System and method for multiple wells from a common surface location

Information

  • Patent Grant
  • 7222670
  • Patent Number
    7,222,670
  • Date Filed
    Friday, February 27, 2004
    21 years ago
  • Date Issued
    Tuesday, May 29, 2007
    18 years ago
Abstract
A system for accessing a subterranean zone from an entry well including an entry well extending from the surface. The entry well has a substantially vertical portion. A one or more drainage wells extend from the entry well to a subterranean zone. A one or more articulated wells extend from the entry well to the subterranean zone. At least one of the articulated wells intersects at least one of the one or more drainage wells at a junction proximate the subterranean zone. A drainage pattern is formed coupled to the junction and operable to conduct fluids from the subterranean zone to the junction.
Description
TECHNICAL FIELD

The present invention relates generally to the field of subterranean exploration and drilling and, more particularly, to a system and method for multiple wells from a common surface location.


BACKGROUND

Subterranean deposits of coal contain substantial quantities of entrained methane gas. Limited production in use of methane gas from coal deposits has occurred for many years. Substantial obstacles, however, have frustrated more extensive development in use of methane gas deposits in coal seams. The foremost problem in producing methane gas from coal seams is that while coal seams may extend over large areas of up to several thousand acres, the coal seams are fairly shallow in depth, varying from a few inches to several meters. Thus, while the coal seams are often relatively near the surface, vertical wells drilling into the coal deposits for obtaining methane gas can only drain a fairly small radius around the coal deposits. Further, coal deposits are not amenable to pressure fracturing and other methods often used for increasing methane gas production from rock formations. As a result, once the gas easily drained from a vertical well bore in a coal seam is produced further production is limited in volume. Additionally, coal seams are often associated with subterranean water, which must be drained from the coal seam in order to produce the methane.


Horizontal drilling patterns have been tried in order to extend the amount of coal seams exposed to a drill bore for gas extraction. Such horizontal drilling techniques, however, require the use of a radiused well bore which presents difficulties in removing the entrained water from the coal seams. The most efficient method for pumping water from a subterranean well, a sucker rod pump, does not work well in horizontal or radiused bores.


SUMMARY

The present invention provides a system and method using multiple articulated and drainage wells from a common surface well that substantially eliminates, reduces, or minimizes the disadvantages and problems associated with previous systems and methods. In particular, certain embodiments of the present invention provide a system and method using multiple articulated and drainage wells from a single surface well for efficiently producing and removing entrained methane gas and water from a coal seam without requiring that multiple wells be drilled from the surface.


In accordance with one embodiment of the present invention, a system for accessing a subterranean zone from an entry well including an entry well extending from the surface. The entry well has a substantially vertical portion. One or more drainage wells extend from the entry well to a subterranean zone. One or more articulated wells extend from the entry well to the subterranean zone. At least one of the articulated wells intersects at least one of the one or more drainage wells at a junction proximate the subterranean zone. A drainage pattern is formed coupled to the junction and operable to conduct fluids from the subterranean zone to the junction.


The technical advantage of the present invention include providing a method and system for using multiple articulated and drainage wells from a common surface well. In particular, a technical advantage may include the formation of an entry well, a plurality of drainage wells, a plurality of articulated wells, and drainage patterns from a single surface location to minimize the number of surface wells needed to access a subterranean zone for draining of gas and liquid resources. This allows for more efficient drilling and production and greatly reduces costs and problems associated with other systems and methods.


Other technical advantages of the present invention will be readily apparent to one skilled in the art from the following figures, description, and claims.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention and its advantages, reference is now made to the following description taken in conjunction with the accompanying drawings, wherein like numerals represent like parts, in which:



FIG. 1 is a cross-sectional diagram illustrating a system for accessing a subterranean zone through multiple wells drilled from a common surface well;



FIG. 2 is a cross-sectional diagram illustrating production of fluids from a subterranean zone through a well bore system in accordance with one embodiment of the present invention;



FIG. 3 illustrates one embodiment of subterranean drainage patterns of the well system of FIG. 2;



FIG. 4 illustrates an example method for producing fluids from a subterranean zone using the well bore system of FIG. 1;



FIG. 5A illustrates construction of an example guide tube bundle for insertion into entry well of FIG. 1; and



FIG. 5B illustrates an example entry well with an installed guide tube bundle.





DETAILED DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram illustrating a system 10 for accessing a subterranean zone using multiple articulated and drainage wells from a common surface well in accordance with an embodiment of the present invention. In particular embodiments, the subterranean zone is a coal seam. However, it should be understood that other subterranean zones can be similarly accessed using system 10 of the present invention to remove and/or produce water, hydrocarbons and other fluids from the zone, to treat minerals in the zone prior to mining operations, or to inject, introduce, or store a fluid or other substance into the zone.


Referring to FIG. 1, system 10 includes an entry well 12, drainage wells 14, articulated wells 16, cavities 18, and sumps 20. Entry well 12 extends from surface 22 towards subterranean zone 24. Drainage wells 14 extend from the terminus of entry well 12 to subterranean zone 24, although drainage wells 14 may alternatively extend from any other suitable portion of entry well 12. Articulated wells 16 also may extend from the terminus of entry well 12 to subterranean zone 24 and may each intersect a corresponding drainage well 14. Cavity 18 and sump 20 may be located at the intersection of an articulated well 16 and a corresponding drainage well 14.


Entry well 12 is illustrated as being substantially vertical; however, it should be understood that entry well 12 may be formed at any suitable angle relative to surface 22 to accommodate, for example, surface geometries and attitudes and/or the geometric configuration or attitude of a subterranean resource. In the illustrated embodiment, drainage wells 14 are formed as slant wells that angle away from entry well 12 at an angle designated α. The angle α depends, in part, on the depth of subterranean zone 24. It will be understood that drainage wells 14 may be formed at other angles to accommodate surface topologies and other factors similar to those affecting entry well 12. Furthermore, although drainage wells 14 are illustrated as having the same angle of slant over their entire length (below entry well 12), drainage wells 14 may have two or more portions below entry well 12 that are at different angles. For example, the portion of drainage wells 14 from which cavity 18 is formed and/or which is intersected by the corresponding articulated well 16 may be substantially vertical. In the illustrated embodiment, drainage wells 14 are formed in relation to each other at an angular separation of β degrees. In one embodiment, the angle β equals twice the angle α. It will be understood that drainage wells 14 may be separated by other angles depending likewise on the topology and geography of the area and location of subterranean zone 24.


In particular embodiments, an enlarged cavity 18 may be formed from each drainage well 14 at the level of subterranean zone 24. As described in more detail below, cavity 18 provides a junction for the intersection of drainage well 14 by a corresponding articulated well 16 used to form a subterranean drainage bore pattern in subterranean zone 24. Cavity 18 also provides a collection point for fluids drained from subterranean zone 24 during production operations. In one embodiment, cavity 18 has a radius of approximately eight feet; however, any appropriate diameter cavity may be used. Cavity 18 may be formed using suitable under-reaming techniques and equipment. A portion of drainage well 14 may continue below cavity 18 to form a sump 20 for cavity 18. Although cavities 18 and sumps 20 are illustrated, it should be understood that particular embodiments do not include a cavity and/or a sump.


Each articulated well 16 extends from the terminus of entry well 12 to cavity 18 of a corresponding drainage well 14 (or to the drainage well 14 if no cavity is formed). Each articulated well 16 includes a first portion 34, a second portion 38, and a curved or radiused portion 36 interconnecting portions 34 and 38. In FIG. 1, portion 34 is illustrated substantially vertical; however, it should be understood that portion 34 may be formed at any suitable angle relative to surface 22 to accommodate surface 22 geometric characteristics and attitudes and/or the geometric configuration or attitude of subterranean zone 24. Portion 38 lies substantially in the plane of subterranean zone 24 and intersects the large diameter cavity 18 of a corresponding drainage well 14. In FIG. 1, the plane of subterranean zone 24 is illustrated substantially horizontal, thereby resulting in a substantially horizontal portion 38; however, it should be understood that portion 38 may be formed at any suitable angle relative to surface 22 to accommodate the geometric characteristics of subterranean zone 24. Each articulated well 16 may be drilled using an articulated drill string 26 that includes a suitable down-hole motor and a drill bit 28. A measurement while drilling (MWD) device 30 may be included in articulated drill string 26 for controlling the orientation and direction of a well bore drilled by the motor and bit 28. Any suitable portion of articulated well 16 may be lined with a suitable casing.


In the illustrated embodiment, drainage well 14 is sufficiently angled away from a corresponding articulated well 16 to permit the large radiused curved portion 36 and any desired portion 38 to be drilled before intersecting cavity 18. In particular embodiments, curved portion 36 may have a radius of one hundred to one hundred fifty feet; however, any suitable radius may be used. This angle α may be chosen to minimize the angle of curved portion 36 to reduce friction in articulated well 16 during drilling operations. As a result, the length of articulated well 16 is maximized.


After cavity 18 has been successfully intersected by articulated well 16, drilling is continued through cavity 18 using articulated well string 26 to provide a drainage bore pattern 32 in subterranean zone 24. In FIG. 1, drainage bore pattern 32 is illustrated substantially horizontal corresponding to a substantially horizontally illustrated subterranean zone 24; however, it should be understood that drainage bore pattern 32 may be formed at any suitable angle corresponding to the geometric characteristics of subterranean zone 24. During this operation, gamma ray logging tools and conventional MWD devices may be employed to control and direct the orientation of drill bit 28 to retain drainage bore pattern 32 within the confines of subterranean zone 24 and to provide substantially uniform coverage of a desired area within subterranean zone 24. Drainage bore pattern 32 may comprise a single drainage bore extending into subterranean zone 24 or it may comprise a plurality of drainage bores. Further information regarding an example drainage bore pattern 32 is described in more detail below. In addition, although pattern 32 is illustrated as extending from cavity 18, portion 38 of articulated wells 16 may be extended appropriately so that portion 38 serves the function of draining fluids from the subterranean zone 24.


During the process of drilling drainage bore pattern 32 in a coal seam or other appropriate formations, drilling fluid or “mud” may be pumped down articulated drill string 26 and circulated out of drill string 26 in the vicinity of a bit 28, where it is used to scour the formation and to remove formation cuttings. The cuttings are then entrained in the drilling fluid which circulates up through the annulus between drill string 26 and the walls of articulated well 16 until it reaches surface 22, where the cuttings are removed from the drilling fluid and the fluid is then recirculated. This conventional drilling operation produces a standard column of drilling fluid having a vertical height equal to the depth of articulated well 16 and produces a hydrostatic pressure on the well bore corresponding to the well bore depth. Because coal seams tend to be porous and fractured, they may be unable to sustain such hydrostatic pressure, even if formation water is also present in subterranean zone 24. Accordingly, if the full hydrostatic pressure is allowed to act on subterranean zone 24, the result may be loss of drilling fluid in entrained cuttings into the formation. Such a circumstance is referred to as an “over-balanced” drilling operation in which they hydrostatic fluid pressured in the well bore exceeds the ability of the formation to withstand the pressure. Loss of drilling fluids and cuttings into the formation not only is expensive in terms of the lost drilling fluids, which must be made up, but also tends to plug the pores in subterranean zone 24, which are needed to drain the coal seam of gas and water.


To prevent over-balanced drilling conditions during formation of drainage bore pattern 32, air compressors or other suitable pumps may be provided to circulate compressed air or other suitable fluids down drainage wells 14 and back up through corresponding articulated wells 16. The circulated air or other fluid will mix with the drilling fluid in the annulus around the articulated drill string 26 and create bubbles throughout the column of drilling fluid. This has the effect of lightening the hydrostatic pressure of the drilling fluid and reducing the down-hole pressure significantly that drilling conditions do not become over-balanced. Aeration of the drilling fluid reduces down-hole pressure to approximately 150–200 pounds per square inch (psi). Accordingly, low pressure coal seams and other subterranean zones can be drilled without substantial loss of drilling fluid and contamination of the zone by the drilling fluid. Alternatively, tubing may be inserted into drainage well 14 such that air pumped down through the tubing forces the fluid back through the annulus between the tubing and drainage well 14.


In yet another embodiment, a down-hole pumping unit 40 may be installed in cavity 18, as illustrated in FIG. 1, to pump drilling fluid and cuttings to surface 22 through drainage well 14. This eliminates the friction of air and fluid returning through articulated well 16 and may reduce down-hole pressure to nearly zero.


Foam, which may be compressed air mixed with water, may also be circulated down through the articulated drill string 26 along with the drilling mud in order to aerate the drilling fluid in the annulus as articulated well 16 is being drilled and, if desired, as drainage bore pattern 32 is being drilled. Drilling of drainage bore pattern 32 with the use of an air hammer bit or an air-powered down-hole motor will also supply compressed air or foam to the drilling fluid. In this case, the compressed air or foam which is used to power the down-hole motor and bit 28 exits articulated drill string 26 in the vicinity of drill bit 28. However, the larger volume of air which can be circulated down drainage wells 14 permits greater aeration of the drilling fluid than generally is possible by air supplied through articulated drill string 26.



FIG. 2 illustrates production of fluids from drainage bore pattern 32a and 32b in subterranean zone 24 in accordance with one embodiment of the present invention. In this embodiment, after wells 14 and 16, respectively, as well as desired drainage bore patterns 32, have been drilled, articulated drill string 26 is removed from articulated wells 16. In particular embodiments, articulate wells may be suitably plugged to prevent gas from flowing through articulate wells 16 to the surface 22.


Referring to FIG. 2, the inlets for down-hole pumps 40 or other suitable pumping mechanisms are disposed in drainage wells 14 in their respective cavities 18. Each cavity 18 provides a reservoir for accumulated fluids allowing intermittent pumping without adverse effects of a hydrostatic head caused by accumulated fluids in the well bore. Each cavity 18 also provides a chamber for gas/water separation for fluids accumulated from drainage bore patterns 32.


Each down-hole pump 40 is connected to surface 22 via a respective tubing string 42 and may be powered by sucker rods extending down through wells 14 of tubing strings 42. Sucker rods are reciprocated by a suitable surface mounted apparatus, such as a powered walking beam 46 to operate each down-hole pump 40. Each down-hole pump 40 is used to remove water and entrained coal finds from subterranean zone 24 via drainage bore patterns 32. In the case of a coal seam, once the water is removed to the surface, it may be treated for separation of methane which may be dissolved in the water and for removal of entrained finds. After sufficient water has been removed from subterranean zone 24, pure coal seam gas may be allowed to flow to surface 22 through the annulus of wells 14 around tubing strings 42 and removed via piping attached to a well head apparatus. At surface 22, the methane is treated, compressed and pumped through a pipeline for use as fuel in a conventional manner. Each down-hole pump 40 may be operated continuously or as needed to remove water drained from subterranean zone 24 into cavities 18.



FIG. 3 illustrates one embodiment of the subterranean patterns 32a and 32b for accessing subterranean zone 24 or other subterranean zone. The patterns 32a and 32b may be used to remove or inject water, gas or other fluids. The subterranean patterns 32a and 32b each comprise a multi-lateral pattern that has a main bore with generally symmetrically arranged and appropriately spaced laterals extending from each side of the main bore. As used herein, the term each means every one of at least a subset of the identified items. It will be understood that other suitable multi-branching or other patterns including or connected to a surface production bore may be used. For example, the patterns 32a and 32b may each comprise a single main bore. Referring to FIG. 3, patterns 32a and 32b each include a main bore 150 extending from a corresponding cavity 18a or 18b, respectively, or intersecting wells 14 or 16 along a center of a coverage area to a distal end of the coverage area. The main bore 150 includes one or more primary lateral bores 152 extending from the main bore 150 to at least approximately to the periphery of the coverage area. The primary lateral bores 152 may extend from opposite sides of the main bore 150. The primary lateral bores 152 may mirror each other on opposite sides of the main bore 150 or may be offset from each other along the main bore 150. Each of the primary lateral bores 152 may include a radiused curving portion extending from the main bore 150 and a straight portion formed after the curved portion has reached a desired orientation. For uniform coverage, the primary lateral bores 152 may be substantially evenly spaced on each side of the main bore 150 and extend from the main bore 150 at an angle of approximately forty-five degrees. The primary lateral bores 152 may be shortened in length based on progression away from the corresponding cavity 18a or 18b. Accordingly, the distance between the cavity or intersecting well bore and the distal end of each primary lateral bore 152 through the pattern may be substantially equally for each primary lateral 152.


One or more secondary lateral bores 152 may be formed off one or more of the primary lateral bores 152. In a particular embodiment, a set of secondary laterals 154 may be formed off the primary lateral bores 152 of each pattern 32a and 32b closest to the corresponding cavity 18a and 18b. The secondary laterals 154 may provide coverage in the area between the primary lateral bores 152 of patterns 32a and 32b. In a particular embodiment, a first primary lateral 154 may include a reversed radius section to provide more uniform coverage of subterranean zone 24.


The subterranean patterns 32a and 32b with their central bore and generally symmetrically arranged and appropriately spaced auxiliary bores on each side may provide a substantial uniform pattern for draining fluids from subterranean zone 24 or other subterranean zone. The number and spacing of the lateral bores may be adjusted depending on the absolute, relative and/or effective permeability of the coal seam and the size of the area covered by the pattern. The area covered by the pattern may be the area drained by the pattern, the area of a spacing unit that the pattern is designed to drain, the area within the distal points or periphery of the pattern and/or the area within the periphery of the pattern as well as surrounding area out to a periphery intermediate to adjacent or neighboring patterns. The coverage area may also include the depth, or thickness of the coal seam or, for thick coal seams, a portion of the thickness of the seam. Thus, the pattern may include upward or downward extending branches in addition to horizontal branches. The coverage area may be a square, other quadrilateral, or other polygon, circular, oval or other ellipsoid or grid area and may be nested with other patterns of the same or similar type. It will be understood that other suitable drainage bore patterns may be used.


As previously described, the well bore 150 and the lateral bores 152 and 154 of patterns 32a and 32b are formed by drilling through the corresponding cavity 18a or 18b using the drill string 26 in appropriate drilling apparatus. During this operation, gamma ray logging tools and conventional MWD technologies may be employed to control the direction and orientation of drill bit 28 so as to retain the drainage bore pattern within the confines of subterranean zone 24 and to maintain proper spacing and orientation of wells 150 and 152. In a particular embodiment, the main well bore 150 of each pattern 32a and 32b is drilled with an incline at each of the plurality of lateral branch points 156. After the main well bore 150 is complete, the drill string 26 is backed up to each successive lateral point 156 from which a primary lateral bore 152 is drilled on each side of the well bore 150. The secondary laterals 154 may be similarly formed. It will be understood that the subterranean patterns 32a and 32b may be otherwise suitably formed. Furthermore, as described above, a pattern (as illustrated in FIG. 3) or otherwise may be formed off of portion 38 of articulated well 16 (which would function as well bore 150) such that cavities 18 are located at the end of portion 38/well bore 150.



FIG. 4 is a flow diagram illustrating a method for preparing subterranean zone 24 for mining operations in accordance with particular embodiments of the present invention. The example method begins at step 400 in which entry well 12 is drilled substantially vertically from the surface. At step 402, a casing with guide tubes is installed into the entry well 12. At step 404, the casing is cemented in place inside entry well 12.


At step 406, drill string 26 is inserted through entry well 12 and one of the guide tubes in the guide tube bundle. At step 408, drill string 26 is used to drill approximately fifty feet past the casing. At step 410, the drill is oriented to the desired angle of the drainage well 14 and, at step 412, drainage well bore 14 is drilled down into and through target subterranean zone 24.


At step 414, down-hole logging equipment may be utilized to identify the location of the subterranean zone 24. At step 416, cavity 18a is formed in first drainage well 14 at the location of subterranean zone 24. As previously discussed, cavity 18 may be formed by underreaming and other conventional techniques. At decisional step 418, if additional drainage wells are to be drilled, the method returns to step 406. If no additional drainage wells 14 are to be drilled, then the method proceeds to step 420.


At step 420, articulated well 16 is drilled to intersect cavity 18. At step 422, drainage bore pattern 32 is drilled into subterranean zone 24. At step 424, production equipment is installed into drainage wells 14 and at step 426 the process ends with the production of fluids (such as water and gas) from the subterranean zone 24.


Although the steps have been described in a certain order, it will be understood that they may be performed in any other appropriate order. Furthermore, one or more steps may be omitted, or additional steps performed, as appropriate.



FIG. 5A illustrates formation of a casing with associated guide tube bundle as described in step 402 of FIG. 4. Three guide tubes 48 are shown in side view and end view. The guide tubes 48 are arranged so that they are parallel to one another. In the illustrated embodiment, guide tubes 48 are 9⅝″ joint casings. It will be understood that other suitable materials may be employed. As an example, guide tubes 48a and 48b serve as the tubes through which drainage wells 14a and 14b are drilled, respectively. In this example, guide tube 48c serves as the tube through which both articulated wells 16a and 16b are drilled. It will be understood that other suitable arrangements may be employed. In another embodiment, guide tubes 48 may be attached to a casing collar such that the guide tubes 48 and casing collar make up the guide tube bundle.



FIG. 5B illustrates entry well 12 with guide tubes 48 and a casing collar 50 cemented in entry well 12. Entry well 12 is formed from the surface 22 to a target depth (in particular embodiments, approximately three hundred feet). In a particular embodiment, entry well 12 has a diameter of approximately twenty-four inches. Forming entry well 12 corresponds with step 400 of FIG. 4. Guide tubes 48 are shown attached to a casing collar 50. Casing collar 50 may be any casing suitable for use in down-hole operations. Inserting casing collar 50 and guide tubes 48 into entry well 12 corresponds with step 402 of FIG. 4.


Corresponding with step 404 of FIG. 4, a cement retainer 52 is poured or otherwise installed around the casing inside entry well 12. The cement casing may be any mixture or substance otherwise suitable to maintain casing 50 in the desired position with respect to entry well 12.


In operation, drill string 26 is positioned to enter one of the guide tubes 48. In order to keep drill string 26 relatively centered in casing 50, a stabilizer 54 may be employed. Stabilizer 54 may be a ring and fin type stabilizer or any other stabilizer suitable to keep drill string 26 relatively centered. To keep stabilizer 54 at a desired depth in well bore 12, stop ring 56 may be employed. Stop ring 56 may be constructed of rubber or metal or any other foreign down-hole environment material suitable. Drill string 26 may be inserted randomly into any of a plurality of guide tubes 48, or drill string 26 may be directed into a selected guide tube 48a. This corresponds to step 406 of FIG. 4.


Although the present invention has been described with several embodiments, various changes and modifications may be suggested to one skilled in the art. It is intended that the present invention encompass such changes and modifications as fall within the scope of the appended claims.

Claims
  • 1. A method for accessing a subterranean zone, comprising: forming an entry well from the surface, the entry well having a substantially vertical portion;forming a drainage well extending from the entry well to a subterranean zone, the drainage well comprising at least one slanted portion;forming an articulated well extending from the entry well to the subterranean zone, the articulated well extending from the entry well to intersect the drainage well at a junction proximate the subterranean zone;forming a drainage pattern through the articulated well, the drainage pattern coupled to the junction and operable to conduct fluid from the subterranean zone to the junction; andforming a second drainage well from the entry well to the subterranean zone, the second drainage well comprising at least one slanted portion;forming a second articulated well from the entry well to the subterranean zone, the second articulated well intersecting the second drainage well at a second junction proximate the subterranean zone.
  • 2. The method of claim 1, further comprising forming an enlarged cavity in the drainage well proximate the subterranean zone.
  • 3. The method of claim 1, further comprising inserting a guide tube bundle into the entry well and forming one or more of the drainage well or the articulated well using the guide tube bundle.
  • 4. The method of claim 1, wherein forming the drainage pattern comprises forming a main well bore and a plurality of lateral well bores extending from the main well bore.
  • 5. The method of claim 4, wherein the lateral wells are configured to drain an area of the subterranean zone of at least 640 acres.
  • 6. The method of claim 1, further comprising removing resources from the subterranean zone through the drainage pattern to the surface.
  • 7. A method for accessing a subterranean zone, comprising: forming an entry well from the surface, the entry well having a substantially vertical portion;forming a drainage well extending from the entry well to a subterranean zone, the drainage well comprising at least one slanted portion;forming an articulated well extending from the entry well to the subterranean zone, the articulated well extending from the entry well to intersect the drainage well at a junction proximate the subterranean zone;forming a drainage pattern through the articulated well, the drainage pattern coupled to the junction and operable to conduct fluid from the subterranean zone to the junction;forming a second drainage well from the entry well to the subterranean zone, the second drainage well comprising at least one slanted portion; andforming a second articulated well from the entry well to the subterranean zone, the second articulated well intersecting the second drainage well at a second junction proximate the subterranean zone,wherein the drainage wells are radially spaced approximately equally around the entry well.
  • 8. A method for accessing a subterranean zone, comprising: forming an entry well from the surface, the entry well having a substantially vertical portion;forming a drainage well extending from the entry well to a subterranean zone, the drainage well comprising at least one slanted portion;forming an articulated well extending from the entry well to the subterranean zone, the articulated well extending from the entry well to intersect the drainage well at a junction proximate the subterranean zone;forming a drainage pattern through the articulated well, the drainage pattern coupled to the junction and operable to conduct fluid from the subterranean zone to the junction;forming a second drainage well from the entry well to the subterranean zone, the second drainage well comprising at least one slanted portion; andforming a second articulated well from the entry well to the subterranean zone, the second articulated well intersecting the second drainage well at a second junction proximate the subterranean zone,wherein the articulated wells are radially spaced approximately equally around the entry well.
  • 9. A method for accessing a subterranean zone, comprising: forming an entry well from the surface, the entry well having a substantially vertical portion;forming a drainage well extending from the entry well to a subterranean zone, the drainage well comprising at least one slanted portion;forming an articulated well extending from the entry well to the subterranean zone, the articulated well extending from the entry well to intersect the drainage well at a junction proximate the subterranean zone;forming a drainage pattern through the articulated well, the drainage pattern coupled to the junction and operable to conduct fluid from the subterranean zone to the junction;forming a second drainage well from the entry well to the subterranean zone, the second drainage well comprising at least one slated portion;forming a second articulated well from the entry well to the subterranean zone, the second articulated well intersecting the second drainage well at a second junction proximate the subterranean zone;forming a third drainage well from the entry well to the subterranean zone, the third drainage well comprising at least one slanted portion;forming a third articulated well from the entry well to the subterranean zone, the third articulated well intersecting the third drainage well at a third junction proximate the subterranean zone.
  • 10. A system for accessing a subterranean zone from an entry well, comprising: an entry well extending from the surface, the entry well having a substantially vertical portion;a drainage well extending from the entry well to a subterranean zone, the drainage well comprising at least one slanted portion;an articulated well extending from the entry well to the subterranean zone, the articulated well extending from the entry well to intersect the drainage well at a junction proximate the subterranean zone;an inlet of a downhole pumping unit residing in the junction;a drainage pattern coupled to the junction and operable to conduct fluid from the subterranean zone to the junction;a second drainage well extending from the entry well to the subterranean zone, the second drainage well comprising at least one slanted portion; anda second articulated well intersecting the drainage well at a second junction proximate the subterranean zone.
  • 11. The system of claim 10, further comprising an enlarged cavity formed in the drainage well proximate the subterranean zone.
  • 12. The system of claim 10, further comprising a guide tube bundle inserted into the entry well for forming one or more of the drainage well or the articulated well.
  • 13. The system of claim 10, wherein the drainage pattern comprises a main well bore and a plurality of lateral well bores extending from the main well bore.
  • 14. The system of claim 13, wherein the lateral wells are configured to drain an area of the subterranean zone of at least 640 acres.
  • 15. A system for accessing a subterranean zone from an entry well, comprising: an entry well extending from the surface, the entry well having a substantially vertical portion;a drainage well extending from the entry well to a subterranean zone, the drainage well comprising at least one slanted portion;an articulated well extending from the entry well to the subterranean zone, the articulated well extending from the entry well to intersect the drainage well at a junction proximate the subterranean zone;an inlet of a downhole pumping unit residing in the junction; anda drainage pattern coupled to the junction and operable to conduct fluid from the subterranean zone to the junction;a second drainage well extending from the entry well to the subterranean zone, the second drainage well comprising at least one slanted portion; anda second articulated well intersecting the drainage well at a second junction proximate the subterranean zone,wherein the drainage wells are radially spaced approximately equally around the entry well.
  • 16. A system for accessing a subterranean zone from an entry well, comprising: an entry well extending from the surface, the entry well having a substantially vertical portion;a drainage well extending from the entry well to a subterranean zone, the drainage well comprising at least one slanted portion;an articulated well extending from the entry well to the subterranean zone, the articulated well extending from the entry well to intersect the drainage well at a junction proximate the subterranean zone;an inlet of a downhole pumping unit residing in the junction; anda drainage pattern coupled to the junction and operable to conduct fluid from the subterranean zone to the junction;a second drainage well extending from the entry well to the subterranean zone, the second drainage well comprising at least one slanted portion; anda second articulated well intersecting the drainage well at a second junction proximate the subterranean zone,wherein the articulated wells are radially spaced approximately equally around the entry well.
  • 17. A system for accessing a subterranean zone from an entry well, comprising: an entry well extending from the surface, the entry well having a substantially vertical portion;a drainage well extending from the entry well to a subterranean zone, the drainage well comprising at least one slanted portion;an articulated well extending from the entry well to the subterranean zone, the articulated well extending from the entry well to intersect the drainage well at a junction proximate the subterranean zone;an inlet of a downhole pumping unit residing in the junction; anda drainage pattern coupled to the junction and operable to conduct fluid from the subterranean zone to the junction;a second drainage well extending from the entry well to the subterranean zone, the second drainage well comprising at least one slanted portion;a second articulated well intersecting the drainage well at a second junction proximate the subterranean zone;a third drainage well from the entry well to the subterranean zone, the third drainage well comprising at least one slanted portion;a third articulated well from the entry well to the subterranean zone, the third articulated well intersecting the third drainage well at a third junction proximate the subterranean zone.
  • 18. A method for accessing a subterranean zone from an entry well, comprising: forming an entry well from the surface, the entry well having a substantially vertical portion;forming a drainage well extending from the entry well to a subterranean zone, the drainage well comprising at least one slanted portion;forming an enlarged cavity in the drainage well proximate the subterranean zone;forming an articulated well extending from the entry well to the subterranean zone, the articulated well extending from the entry well to intersect the enlarged cavity of the drainage well at a junction proximate the subterranean zone;forming a drainage pattern through the articulated well, the drainage pattern coupled to the junction and operable to conduct fluid from the subterranean zone to the junction, the drainage pattern extending from the junction into the target zone and comprises a set of lateral wells extending from a main well bore;forming a second drainage well extending from the entry well to a subterranean zone, the drainage well comprising at least one slanted portion; andforming a second articulated well extending from the entry well to the subterranean zone, the articulated well extending from the entry well to intersect the enlarged cavity of the drainage well at a junction proximate the subterranean zone.
  • 19. A method for accessing a subterranean zone, comprising: forming an entry well from the surface;forming a drainage well extending from the entry well to a subterranean zone;forming an articulated well extending from the entry well to the subterranean zone, the articulated well extending from the entry well to intersect the drainage well at a junction proximate the subterranean zone;forming a drainage bore through the articulated well, the drainage bore coupled to the junction and operable to conduct fluid from the subterranean zone to the junction;forming a second drainage well from the entry well to the subterranean zone; andforming a second articulated well from the entry well to the subterranean zone, the second articulated well intersecting the second drainage well at a second junction proximate the subterranean zone.
  • 20. The method of claim 19, further comprising forming an enlarged cavity in the drainage well proximate the subterranean zone.
  • 21. The method of claim 19, further comprising removing resources from the subterranean zone through the drainage pattern to the surface.
  • 22. A method for accessing a subterranean zone, comprising: forming an entry well from the surface;forming a drainage well extending from the entry well to a subterranean zone;forming an articulated well extending from the entry well to the subterranean zone, the articulated well extending from the entry well to intersect the drainage well at a junction proximate the subterranean zone;forming a drainage bore through the articulated well, the drainage bore coupled to the junction and operable to conduct fluid from the subterranean zone to the junction;forming a second drainage well from the entry well to the subterranean zone; andforming a second articulated well from the entry well to the subterranean zone, the second articulated well intersecting the second drainage well at a second junction proximate the subterranean zone,wherein the drainage wells are radially spaced approximately equally around the entry well.
US Referenced Citations (365)
Number Name Date Kind
54144 Hamar Apr 1866 A
274740 Douglass Mar 1883 A
526708 Horton Oct 1894 A
639036 Heald Dec 1899 A
1189560 Gondos Jul 1916 A
1285347 Otto Nov 1918 A
1467480 Hogue Sep 1923 A
1485615 Jones Mar 1924 A
1488106 Fitzpatrick Mar 1924 A
1520737 Wright Dec 1924 A
1674392 Flansburg Jun 1928 A
1777961 Capeliuschnicoff Oct 1930 A
2018285 Schweitzer et al. Oct 1935 A
2069482 Seay Feb 1937 A
2150228 Lamb Mar 1939 A
2169718 Böll et al. Aug 1939 A
2335085 Roberts Nov 1943 A
2450223 Barbour Sep 1948 A
2490350 Grable Dec 1949 A
2679903 McGowen, Jr. et al. Jun 1954 A
2726063 Ragland et al. Dec 1955 A
2726847 McCune et al. Dec 1955 A
2783018 Lytel Feb 1957 A
2797893 McCune et al. Jul 1957 A
2847189 Shook Aug 1958 A
2911008 Du Bois Nov 1959 A
2934904 Hendrix May 1960 A
2980142 Turak Apr 1961 A
3163211 Henley Dec 1964 A
3208537 Scarborough Sep 1965 A
3347595 Dahms et al. Oct 1967 A
3385382 Canalizo et al. May 1968 A
3443648 Howard May 1969 A
3473571 Dugay Oct 1969 A
3503377 Beatenbough et al. Mar 1970 A
3528516 Brown Sep 1970 A
3530675 Turzillo Sep 1970 A
3534822 Campbell et al. Oct 1970 A
3578077 Glenn, Jr. et al. May 1971 A
3582138 Loofbourow et al. Jun 1971 A
3587743 Howard Jun 1971 A
3684041 Kammerer, Jr. et al. Aug 1972 A
3687204 Marshall et al. Aug 1972 A
3692041 Bondi Sep 1972 A
3744565 Brown Jul 1973 A
3757876 Pereau Sep 1973 A
3757877 Leathers Sep 1973 A
3759328 Ueber et al. Sep 1973 A
3763652 Rinta Oct 1973 A
3800830 Etter Apr 1974 A
3809519 Garner May 1974 A
3825081 McMahon Jul 1974 A
3828867 Elwood Aug 1974 A
3874413 Valdez Apr 1975 A
3887008 Canfield Jun 1975 A
3902322 Watanabe Sep 1975 A
3907045 Dahl et al. Sep 1975 A
3934649 Pasini, III et al. Jan 1976 A
3957082 Fuson et al. May 1976 A
3961824 Van Eek et al. Jun 1976 A
4011890 Andersson Mar 1977 A
4020901 Pisio et al. May 1977 A
4022279 Driver May 1977 A
4030310 Schirtzinger Jun 1977 A
4037658 Anderson Jul 1977 A
4060130 Hart Nov 1977 A
4073351 Baum Feb 1978 A
4089374 Terry May 1978 A
4116012 Abe et al. Sep 1978 A
4134463 Allen Jan 1979 A
4136996 Burns Jan 1979 A
4151880 Vann May 1979 A
4156437 Chivens et al. May 1979 A
4169510 Meigs Oct 1979 A
4182423 Ziebarth et al. Jan 1980 A
4189184 Green Feb 1980 A
4220203 Steeman Sep 1980 A
4221433 Jacoby Sep 1980 A
4222611 Larson et al. Sep 1980 A
4224989 Blount Sep 1980 A
4226475 Frosch et al. Oct 1980 A
4257650 Allen Mar 1981 A
4278137 Van Eek Jul 1981 A
4283088 Tabakov et al. Aug 1981 A
4296785 Vitello et al. Oct 1981 A
4296969 Willman Oct 1981 A
4299295 Gossard Nov 1981 A
4303127 Freel et al. Dec 1981 A
4305464 Masszi Dec 1981 A
4312377 Knecht Jan 1982 A
4317492 Summers et al. Mar 1982 A
4328577 Abbott et al. May 1982 A
4333539 Lyons et al. Jun 1982 A
4356866 Savins Nov 1982 A
4366988 Bodine Jan 1983 A
4372398 Kuckes Feb 1983 A
4386665 Dellinger Jun 1983 A
4390067 Willman Jun 1983 A
4396075 Wood et al. Aug 1983 A
4396076 Inoue Aug 1983 A
4397360 Schmidt Aug 1983 A
4401171 Fuchs Aug 1983 A
4407376 Inoue Oct 1983 A
4415205 Rehm et al. Nov 1983 A
4417829 Berezoutzky Nov 1983 A
4422505 Collins Dec 1983 A
4437706 Johnson Mar 1984 A
4442896 Reale et al. Apr 1984 A
4463988 Bouck et al. Aug 1984 A
4494616 McKee Jan 1985 A
4502733 Grubb Mar 1985 A
4512422 Knisley Apr 1985 A
4519463 Schuh May 1985 A
4527639 Dickinson, III et al. Jul 1985 A
4532986 Mims et al. Aug 1985 A
4533182 Richards Aug 1985 A
4536035 Huffman et al. Aug 1985 A
4544037 Terry Oct 1985 A
4558744 Gibb Dec 1985 A
4565252 Campbell et al. Jan 1986 A
4573541 Josse et al. Mar 1986 A
4600061 Richards Jul 1986 A
4603592 Siebold et al. Aug 1986 A
4605076 Goodhart Aug 1986 A
4611855 Richards Sep 1986 A
4618009 Carter et al. Oct 1986 A
4638949 Mancel Jan 1987 A
4646836 Goodhart Mar 1987 A
4651836 Richards Mar 1987 A
4662440 Harmon et al. May 1987 A
4674579 Geller et al. Jun 1987 A
4676313 Rinaldi Jun 1987 A
4702314 Huang et al. Oct 1987 A
4705109 Ledent et al. Nov 1987 A
4705431 Gadelle et al. Nov 1987 A
4715440 Boxell et al. Dec 1987 A
4718485 Brown et al. Jan 1988 A
RE32623 Marshall et al. Mar 1988 E
4727937 Shum et al. Mar 1988 A
4753485 Goodhart Jun 1988 A
4754808 Harmon et al. Jul 1988 A
4754819 Dellinger Jul 1988 A
4756367 Puri et al. Jul 1988 A
4763734 Dickinson et al. Aug 1988 A
4773488 Bell et al. Sep 1988 A
4776638 Hahn Oct 1988 A
4830105 Petermann May 1989 A
4832122 Corey et al. May 1989 A
4836611 El-Saie Jun 1989 A
4842081 Parant Jun 1989 A
4844182 Tolle Jul 1989 A
4852666 Brunet et al. Aug 1989 A
4883122 Puri et al. Nov 1989 A
4889186 Hanson et al. Dec 1989 A
4978172 Schwoebel et al. Dec 1990 A
5016709 Combe et al. May 1991 A
5016710 Renard et al. May 1991 A
5033550 Johnson et al. Jul 1991 A
5035605 Dinerman et al. Jul 1991 A
5036921 Pittard et al. Aug 1991 A
5074360 Guinn Dec 1991 A
5074365 Kuckes Dec 1991 A
5074366 Karlsson et al. Dec 1991 A
5082054 Kiamanesh Jan 1992 A
5111893 Kvello-Aune May 1992 A
5115872 Brunet et al. May 1992 A
5127457 Stewart et al. Jul 1992 A
5135058 Millgard et al. Aug 1992 A
5148875 Karlsson et al. Sep 1992 A
5148877 MacGregor Sep 1992 A
5165491 Wilson Nov 1992 A
5168942 Wydrinski Dec 1992 A
5174374 Hailey Dec 1992 A
5193620 Braddick Mar 1993 A
5194859 Warren Mar 1993 A
5197553 Leturno Mar 1993 A
5197783 Theimer et al. Mar 1993 A
5199496 Redus et al. Apr 1993 A
5201817 Hailey Apr 1993 A
5207271 Sanchez et al. May 1993 A
5217076 Masek Jun 1993 A
5226495 Jennings, Jr. Jul 1993 A
5240350 Yamaguchi et al. Aug 1993 A
5242017 Hailey Sep 1993 A
5242025 Neill et al. Sep 1993 A
5246273 Rosar Sep 1993 A
5255741 Alexander Oct 1993 A
5271472 Leturno Dec 1993 A
5287926 Grupping Feb 1994 A
5289888 Talley Mar 1994 A
5301760 Graham Apr 1994 A
5343965 Talley et al. Sep 1994 A
5355967 Mueller et al. Oct 1994 A
5363927 Frank Nov 1994 A
5385205 Hailey Jan 1995 A
5394950 Gardes Mar 1995 A
5402851 Baiton Apr 1995 A
5411082 Kennedy May 1995 A
5411085 Moore et al. May 1995 A
5411088 LeBlanc et al. May 1995 A
5411104 Stanley May 1995 A
5411105 Gray May 1995 A
5431220 Lennon et al. Jul 1995 A
5431482 Russo Jul 1995 A
5435400 Smith Jul 1995 A
5447416 Wittrisch Sep 1995 A
5450902 Matthews Sep 1995 A
5454419 Vloedman Oct 1995 A
5458209 Hayes et al. Oct 1995 A
5462116 Carroll Oct 1995 A
5462120 Gondouin Oct 1995 A
5469155 Archambeault et al. Nov 1995 A
5477923 Jordan, Jr. et al. Dec 1995 A
5485089 Kuckes Jan 1996 A
5494121 Nackerud Feb 1996 A
5499687 Lee Mar 1996 A
5501273 Puri Mar 1996 A
5501279 Garg et al. Mar 1996 A
5520252 McNair May 1996 A
5584605 Beard et al. Dec 1996 A
5613242 Oddo Mar 1997 A
5615739 Dallas Apr 1997 A
5653286 McCoy et al. Aug 1997 A
5664911 Bridges et al. Sep 1997 A
5669444 Riese et al. Sep 1997 A
5676207 Simon et al. Oct 1997 A
5680901 Gardes Oct 1997 A
5690390 Bithell Nov 1997 A
5697445 Graham Dec 1997 A
5706871 Andersson et al. Jan 1998 A
5720356 Gardes Feb 1998 A
5727629 Blizzard, Jr. et al. Mar 1998 A
5733067 Hunt et al. Mar 1998 A
5735350 Longbottom et al. Apr 1998 A
5771976 Talley Jun 1998 A
5775433 Hammett et al. Jul 1998 A
5775443 Lott Jul 1998 A
5785133 Murray et al. Jul 1998 A
5832958 Cheng Nov 1998 A
5853054 McGarian et al. Dec 1998 A
5853056 Landers Dec 1998 A
5853224 Riese Dec 1998 A
5863283 Gardes Jan 1999 A
5868202 Hsu Feb 1999 A
5868210 Johnson et al. Feb 1999 A
5879057 Schwoebel et al. Mar 1999 A
5884704 Longbottom et al. Mar 1999 A
5917325 Smith Jun 1999 A
5934390 Uthe Aug 1999 A
5938004 Roberts et al. Aug 1999 A
5941307 Tubel Aug 1999 A
5941308 Malone et al. Aug 1999 A
5944107 Ohmer Aug 1999 A
5957539 Durup et al. Sep 1999 A
5971074 Longbottom et al. Oct 1999 A
5988278 Johnson Nov 1999 A
5992524 Graham Nov 1999 A
6012520 Yu et al. Jan 2000 A
6015012 Reddick Jan 2000 A
6019173 Saurer et al. Feb 2000 A
6024171 Montgomery et al. Feb 2000 A
6030048 Hsu Feb 2000 A
6050335 Parsons Apr 2000 A
6056059 Ohmer May 2000 A
6062306 Gano et al. May 2000 A
6065550 Gardes May 2000 A
6065551 Gourley et al. May 2000 A
6079495 Ohmer Jun 2000 A
6089322 Kelley et al. Jul 2000 A
6119771 Gano et al. Sep 2000 A
6119776 Graham et al. Sep 2000 A
6135208 Gano et al. Oct 2000 A
6170571 Ohmer Jan 2001 B1
6179054 Stewart Jan 2001 B1
6189616 Gano et al. Feb 2001 B1
6192988 Tubel Feb 2001 B1
6199633 Longbottom Mar 2001 B1
6209636 Roberts et al. Apr 2001 B1
6237284 Erickson May 2001 B1
6244340 McGlothen et al. Jun 2001 B1
6247532 Ohmer Jun 2001 B1
6263965 Schmidt et al. Jul 2001 B1
6279658 Donovan et al. Aug 2001 B1
6280000 Zupanick Aug 2001 B1
6283216 Ohmer Sep 2001 B1
6318457 Den Boer et al. Nov 2001 B1
6349769 Ohmer Feb 2002 B1
6357523 Zupanick Mar 2002 B1
6357530 Kennedy et al. Mar 2002 B1
6425448 Zupanick et al. Jul 2002 B1
6439320 Zupanick Aug 2002 B2
6450256 Mones Sep 2002 B2
6454000 Zupanick Sep 2002 B1
6457525 Scott Oct 2002 B1
6457540 Gardes Oct 2002 B2
6470978 Trueman et al. Oct 2002 B2
6478085 Zupanick Nov 2002 B2
6491101 Ohmer Dec 2002 B2
6497556 Zupanick et al. Dec 2002 B2
6554063 Ohmer Apr 2003 B2
6557628 Ohmer May 2003 B2
6561277 Algeory et al. May 2003 B2
6561288 Zupanick May 2003 B2
6564867 Ohmer May 2003 B2
6566649 Mickael May 2003 B1
6571888 Comeau et al. Jun 2003 B2
6575235 Zupanick et al. Jun 2003 B2
6575255 Rial et al. Jun 2003 B1
6577129 Thompson et al. Jun 2003 B1
6581455 Berger et al. Jun 2003 B1
6581685 Burgess et al. Jun 2003 B2
6585061 Radzinski et al. Jul 2003 B2
6590202 Mickael Jul 2003 B2
6591903 Ingle et al. Jul 2003 B2
6591922 Rial et al. Jul 2003 B1
6595301 Diamond et al. Jul 2003 B1
6595302 Diamond et al. Jul 2003 B1
6598686 Zupanick Jul 2003 B1
6604580 Zupanick et al. Aug 2003 B2
6604910 Zupanick Aug 2003 B1
6607042 Hoyer et al. Aug 2003 B2
6636159 Winnacker Oct 2003 B1
6639210 Odom et al. Oct 2003 B2
6644422 Rial et al. Nov 2003 B1
6646441 Thompson et al. Nov 2003 B2
6653839 Yuratich et al. Nov 2003 B2
6662870 Zupanick et al. Dec 2003 B1
6668918 Zupanick Dec 2003 B2
6679322 Zupanick Jan 2004 B1
6681855 Zupanick et al. Jan 2004 B2
6688388 Zupanick Feb 2004 B2
6708764 Zupanick Mar 2004 B2
6722452 Rial et al. Apr 2004 B1
6725922 Zupanick Apr 2004 B2
6732792 Zupanick May 2004 B2
6745855 Gardes Jun 2004 B2
6758279 Moore et al. Jul 2004 B2
6758289 Kelley et al. Jul 2004 B2
RE38642 Gondouin Nov 2004 E
20020043404 Trueman et al. Apr 2002 A1
20020096336 Zupanick et al. Jul 2002 A1
20020189801 Zupanick et al. Dec 2002 A1
20030066686 Conn Apr 2003 A1
20030075334 Haugen et al. Apr 2003 A1
20030164253 Trueman et al. Sep 2003 A1
20030217842 Zupanick et al. Nov 2003 A1
20030221836 Gardes Dec 2003 A1
20030234120 Paluch et al. Dec 2003 A1
20040007389 Zupanick Jan 2004 A1
20040007390 Zupanick Jan 2004 A1
20040011560 Rial et al. Jan 2004 A1
20040020655 Rusby et al. Feb 2004 A1
20040031609 Zupanick Feb 2004 A1
20040033557 Scott et al. Feb 2004 A1
20040035582 Zupanick Feb 2004 A1
20040050552 Zupanick Mar 2004 A1
20040050554 Zupanick et al. Mar 2004 A1
20040055787 Zupanick Mar 2004 A1
20040060351 Gunter et al. Apr 2004 A1
20040140129 Gardes Jul 2004 A1
20040226719 Morgan et al. Nov 2004 A1
20050133219 Zupanick Jun 2005 A1
20050252689 Gardes Nov 2005 A1
20050257962 Zupanick Nov 2005 A1
20060096755 Zupanic May 2006 A1
Foreign Referenced Citations (40)
Number Date Country
8549964 Nov 1986 AU
2210866 Jan 1998 CA
2278735 Aug 1998 CA
653741 Jan 1986 CH
197 25 996 Jan 1998 DE
0 819 834 Jan 1998 EP
0 875 661 Nov 1998 EP
0 952 300 Oct 1999 EP
1 316 673 Jun 2003 EP
964503 Aug 1950 FR
442008 Jan 1936 GB
444484 Mar 1936 GB
651468 Apr 1951 GB
893869 Apr 1962 GB
2 225 033 Oct 1992 GB
2 297 988 Aug 1996 GB
2 347 157 Aug 2000 GB
750108 Jun 1975 SU
876968 Oct 1981 SU
1448078 Mar 1987 SU
1770570 Mar 1990 SU
37720 May 2001 UA
WO 9421889 Sep 1994 WO
WO 9428280 Dec 1994 WO
WO 9721900 Jun 1997 WO
WO 9825005 Jun 1998 WO
WO 9835133 Aug 1998 WO
WO 9960248 Nov 1999 WO
WO 0031376 Jun 2000 WO
WO 0079099 Dec 2000 WO
WO 0144620 Jun 2001 WO
WO 0218738 Mar 2002 WO
WO 02059455 Aug 2002 WO
WO 02061238 Aug 2002 WO
WO 03036023 May 2003 WO
WO 03038233 May 2003 WO
WO 03102348 Dec 2003 WO
WO 2004035984 Apr 2004 WO
WO 2005003509 Jan 2005 WO
WO 2005012688 Feb 2005 WO
Related Publications (1)
Number Date Country
20050189114 A1 Sep 2005 US