dec 2007 | B2 |
7343040 | Chanas et al. | Mar 2008 | B2 |
7403564 | Laksono | Jul 2008 | B2 |
7486844 | Chang et al. | Feb 2009 | B2 |
7502505 | Malvar et al. | Mar 2009 | B2 |
7580070 | Yanof et al. | Aug 2009 | B2 |
7626612 | John et al. | Dec 2009 | B2 |
7627193 | Alon et al. | Dec 2009 | B2 |
7671910 | Lee | Mar 2010 | B2 |
7728880 | Hung et al. | Jun 2010 | B2 |
7750956 | Wloka | Jul 2010 | B2 |
7792891 | Vainsencher et al. | Sep 2010 | B2 |
7817187 | Silsby et al. | Oct 2010 | B2 |
7859568 | Shimano et al. | Dec 2010 | B2 |
7860382 | Grip | Dec 2010 | B2 |
8238695 | Davey et al. | Aug 2012 | B1 |
8373718 | Dutta et al. | Feb 2013 | B2 |
8423597 | Ho et al. | Apr 2013 | B1 |
20010001234 | Addy et al. | May 2001 | A1 |
20010012113 | Yoshizawa et al. | Aug 2001 | A1 |
20010012127 | Fukuda et al. | Aug 2001 | A1 |
20010015821 | Namizuka et al. | Aug 2001 | A1 |
20010019429 | Oteki et al. | Sep 2001 | A1 |
20010021278 | Fukuda et al. | Sep 2001 | A1 |
20010033410 | Helsel et al. | Oct 2001 | A1 |
20010050778 | Fukuda et al. | Dec 2001 | A1 |
20010054126 | Fukuda et al. | Dec 2001 | A1 |
20020012131 | Oteki et al. | Jan 2002 | A1 |
20020015111 | Harada | Feb 2002 | A1 |
20020015445 | Hashimoto | Feb 2002 | A1 |
20020018244 | Namizuka et al. | Feb 2002 | A1 |
20020025002 | Her | Feb 2002 | A1 |
20020027670 | Takahashi et al. | Mar 2002 | A1 |
20020033887 | Hieda et al. | Mar 2002 | A1 |
20020041383 | Lewis, Jr. et al. | Apr 2002 | A1 |
20020041626 | Yoshioka et al. | Apr 2002 | A1 |
20020044778 | Suzuki | Apr 2002 | A1 |
20020054374 | Inoue et al. | May 2002 | A1 |
20020063802 | Gullichsen et al. | May 2002 | A1 |
20020105579 | Levine et al. | Aug 2002 | A1 |
20020118743 | Jiang | Aug 2002 | A1 |
20020126210 | Shinohara et al. | Sep 2002 | A1 |
20020146136 | Carter, Jr. | Oct 2002 | A1 |
20020149683 | Post | Oct 2002 | A1 |
20020158971 | Daiku et al. | Oct 2002 | A1 |
20020167202 | Pfalzgraf | Nov 2002 | A1 |
20020167602 | Nguyen | Nov 2002 | A1 |
20020191694 | Ohyama et al. | Dec 2002 | A1 |
20020196470 | Kawamoto et al. | Dec 2002 | A1 |
20030035100 | Dimsdale et al. | Feb 2003 | A1 |
20030067461 | Fletcher et al. | Apr 2003 | A1 |
20030078952 | Kim et al. | Apr 2003 | A1 |
20030122825 | Kawamoto | Jul 2003 | A1 |
20030141434 | Ishikawa et al. | Jul 2003 | A1 |
20030142222 | Hordley | Jul 2003 | A1 |
20030146975 | Joung et al. | Aug 2003 | A1 |
20030169353 | Keshet et al. | Sep 2003 | A1 |
20030169918 | Sogawa | Sep 2003 | A1 |
20030197701 | Teodosiadis et al. | Oct 2003 | A1 |
20030218672 | Zhang et al. | Nov 2003 | A1 |
20030222995 | Kaplinsky et al. | Dec 2003 | A1 |
20030223007 | Takane | Dec 2003 | A1 |
20040001061 | Stollnitz et al. | Jan 2004 | A1 |
20040001234 | Curry et al. | Jan 2004 | A1 |
20040032516 | Kakarala | Feb 2004 | A1 |
20040066970 | Matsugu | Apr 2004 | A1 |
20040100588 | Hartson et al. | May 2004 | A1 |
20040101313 | Akiyama | May 2004 | A1 |
20040109069 | Kaplinsky et al. | Jun 2004 | A1 |
20040178974 | Miller et al. | Sep 2004 | A1 |
20040189875 | Zhai et al. | Sep 2004 | A1 |
20040218071 | Chauville et al. | Nov 2004 | A1 |
20040247196 | Chanas et al. | Dec 2004 | A1 |
20050007378 | Grove | Jan 2005 | A1 |
20050007477 | Ahiska | Jan 2005 | A1 |
20050030395 | Hattori | Feb 2005 | A1 |
20050046704 | Kinoshita | Mar 2005 | A1 |
20050099418 | Cabral et al. | May 2005 | A1 |
20050175257 | Kuroki | Aug 2005 | A1 |
20050185058 | Sablak | Aug 2005 | A1 |
20050213128 | Imai et al. | Sep 2005 | A1 |
20050238225 | Jo et al. | Oct 2005 | A1 |
20050243181 | Castello et al. | Nov 2005 | A1 |
20050248671 | Schweng | Nov 2005 | A1 |
20050261849 | Kochi et al. | Nov 2005 | A1 |
20050286097 | Hung et al. | Dec 2005 | A1 |
20060050158 | Irie | Mar 2006 | A1 |
20060061658 | Faulkner et al. | Mar 2006 | A1 |
20060087509 | Ebert et al. | Apr 2006 | A1 |
20060119710 | Ben-Ezra et al. | Jun 2006 | A1 |
20060133697 | Uvarov et al. | Jun 2006 | A1 |
20060176375 | Hwang et al. | Aug 2006 | A1 |
20060197664 | Zhang et al. | Sep 2006 | A1 |
20060268180 | Chou | Nov 2006 | A1 |
20060274171 | Wang | Dec 2006 | A1 |
20060290794 | Bergman et al. | Dec 2006 | A1 |
20060293089 | Herberger et al. | Dec 2006 | A1 |
20070002165 | Parks | Jan 2007 | A1 |
20070091188 | Chen et al. | Apr 2007 | A1 |
20070139405 | Marcinkiewicz | Jun 2007 | A1 |
20070147706 | Sasaki et al. | Jun 2007 | A1 |
20070171288 | Inoue et al. | Jul 2007 | A1 |
20070236770 | Doherty et al. | Oct 2007 | A1 |
20070247532 | Sasaki | Oct 2007 | A1 |
20080030587 | Helbing | Feb 2008 | A1 |
20080062164 | Bassi et al. | Mar 2008 | A1 |
20080218599 | Klijn et al. | Sep 2008 | A1 |
20080231726 | John | Sep 2008 | A1 |
20080303918 | Keithley | Dec 2008 | A1 |
20090002517 | Yokomitsu et al. | Jan 2009 | A1 |
20090010539 | Guarnera et al. | Jan 2009 | A1 |
20090116750 | Lee et al. | May 2009 | A1 |
20090160957 | Deng et al. | Jun 2009 | A1 |
20090257677 | Cabral et al. | Oct 2009 | A1 |
20090295941 | Nakajima et al. | Dec 2009 | A1 |
20100266201 | Cabral et al. | Oct 2010 | A1 |
20100309333 | Smith et al. | Dec 2010 | A1 |
20110074980 | Border et al. | Mar 2011 | A1 |
20110096190 | Silverstein et al. | Apr 2011 | A1 |
20110122273 | Kanemitsu et al. | May 2011 | A1 |
20120019569 | Byun | Jan 2012 | A1 |
20120022841 | Appleyard | Jan 2012 | A1 |
20120293472 | Wong et al. | Nov 2012 | A1 |
20130050165 | Northway et al. | Feb 2013 | A1 |
20130083216 | Jiang et al. | Apr 2013 | A1 |
20130086137 | Wang et al. | Apr 2013 | A1 |
20130212094 | Naguib et al. | Aug 2013 | A1 |
20130242133 | Li | Sep 2013 | A1 |
20140046993 | Castonguay et al. | Feb 2014 | A1 |
20140063300 | Lin et al. | Mar 2014 | A1 |
20140071102 | Pieper et al. | Mar 2014 | A1 |
20140125836 | Pieper | May 2014 | A1 |
20150002692 | Cabral et al. | Jan 2015 | A1 |
20150002693 | Cabral et al. | Jan 2015 | A1 |
20150130967 | Pieper | May 2015 | A1 |
20160037044 | Motta et al. | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
1275870 | Dec 2000 | CN |
0392565 | Oct 1990 | EP |
1449169 | May 2003 | EP |
1378790 | Jul 2004 | EP |
1447977 | Aug 2004 | EP |
1550980 | Jul 2005 | EP |
2045026 | Oct 1980 | GB |
2363018 | May 2001 | GB |
61187467 | Aug 1986 | JP |
62151978 | Jul 1987 | JP |
07015631 | Jan 1995 | JP |
8036640 | Feb 1996 | JP |
08079622 | Mar 1996 | JP |
2001052194 | Feb 2001 | JP |
2002207242 | Jul 2002 | JP |
2003085542 | Mar 2003 | JP |
2004221838 | Aug 2004 | JP |
2005094048 | Apr 2005 | JP |
2005182785 | Jul 2005 | JP |
2005520442 | Jul 2005 | JP |
2006025005 | Jan 2006 | JP |
2006086822 | Mar 2006 | JP |
2006094494 | Apr 2006 | JP |
2006121612 | May 2006 | JP |
2006134157 | May 2006 | JP |
2007019959 | Jan 2007 | JP |
2007148500 | Jun 2007 | JP |
2007233833 | Sep 2007 | JP |
2007282158 | Oct 2007 | JP |
2008085388 | Apr 2008 | JP |
2008277926 | Nov 2008 | JP |
2009021962 | Jan 2009 | JP |
1020040043156 | May 2004 | KR |
1020060068497 | Jun 2006 | KR |
1020070004202 | Jan 2007 | KR |
9827742 | Jun 1998 | WO |
03043308 | May 2003 | WO |
WO03043308 | May 2003 | WO |
2004063989 | Jul 2004 | WO |
2007056459 | May 2007 | WO |
2007093864 | Aug 2007 | WO |
Entry |
---|
Tu, C., Liang, J., and Tran, T. “Adaptive Runlength Coding”, in IEEE Signal Processing Letters; vol. 10; No. 3; pp. 61-64; Mar. 2003. |
The Merriam-Webster Dictionary. 2005 ed. Springfield, MA: Merriam-Webster Inc., 2005. |
Park, S., Kim, S., Kim, I., Byun K., Cha, J.J., Cho, H., “A Single-Chip Video/Audio Codec for Low Bit Rate Application”; ETRI Journal, vol. 22; No. 1; Mar. 2000; pp. 20-29. |
Chen, T.; Huang Y.; Chen L.; “Analysis and Design of Macroblock Pipelining for H.264/AVC VLSI Architecture”; Circuits and Systems, 2004. ISCAS '04; Proceedings of the 2004 International Symposium on vol. 2; No., pp. II-273-6; vol. 2 May 23-26, 2004. |
Naganuma, I., et al.; “Single-Chip MPEG-2 422P@HL CODEC LSI with Multi-Chip Configuration for Large Scale Processing Beyond HDTV Level”, Design, Automation and Test in Europe Conference and Exhibition, Mar. 2003. |
Mizuno, M. et al.; “A 1.5 W Single-Chip MPEG-2 MP@ML Video Encoder With Low Power Motion Estimation and Clocking”, Solid State Circuits, IEEE Journal of, vol. 32, No. 11, pp. 1807-1816, Nov. 1997. |
Wang, Shih-Hao; et al., “A Platform-Based MPEG-4 Advanced Video Coding (AVC) Decoder With Block Level Pipelining”, Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint Conference of the Fourth International Conference on vol. 1, No., pp. 51-55 vol. 1; Dec. 2003. |
“A Pipelined Architecture for Real-Time orrection of Barrel Distortion in Wide-Angle Camera Images”, Hau, T. Ngo, Student Member, IEEE and Vijayan K. Asari, Senior Member IEEE, IEEE Transaction on Circuits and Sytstems for Video Technology: vol. 15 No. 3 Mar. 2005 pp. 436-444. |
“Calibration and removal of lateral chromatic abberation in images” Mallon, et al. Science Direct Copyright 2006; 11 pages. |
“Method of Color Interpolation in a Singe Sensor Color Camera Using Green Channel Seperation” Weerasighe, et al Visual Information Processing Lab, Motorola Austrailian Research Center pp. IV-3233-IV3236, 2002. |
D. Doo, M. Sabin “Behaviour of recrusive division surfaces near extraordinary points”; Sep. 197; Computer Aided Design; vol. 10, pp. 356-360. |
D.W.H. Doo; “A subdivision algorithm for smoothing down irregular shaped polyhedrons”; 1978; Interactive Techniques in Computer Aided Design; pp. 157-165. |
Davis, J., Marschner, S., Garr, M., Levoy, M., Filling holes in complex surfaces using volumetric diffusion, Dec. 2001, Stanford University, pp. 1-9. |
Donald D. Spencer, “Illustrated Computer Graphics Dictionary”, 1993, Camelot Publishing Company, p. 272. |
E. Catmull, J. Clark, “recursively enerated B-Spline surfaces on arbitrary topological meshes”; Nov. 1978; Computer aided design; vol. 10; pp. 350-355. |
gDEBugger, graphicRemedy, http://www.gremedy.com, Aug. 8, 2006, pp. 1-18. |
http://Slashdot.org/articles/07/09/06/1431217.html. |
J. Bolz, P. Schroder; “rapid evaluation of catmull-clark subdivision surfaces”; Web 3D '02. |
J. Stam; “Exact Evaluation of Catmull-clark subdivision surfaces at arbitrary parameter values”; Jul. 1998; Computer Graphics; vol. 32; pp. 395-404. |
Keith R. Slavin; Application as Filed entitled “Efficient Method for Reducing Noise and Blur in a Composite Still Image From a Rolling Shutter Camera”; U.S. Appl. No. 12/069,669, filed Feb. 11, 2008. |
Ko et al., “Fast Digital Image Stabilizer Based on Gray-Coded Bit-Plane Matching”, IEEE Transactions on Consumer Electronics, vol. 45, No. 3, pp. 598-603, Aug. 1999. |
Ko, et al., “Digital Image Stabilizing Algorithms Basd on Bit-Plane Matching”, IEEE Transactions on Consumer Electronics, vol. 44, No. 3, pp. 617-622, Aug. 1988. |
Krus, M., Bourdot, P., Osorio, A., Guisnel, F., Thibault, G., Adaptive tessellation of connected primitives for interactive walkthroughs in complex industrial virtual environments, Jun. 1999, Proceedings of the Eurographics workshop, pp. 1-10. |
Kumar, S., Manocha, D., Interactive display of large scale trimmed NURBS models, 1994, University of North Carolina at Chapel Hill, Technical Report, p. 1-36. |
Kuno et al. “New Interpolation Method Using Discriminated Color Correlation for Digital Still Cameras” IEEE Transac. on Consumer Electronics, vol. 45, No. 1, Feb. 1999, pp. 259-267. |
Loop, C., DeRose, T., Generalized B-Spline surfaces o arbitrary topology, Aug. 1990, SIGRAPH 90, pp. 347-356. |
M. Halstead, M. Kass, T. DeRose; “efficient, fair interolation using catmull-clark surfaces”; Sep. 1993; Computer Graphics and Interactive Techniques, Proc; pp. 35-44. |
Morimoto et al., “Fast Electronic Digital Image Stabilization for Off-Road Navigation”, Computer Vision Laboratory, Center for Automated Research University of Maryland, Real-Time Imaging, vol. 2, pp. 285-296, 1996. |
Paik et al., “An Adaptive Motion Decision system for Digital Image Stabilizer Based on Edge Pattern Matching”, IEEE Transactions on Consumer Electronics, vol. 38, No. 3, pp. 607-616, Aug. 1992. |
Parhami, Computer Arithmetic, Oxford University Press, Jun. 2000, pp. 413-418. |
S. Erturk, “Digital Image Stabilization with Sub-Image Phase Correlation Based Global Motion Estimation”, IEEE Transactions on Consumer Electronics, vol. 49, No. 4, pp. 1320-1325, Nov. 2003. |
S. Erturk, “Real-Time Digital Image Stabilization Using Kalman Filters”, http://www,ideallibrary.com, Real-Time Imaging 8, pp. 317-328, 2002. |
T. DeRose, M., Kass, T. Troung; “subdivision surfaces in character animation”; Jul. 1998; Computer Graphics and Interactive Techniques, Proc; pp. 85-94. |
Uomori et al., “Automatic Image Stabilizing System by Full-Digital Signal Processing”, vol. 36, No. 3, pp. 510-519, Aug. 1990. |
Uomori et al., “Electronic Image Stabiliztion System for Video Cameras and VCRs”, J. Soc. Motion Pict. Telev. Eng., vol. 101, pp. 66-75, 1992. |
http:englishrussia.com/p=1377; Oct. 1, 2007; 2 Pages. |
http://en.wikipedia.org/wiki/L*a*b*; “Lab Color Space”; Wikipedia, the free encyclopedia; May 13, 2010; pp. 1-4. |
http://en.wikipedia.org/wiki/Half—tone; “Halftone”; Wikipedia, the free encyclopedia; May 13, 2010; pp. 1-5. |
http://en.wikipedia.org/wiki/Demosaicing; “Demosaicing”; Wikipedia, the free encyclopedia; May 13, 2010; pp. 1-5. |
http://en.wikipedia.org/wiki/Color—filter—array; “Color Filter Array”; Wikipedia, the free encyclopedia; May 17, 2010; pp. 1-5. |
http://en.wikipedia.org/wiki/Bayer—filter; “Bayer Filter”; Wikipedia, the free encyclopedia; May 14, 2010; pp. 1-4. |
http://en.wikipedia.org/wiki/Color—space; “Color Space”; Wikipedia, the free encyclopedia; May 10, 2014; pp. 1-4. |
Duca et al., “A Relational Debugging Engine for Graphics Pipeline, International Conference on Computer Graphics and Interactive Techniques”, ACM SIGGRAPH Jul. 2005, pp. 453-463. |
http://en.wikipedia.org/wiki/Color—translation; “Color Management”; Wikipedia, the free encyclopedia; May 14, 2010; pp. 1-4. |
Number | Date | Country | |
---|---|---|---|
20140046993 A1 | Feb 2014 | US |