System and method for narrow bandwidth digital signal processing

Information

  • Patent Grant
  • 9741355
  • Patent Number
    9,741,355
  • Date Filed
    Tuesday, February 16, 2016
    8 years ago
  • Date Issued
    Tuesday, August 22, 2017
    7 years ago
Abstract
The present invention provides methods and systems for narrow bandwidth digital processing of an input audio signal. Particularly, the present invention includes a high pass filter configured to filter the input audio signal. A first compressor then modulates the filtered signal in order to create a partially processed signal. In some embodiments, a clipping module further limits the gain of the partially processed signal. A splitter is configured to split the partially processed signal into a first signal and a second signal. A low pass filter is configured to filter the first signal. A pass through module is configured to adjust the gain of the second signal. A mixer then combines the filtered first signal and the gain-adjusted second signal in order to output a combined signal. In some embodiments, a tone control module further processes the combined signal, and a second compressor further modulates the processed signal.
Description
FIELD OF THE INVENTION

The present invention provides for methods and systems for digitally processing narrow bandwidth digital signals. Specifically, some embodiments relate to digitally processing an audio signal where the audio content is restricted to only a few octaves.


BACKGROUND OF THE INVENTION

Narrow bandwidth audio processing has a variety of applications, including voice communications in extreme first responder environments, auscultation of various body sounds, hydrophones, telecommunications, or unusual speaker/microphone situations where the available information is of very poor quality. In these situations, the audio content is generally restricted to only a few octaves.


Although traditional, full spectrum audio enhancement systems and methods are capable of enhancing the sound quality of narrow bandwidth audio content, these standard configurations tend to be underutilized and fall short of achieving stellar quality enhancements. Accordingly, it would be beneficial to improve audio processing and enhancement for narrow bandwidth audio content throughout various applications, in order to produce a clear and easily interpretable audio output. Further, it would be beneficial to allow a user to calibrate the audio processing for different applications having different narrow bandwidth frequency ranges.


SUMMARY OF THE INVENTION

The present invention meets the existing needs described above by providing for a system and method for narrow bandwidth processing of an audio signal, in order to create a clear and easily interpretable audio output.


Accordingly, in initially broad terms, an audio input signal is first filtered through a high pass filter. The high pass filter may comprise a resonant high pass filter with a first frequency. As such, the frequencies of the audio input signal above the first frequency are passed through to a first compressor as a filtered signal. The first compressor comprises dynamic gain compression capabilities in order to modulate the filtered signal.


In some embodiments, the modulated signal is then transmitted to a clipping module in order to create a partially processed signal. The clipping module limits the gain of the modulated signal in order to create a partially processed signal. In other embodiments, the filtered signal from the first compressor is transmitted as the partially processed signal, without the use of a clipping module.


In some embodiments, the partially processed signal is sent to a transmitter for transmission to a receiver over a communications network, the receiver then transmits the partially processed signal to a splitter. In other embodiments, the partially processed signal is sent directly to the splitter without the use of a transmitter or receiver.


The partially processed signal is then split in the splitter into a first signal and a second signal. The first signal is then filtered through a low pass filter. The low pass filter may comprise a resonant low pass filter with a second frequency. The frequencies below the second frequency are passed through. In a preferred embodiment, and counterintuitive to expected function, the second frequency is selected to be lower than the first frequency. This allows the resultant signal to be used to rebuild usable dynamics from the low frequencies. The second signal is transmitted to a pass through module. The pass through module may be configured to adjust the gain of the second signal. The pass through module may simply pass through the second signal without any modification. Further, the gain adjustment may be a static adjustment. The filtered first signal and gain-adjusted are then combined in a mixer in order to create a combined signal.


In some embodiments, the combined signal is then processed by a tone control module. The tone control module may comprise a parametric equalizer or other equalizer configured to fine tune the signal. In at least one embodiment, the processed signal from the tone control module may then be modulated by a second compressor. The modulated signal is then sent as the output signal. In other embodiments, the combined signal from the mixer may be directly sent as the output signal, without the use of the tone control module or the second compressor.


Applications of the present invention may include voice communication, such as those in extreme first responder environments or where the available audio content is of poor or very poor quality. In these applications, the present invention may filter out background noise, and selectively enhance the frequency range of voice applications in order to yield a clear and interpretable audio output. In these embodiments, the first frequency may be selected from the range of 2.5 kHz to 3.2 kHz, and the second frequency may be selected from the range of 700 Hz to 1000 Hz.


Other applications may include hydrophones or sonar, such as those used for underwater or underground resource exploration, and appropriate frequency ranges for such applications. In body auscultations, the present invention may also be used to enhance respiratory sounds, for instance as part of an electronic stethoscope. The present invention may also be used to enhance heart sounds, for instance as part of a device for phonocardiogram or echocardiograph, as well as other detection methods. The present invention may also be embedded as part of, or connected to a computer in order to analyze pre-recorded narrow bandwidth audio content. Accordingly, the first and second frequency ranges, as well as gain control and compression elements, may be set or calibrated accordingly depending on the type of audio content.


These and other objects, features and advantages of the present invention will become clearer when the drawings as well as the detailed description are taken into consideration.





BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the nature of the present invention, reference should be had to the following detailed description taken in connection with the accompanying drawings in which:



FIG. 1 illustrates a schematic of one embodiment of the present invention directed to a system for narrow bandwidth processing.



FIG. 2 illustrates a schematic of another embodiment of the present invention directed to a broadcast variation of the system of FIG. 1.



FIG. 3 illustrates a schematic of another embodiment of the present invention directed to a system for narrow bandwidth processing.



FIG. 4 illustrates a schematic of another embodiment of the present invention directed to a broadcast variation of the system of FIG. 3



FIG. 5 illustrates a block diagram of another embodiment of the present invention directed to a method for narrow bandwidth processing.



FIG. 6 illustrates a block diagram of another embodiment directed to a broadcast variation for the method of FIG. 5.



FIG. 7 illustrates a block diagram of another embodiment of the present invention directed to a method for narrow bandwidth processing.



FIG. 8 illustrates a block diagram of another embodiment directed to a broadcast variation for the method of FIG. 7.





Like reference numerals refer to like parts throughout the several views of the drawings.


DETAILED DESCRIPTION OF THE EMBODIMENT

As illustrated by the accompanying drawings, the present invention is directed to systems and methods for narrow bandwidth digital signal processing.


As schematically represented, FIG. 1 illustrates at least one preferred embodiment of a system 100 for narrow bandwidth digital signal processing. Accordingly, and in these embodiments, the system 100 generally comprises an input device 101, a high pass filter 111, a first processing module 105, a splitter 121, a resonant low pass filter 122, a pass through module 123, a second processing module 106, and finally an output device 102.


The input device 101 is at least partially structured or configured to transmit an input audio signal 201 into the high pass filter 111. The input audio signal 201 may comprise the full audible range, but will in certain applications comprise less than half of the 20 Hz to 20 kHz audible range. The input device 101 may comprise at least portions of an audio device capable of audio playback. The input device 101 for instance, may comprise a stereo system, a portable music player, a mobile device, a computer, a sound or audio card, or any other device or combination of electronic circuits suitable for audio playback.


The high pass filter 111 is configured to pass through high frequencies of the input audio signal 201, while attenuating lower frequencies, based on a first frequency. In other words, the frequencies above the first frequency are transmitted as a filtered signal 211 to the first compressor 112. In at least one embodiment, such as those for voice applications, the first frequency may be selected from a range between 2.5 kHz and 3.2 kHz. The first frequency however, may vary depending on the source signal. The first frequency may further be tunable by a user, or alternatively be statically set. The high pass filter 111 may comprise a resonant high pass filter. The high pass filter 111 may further comprise any circuits or combinations thereof structured to pass through high frequencies above a first frequency, and attenuate or filter out the lower frequencies.


The first processing module 105 is configured to process the filtered signal 211 and transmit a partially processed signal 205 to the splitter 121. Accordingly, the first processing module 105 may comprise a first compressor 112 in at least one embodiment. The first processing module 105 may also comprise both a first compressor 112 in other embodiments.


In at least one embodiment, the first compressor 112 is configured to modulate the filtered signal 211 and transmit a modulated signal 212 to the clipping module 113. In other embodiments, the first compressor 112 may transmit the modulated signal 212 as the partially processed signal 205 to the splitter. The first compressor 112 may comprise an automatic gain controller. The first compressor 112 may comprise standard dynamic range compression controls such as threshold, ratio, attack and release. Threshold allows the first compressor 112 to reduce the level of the filtered signal 211 if its amplitude exceeds a certain threshold. Ratio allows the first compressor 112 to reduce the gain as determined by a ratio. Attack and release determines how quickly the first compressor 112 acts. The attack phase is the period when the first compressor 112 is decreasing gain to reach the level that is determined by the threshold. The release phase is the period that the first compressor 112 is increasing gain to the level determined by the ratio. The first compressor 112 may also feature soft and hard knees to control the bend in the response curve of the output or modulated signal 212, and other dynamic range compression controls appropriate for the dynamic compression of an audio signal. The first compressor 112 may further comprise any device or combination of circuits that is structured and configured for dynamic range compression.


The clipping module 113, in at least one embodiment, is configured to limit the gain of the modulated signal 212 and transmit a partially processed signal 213 to the splitter 121. Specifically, in at least one embodiment, the clipping module 113 is configured to limit or remove transients from the modulated signal 212. A transient is a short burst of gain or amplitude in the audio signal. Transients may be generated if, for instance, the first compressor used slower attack times in the creation of the modulated signal 212. This would ensure minimum dynamic range of the partially processed signal 213. A minimum dynamic range may further facilitate the transmission of a signal over a communication network due to its smaller bandwidth or file size. The clipping module 113 may comprise a clipper or clipping circuit. The clipping module 113 may comprise series clippers, shunt clippers, or any combination of circuits capable and appropriate for clipping or limiting amplitude or gain of an audio signal. Additionally, the clipping module 113 may also comprise soft clipping, or devices or circuits capable of soft clipping in order to avoid sharp points in the transfer characteristic of a signal.


The splitter 121 is configured to split the partially processed signal 213 into a first signal 221 and a second signal 221′. The first signal 221 is transmitted to a low pass filter 122, while the second signal is transmitted to a pass through module 123. In at least one embodiment, the splitter 121 is configured such that the first signal 221 and second signal 221′ are substantially the same signal as the partially processed signal 213, i.e. correspondingly identical amplitude and phase. In other embodiments, slight variations may result due to signal degradation.


The low pass filter 122 is configured to pass through low frequencies of the first signal 221, while attenuating higher frequencies, based on a second frequency. In other words, the frequencies below the second frequency are transmitted as a filtered first signal 222 to the mixer 124. In at least one embodiment, and counterintuitive to expected function, the second frequency is set below that of the first frequency. In voice applications the second frequency can be selected from a range between 700 Hz and 1000 Hz. The second frequency may further be tunable by a user, or alternatively be statically set. The resultant first filtered signal 222 is used to rebuild usable dynamics from the low frequencies.


The pass through module 123 is configured to pass through the second signal 221′. In at least one embodiment, the pass through module 123 will also adjust the gain of the second signal. For instance, in voice applications only a small amount of the signal is sufficient to achieve desired results, and the gain of the second signal 221′ will be adjusted downward accordingly. One example of the pass through module 123 may be to restore sibilance in voice applications. Other examples may include the restoration of other high frequency content if the low pass filter 122 removes too much. In at least one embodiment, the level or gain adjustment of the pass through module 123 is a static adjustment. The gain adjustment may also be zero. In other embodiments, dynamic or adjustable gain reduction may be desired and used. In at least one embodiment, the pass through module may simply pass through a signal without any modification.


The second processing module 106 is configured to process the filtered first signal 222 and the gain-adjusted second signal 223 and transmit an output signal to the output device 102. Accordingly, the second processing module 106 may comprise a mixer 124, a tone control module 125, a second compressor 126, and any combinations thereof.


The mixer 124 is configured to combine the filtered first signal 222 and the gain-adjusted second signal 223 and transmit a combined signal 224 to the tone control module 125 in at least one embodiment. In some embodiments the combined signal 224 is transmitted as the output signal 206 of the second processing module 106. In other embodiments the combined signal 224 is further transmitted to a tone control module 125. The mixer 124 may comprise an electronic mixer structured to combine two or more signals into a composite or combined signal. The mixer 124 may similarly comprise any circuit or combination of circuits structured or configured to combine two or more signals.


The tone control module 125 processes the combined signal 224 and transmits a controlled signal 225 to the second compressor 126 in at least one embodiment. In some embodiments the controlled signal 225 is transmitted as the output signal 206, in other embodiments the controlled signal 225 is further transmitted to the second compressor 126. In at least one embodiment, the tone control module 125 comprises a parametric equalizer. Further, the parametric equalizer may comprise one, two, three, or four bands. In other embodiments, the tone control module 125 may comprise a graphic equalizer. The tone control module 125 may further be any device or combination of circuits appropriate for the equalization of an audio signal.


The second compressor 126, in at least one embodiment, is configured to modulate the controlled signal 225 and transmit an output signal 226 to the output device 102. The second compressor 126 may be similar in structure and/or configuration as the first compressor 112. Accordingly, the second compressor 126 may comprise any device or combination of circuits that is structured and configured for dynamic range compression or static compression or level adjustment.


The output device 102 may be structured to further process the output signal 226. The output device 102 may also be structured and/or configured for playback of the output signal 226.


As schematically represented, FIG. 2 illustrates at least one preferred embodiment of a system 100 for narrow bandwidth digital signal processing in broadcasting applications. Accordingly, and in these embodiments, the system 200 generally comprises the same or similar components as system 100 as illustrated in FIG. 1, namely an input device 101, a high pass filter 111, a first compressor 112, a clipping module 113, a splitter 121, a resonant low pass filter 122, a pass through module 123, a mixer 124, a tone control module 125, a second compressor 126, and an output device 102. In the broadcasting embodiment of FIG. 2 as illustrated by system 200, these components may be split between a pre-transmission module 110 and a post-transmission module 120. Accordingly, the system 200 includes the addition of a transmitter 131, a communications network 132, and a receiver 133 in between the pre-transmission module 110 and post-transmission module 120.


In effect, the embodiment of system 200 separates out various components of the present invention into at least two modules, such that the pre-transmission module or modules 110 and post-transmission module or modules 120 may be placed in different locations or embedded into different devices in communication with one another. The network 132 may comprise a wired or wireless network, such as cellular, satellite, terrestrial, and any variety of LAN, WAN, local wireless or near field communications including but not limited to Wifi, Bluetooth, infrared technologies, as well as any other appropriate technologies for the transmission of a digital audio signal. Accordingly, the transmitter 131 and corresponding receiver 133 are configured to send and receive the partially processed signal 213 from the pre-transmission module 110 to the post-transmission module 120. In the embodiment of FIG. 2, the partially processed signal 213 is transmitted from the clipping module 113 to the transmitter 131, sent over the network 132 to the receiver 133, and then is transmitted to the splitter 121.


As schematically represented, FIG. 3 illustrates at least one preferred embodiment of a system 300 for narrow bandwidth digital signal processing. Generally speaking, the system 300 is a simpler variation of the embodiment of system 100, and has fewer components than the system 100 recited above. As such, the system 300 comprises an input device 101, a high pass filter 111, a first compressor 112, a splitter 121, a low pass filter 122, a pass through module 123, a mixer 124, and an output device 102. However, it should be understood that the system 300 embodiment may comprise the addition of the clipping module 113, tone control module 125, second compressor 126, and any combinations thereof.


Structurally and in at least one embodiment, the components recited in system 300 are similar to or the same as the components in system 100 above. Modulated signal 212 from the first compressor 112 however, is transmitted directly to the splitter 121. Further, the combined signal 224 from mixer 124 is sent directly to the output device 102.


As schematically represented, FIG. 4 illustrates at least one preferred embodiment of a broadcast variation of the system of FIG. 3. In this embodiment, system 400 comprises a pre-transmission module 110′ and a post-transmission module 120′. The pre-transmission module 110′ comprises a high pass filter 111 and a first compressor 112. The post-transmission module 120′ comprises a splitter 121, a low pass filter 122, a pass through module 123, and a mixer 124. Structurally, the components are as those recited in system 300 and system 200 above in at least one embodiment.


As diagrammatically represented, FIG. 5 illustrates another embodiment directed to a method for narrow bandwidth processing, which may, in various embodiments, incorporate the components from the systems referenced above. In this embodiment, an input audio signal is first filtered, as in 501, with a high pass filter. In at least one embodiment, the high pass filter comprises a resonant filter that passes frequencies above a first frequency and attenuates frequencies below the first frequency. Further, the first frequency may be selected from a range between 2.5 kHz and 3.2 kHz.


The filtered signal comprising frequencies above the first frequency are then processed by the first processing module, as in 1001, to create a partially processed signal. This step may further comprise modulating the filtered signal with a first compressor, as in 502, to create a modulated signal. The first compressor may comprise an automatic gain controller, or other device or combination of circuits capable of dynamic range compression. In some embodiments, the first compressor may comprise any device or combination of circuits capable of static level adjustments. The modulated signal may be transmitted as the partially processed signal, or may further be transmitted to a clipping module to limit the gain of the modulated signal, as in 503, in order to create the partially processed signal. The clipping module may comprise a clipper or clipping circuit configured to limit the amplitude or gain of an audio signal. The clipping module may further comprise soft clipping in order to avoid sharp points in the transfer characteristics of the signal.


The partially processed signal is then split using a splitter, as in 504, into a first signal and a second signal. In at least one embodiment, the splitter is configured such that the first and second signals are substantially the same signal as the partially processed signal. In other words, the partially processed signal diverges into a first signal and a second signal at the splitter.


The first signal is filtered, as in 505, with a low pass filter. In at least one embodiment, the low pass filter comprises a resonant filter that passes frequencies below a second frequency and attenuates frequencies above the second frequency. Further, and counterintuitive to expected function, the second frequency is set to be lower than the first frequency. In at least one embodiment, the second frequency may further be selected from the range between 700 Hz and 1000 Hz.


The second signal is passed through the pass through module, as in 506. The gain of the second signal is adjusted in at least one embodiment. The gain adjustment may be zero, may be adjusted downwards or upwards. In some embodiments the gain adjustment may be static, in others dynamic. In yet other embodiments, the pass through module may not comprise a gain adjustment component. Accordingly, the pass through module may comprise a device or circuit(s) for the dynamic or static gain adjustment of the signal.


The filtered first signal and gain-adjusted second signal are then processed with a second processing module, as in 1002. This step may further comprise combining the filtered first signal and the gain-adjusted second signal with a mixer in order to create a combined signal. The mixer is structured and/or configured to combine at least two signals and output a composite signal. The combined signal may be transmitted as the output signal, or may be further processed with a tone control module to create a controlled signal. The tone control module may comprise any device or combination of circuits appropriate for the equalization of an audio signal. In at least one embodiment, the tone control module comprises a parametric equalizer. The parametric equalizer may comprise one, two, three, or four bands. In other embodiments, the tone control module may comprise graphic equalizers or other equalizers. The controlled signal may be output as the output signal, or may be further modulated with a second compressor to create the output signal. The second compressor may comprise any device or combination of circuits capable of dynamic range compression or static compression.


Finally, the output signal is transmitted to an output device, as in 510. The output device may be configured for additional processing, or may be configured for playback of the output signal.


As diagrammatically represented, FIG. 6 illustrates another embodiment directed to a broadcasting variation of a method for narrow bandwidth processing. Structural and or configurable components of this embodiment may be the same or similar as those recited above.


In the embodiment of FIG. 6, an input audio signal is filtered, as in 501, with a high pass filter. In at least one embodiment, the high pass filter comprises a resonant filter that passes frequencies above a first frequency and attenuates frequencies below the first frequency. Further, the first frequency may be selected from a range between 2.5 kHz and 3.2 kHz.


The filtered signal is then processed by the first processing module, as in 1001. This step may comprise modulation by a first compressor, limiting the gain with a clipping module, or combinations thereof, in order to create a partially processed signal.


The partially processed signal is then transmitted with a transmitter, as in 601. The transmitter may comprise any device or combination of circuits capable of transmitting a signal, wired or wireless, over a communication network or platform. The partially processed signal is received with a receiver, as in 602. The receiver may comprise any device or combination of circuits capable of receiving the partially processed signal being transmitted by the transmitter.


The partially processed signal received by the receiver is then split into a first signal and second signal, as in 504, with a splitter.


The first signal is filtered with a low pass filter, as in 505. In at least one embodiment, the low pass filter comprises a resonant filter that passes frequencies below a second frequency and attenuates frequencies above the second frequency. Further, and counterintuitive to expected function, the second frequency is set to be lower than the first frequency. In at least one embodiment, the second frequency may further be selected from the range between 700 Hz and 1000 Hz.


The second signal is passed through a pass through module, as in 506. In at least one embodiment, the gain of the second signal is adjusted with the pass through module.


The filtered first signal and gain-adjusted second signal are then processed with a second processing module, as in 1002. This step may comprise combination of the two signals with a mixer, further processing with a tone control module, modulating with a second compressor, and combinations thereof, in order to create the output signal. Finally, the second processing module transmits an output signal as in 510 to the output device.


As diagrammatically represented, FIG. 7 illustrates another embodiment directed to a method for narrow bandwidth processing. Structural and or configurable components of this embodiment may be the same or similar as those recited above. In the embodiment of FIG. 7, an input audio signal is filtered, as in 701, with a high pass filter. In at least one embodiment, the high pass filter comprises a resonant filter that passes frequencies above a first frequency and attenuates frequencies below the first frequency. Further, the first frequency may be selected from a range between 2.5 kHz and 3.2 kHz.


The filtered signal is then modulated by a first compressor, as in 702, in order to create a partially processed signal. The partially processed signal is then split into a first signal and second signal, as in 703, with a splitter.


The first signal is filtered with a low pass filter, as in 704. In at least one embodiment, the low pass filter comprises a resonant filter that passes frequencies below a second frequency and attenuates frequencies above the second frequency. Further, and counterintuitive to expected function, the second frequency is set to be lower than the first frequency. In at least one embodiment, the second frequency may further be selected from the range between 700 Hz and 1000 Hz.


The second signal is passed through a pass through module, as in 705. In at least one embodiment, the gain of the second signal is adjusted with the pass through module. The filtered first signal and gain-adjusted second signal are combined in a mixer, as in 706. Finally, the combined signal is transmitted as an output signal, as in 707.


As diagrammatically represented, FIG. 8 illustrates another embodiment directed to a broadcasting variation of a method for narrow bandwidth processing. Structural and or configurable components of this embodiment may be the same or similar as those recited above.


In the embodiment of FIG. 8, an input audio signal is filtered, as in 701, with a high pass filter. In at least one embodiment, the high pass filter comprises a resonant filter that passes frequencies above a first frequency and attenuates frequencies below the first frequency. Further, the first frequency may be selected from a range between 2.5 kHz and 3.2 kHz. The filtered signal is then modulated by a first compressor, as in 702, in order to create a partially processed signal.


The partially processed signal is then transmitted with a transmitter, as in 801. The transmitter may comprise any device or combination of circuits capable of transmitting a signal, wired or wireless, over a communication network or platform. The partially processed signal is received with a receiver, as in 802. The receiver may comprise any device or combination of circuits capable of receiving the partially processed signal being transmitted by the transmitter.


The partially processed signal received by the receiver is then split into a first signal and second signal, as in 703, with a splitter.


The first signal is filtered with a low pass filter, as in 704. In at least one embodiment, the low pass filter comprises a resonant filter that passes frequencies below a second frequency and attenuates frequencies above the second frequency. Further, and counterintuitive to expected function, the second frequency is set to be lower than the first frequency. In at least one embodiment, the second frequency may further be selected from the range between 700 Hz and 1000 Hz.


The second signal is passed through a pass through module, as in 705. In at least one embodiment, the gain of the second signal is adjusted with the pass through module. The filtered first signal and gain-adjusted second signal are combined in a mixer, as in 706. Finally, the combined signal is transmitted as an output signal, as in 707.


The above methods may be completed in sequential order in at least one embodiment, though they may be completed in any other order. In at least one embodiment, the above methods may be exclusively performed, but in other embodiments, one or more steps of the methods as described may be skipped.


Since many modifications, variations and changes in detail can be made to the described preferred embodiment of the invention, it is intended that all matters in the foregoing description and shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents.


Now that the invention has been described,

Claims
  • 1. A system for narrow bandwidth digital signal processing of an input audio signal comprising: a first processing module configured to process a filtered signal to create a partially processed signal,a splitter configured to split the partially processed signal into a first signal and a second signal,a low pass filter configured to filter the first signal,a pass through module configured to adjust the gain of the second signal, anda second processing module configured to process the filtered first signal and gain-adjusted second signal to create an output signal, wherein said second processing module comprises: a mixer configured to combine the filtered first signal and gain adjusted second signal in order to create a combined signal;a tone control module configured to process the combined signal in order to create a controlled signal; anda second compressor configured to modulate the controlled signal to create the output signal.
  • 2. A system as recited in claim 1 wherein the first processing module comprises a first compressor configured to modulate the filtered signal to create the partially processed signal.
  • 3. A system as recited in claim 1 wherein the first processing module comprises a first compressor configured to modulate the filtered signal to create a modulated signal; a clipping module configured to adjust the gain of the modulated signal to create the partially processed signal.
  • 4. A system as recited in claim 1 further comprising a high pass filter configured to filter the input audio signal to create a filtered signal based on a first frequency.
  • 5. A system as recited in claim 4 wherein said first frequency is tunable.
  • 6. A system as recited in claim 4 wherein said first frequency is selected from the range between 2.5 kHz and 3.2 kHz.
  • 7. A system as recited in claim 1 wherein said low pass filter is configured to filter the first signal based on a second frequency.
  • 8. A system as recited in claim 7 wherein said second frequency is tunable.
  • 9. A system as recited in claim 7 wherein said second frequency is lower than said first frequency.
  • 10. A system as recited in claim 7 wherein said second frequency is selected from the range between 700 Hz and 1000 Hz.
  • 11. A system as recited in claim 1 wherein said tone control module comprises a parametric equalizer.
  • 12. A system for narrow bandwidth digital signal processing of an input audio signal comprising: a pre-transmission module configured to receive the input audio signal and create a partially processed signal, wherein said pre-transmission module comprises: a filter configured to filter the input audio signal to create a filtered signal,a first processing module configured to process the filtered signal to create the partially processed signal,a transmitter structured to transmit the partially processed signal,a receiver structured to receive the partially processed signal, anda post-transmission module configured to further process the partially processed signal to create an output signal, wherein said post-transmission module comprises: a splitter configured to split the received signal into a first signal and a second signal,a low pass filter configured to filter the first signal to create a filtered first signal,a pass through module configured to adjust the gain of the second signal to create a gain-adjusted second signal,a second processing module configured to process the filtered first signal and gain-adjusted second signal to create the output signal, wherein said second processing module comprises: a mixer configured to combine the filtered first signal and gain-adjusted second signal to create a combined signal;a tone control module configured the process the combined signal to create a controlled signal; anda second compressor configured to modulate the controlled signal to create the output signal.
  • 13. A system as recited in claim 12 wherein the first processing module comprises a first compressor configured to modulate the filtered signal to create the partially processed signal.
  • 14. A system as recited in claim 12 wherein the first processing module comprises a first compressor configured to modulate the filtered signal to create a modulated signal; a clipping module configured to adjust the gain of the modulated signal to create the partially processed signal.
  • 15. A system as recited in claim 12 wherein said filter comprises a high pass filter configured to filter the input audio signal based on a first frequency.
  • 16. A system as recited in claim 15 wherein said first frequency is selected from the range between 2.5 kHz and 3.2 kHz.
  • 17. A system as recited in claim 12 wherein said low pass filter is configured to filter the first signal based on a second frequency.
  • 18. A system as recited in claim 17 wherein said second frequency is lower than said first frequency.
  • 19. A system as recited in claim 17 wherein said second frequency is selected from the range between 700 Hz and 1000 Hz.
CLAIM OF PRIORITY

The present application is a continuation of U.S. Pat. No. 9,264,004, filed on Sep. 20, 2013, which is based on and claims priority under 35 U.S.C. Section 119(e) to provisional patent application having Ser. No. 61/834,071 and a filing date of Jun. 12, 2013, both of which are incorporated herein by reference.

US Referenced Citations (255)
Number Name Date Kind
3430007 Thielen Feb 1969 A
3795876 Takashi et al. Mar 1974 A
3813687 Geil May 1974 A
4162462 Endoh et al. Jul 1979 A
4184047 Langford Jan 1980 A
4218950 Uetrecht Aug 1980 A
4226533 Snowman Oct 1980 A
4257325 Bertagni Mar 1981 A
4353035 Schröder Oct 1982 A
4356558 Owen et al. Oct 1982 A
4363007 Haramoto et al. Dec 1982 A
4399474 Coleman, Jr. Aug 1983 A
4412100 Orban Oct 1983 A
4458362 Berkovitz Jul 1984 A
4517415 Laurence May 1985 A
4538297 Waller Aug 1985 A
4549289 Schwartz et al. Oct 1985 A
4584700 Scholz Apr 1986 A
4602381 Cugnini et al. Jul 1986 A
4612665 Inami et al. Sep 1986 A
4641361 Rosback Feb 1987 A
4677645 Kaniwa et al. Jun 1987 A
4696044 Waller, Jr. Sep 1987 A
4701953 White Oct 1987 A
4704726 Gibson Nov 1987 A
4715559 Fuller Dec 1987 A
4739514 Short et al. Apr 1988 A
4815142 Imreh Mar 1989 A
4856068 Quatieri, Jr. et al. Aug 1989 A
4887299 Cummins et al. Dec 1989 A
4997058 Bertagni Mar 1991 A
5007707 Bertagni Apr 1991 A
5073936 Gurike et al. Dec 1991 A
5133015 Scholz Jul 1992 A
5195141 Jang Mar 1993 A
5210806 Kihara May 1993 A
5239997 Guarino et al. Aug 1993 A
5355417 Burdisso et al. Oct 1994 A
5361381 Short Nov 1994 A
5384856 Kyouno Jan 1995 A
5420929 Geddes et al. May 1995 A
5425107 Bertagni et al. Jun 1995 A
5463695 Werrbach Oct 1995 A
5465421 McCormick et al. Nov 1995 A
5467775 Callahan et al. Nov 1995 A
5473214 Hildebrand Dec 1995 A
5515444 Burdisso et al. May 1996 A
5539835 Bertagni et al. Jul 1996 A
5541866 Sato et al. Jul 1996 A
5572443 Emoto et al. Nov 1996 A
5615275 Bertagni Mar 1997 A
5617480 Ballard et al. Apr 1997 A
5638456 Conley et al. Jun 1997 A
5640685 Komoda Jun 1997 A
5671287 Gerzon Sep 1997 A
5693917 Bertagni et al. Dec 1997 A
5699438 Smith et al. Dec 1997 A
5727074 Hildebrand Mar 1998 A
5737432 Werrbach Apr 1998 A
5828768 Eatwell et al. Oct 1998 A
5832097 Armstrong et al. Nov 1998 A
5838805 Warnaka et al. Nov 1998 A
5848164 Levine Dec 1998 A
5872852 Dougherty Feb 1999 A
5901231 Parrella et al. May 1999 A
5990955 Koz Nov 1999 A
6002777 Grasfield et al. Dec 1999 A
6058196 Heron May 2000 A
6078670 Beyer Jun 2000 A
6093144 Jaeger et al. Jul 2000 A
6108431 Bachler Aug 2000 A
6195438 Yumoto Feb 2001 B1
6201873 Dal Farra Mar 2001 B1
6202601 Ouellette et al. Mar 2001 B1
6208237 Saiki et al. Mar 2001 B1
6263354 Gandhi Jul 2001 B1
6285767 Klayman Sep 2001 B1
6292511 Goldston et al. Sep 2001 B1
6317117 Goff Nov 2001 B1
6318797 Böhm et al. Nov 2001 B1
6332029 Azima et al. Dec 2001 B1
6343127 Billoud Jan 2002 B1
6518852 Derrick Feb 2003 B1
6529611 Kobayashi et al. Mar 2003 B2
6535846 Shashoua Mar 2003 B1
6570993 Fukuyama May 2003 B1
6587564 Cusson Jul 2003 B1
6618487 Azima et al. Sep 2003 B1
6661897 Smith Dec 2003 B2
6661900 Allred et al. Dec 2003 B1
6772114 Sluijter et al. Aug 2004 B1
6847258 Ishida et al. Jan 2005 B2
6871525 Withnall et al. Mar 2005 B2
6907391 Bellora et al. Jun 2005 B2
6999826 Zhou Feb 2006 B1
7006653 Guenther Feb 2006 B2
7016746 Wiser et al. Mar 2006 B2
7024001 Nakada Apr 2006 B1
7058463 Ruha et al. Jun 2006 B1
7123728 King et al. Oct 2006 B2
7254243 Bongiovi Aug 2007 B2
7266205 Miller Sep 2007 B2
7274795 Bongiovi Sep 2007 B2
7519189 Bongiovi Apr 2009 B2
7577263 Tourwe Aug 2009 B2
7613314 Camp, Jr. Nov 2009 B2
7676048 Tsutsui Mar 2010 B2
7711442 Ryle et al. May 2010 B2
7747447 Christensen Jun 2010 B2
7764802 Oliver Jul 2010 B2
7778718 Janke et al. Aug 2010 B2
7916876 Helsloot Mar 2011 B1
8068621 Okabayashi et al. Nov 2011 B2
8144902 Johnston Mar 2012 B2
8160274 Bongiovi Apr 2012 B2
8175287 Ueno et al. May 2012 B2
8218789 Bharitkar Jul 2012 B2
8229136 Bongiovi Jul 2012 B2
8284955 Bongiovi et al. Oct 2012 B2
8385864 Dickson Feb 2013 B2
8462963 Bongiovi Jun 2013 B2
8472642 Bongiovi Jun 2013 B2
8503701 Miles et al. Aug 2013 B2
8565449 Bongiovi Oct 2013 B2
8619998 Walsh et al. Dec 2013 B2
8705765 Bongiovi Apr 2014 B2
8879743 Mitra Nov 2014 B1
9195433 Bongiovi Nov 2015 B2
9264004 Bongiovi et al. Feb 2016 B2
9276542 Bongiovi Mar 2016 B2
9281794 Bongiovi Mar 2016 B1
9344828 Bongiovi May 2016 B2
9348904 Bongiovi May 2016 B2
9350309 Bongiovi et al. May 2016 B2
9397629 Bongiovi Jul 2016 B2
9398394 Bongiovi Jul 2016 B2
9413321 Bongiovi Aug 2016 B2
9564146 Bongiovi Feb 2017 B2
20010008535 Lanigan Jul 2001 A1
20010043704 Schwartz Nov 2001 A1
20020057808 Goldstein May 2002 A1
20020094096 Paritsky et al. Jul 2002 A1
20030016838 Paritsky et al. Jan 2003 A1
20030023429 Claesson Jan 2003 A1
20030035555 King et al. Feb 2003 A1
20030043940 Janky et al. Mar 2003 A1
20030112088 Bizjak Jun 2003 A1
20030138117 Goff Jul 2003 A1
20030142841 Wiegand Jul 2003 A1
20030164546 Giger Sep 2003 A1
20030179891 Rabinowitz et al. Sep 2003 A1
20030216907 Thomas Nov 2003 A1
20040003805 Ono et al. Jan 2004 A1
20040022400 Magrath Feb 2004 A1
20040044804 Mac Farlane Mar 2004 A1
20040086144 Kallen May 2004 A1
20040103588 Allaci Jun 2004 A1
20040138769 Akiho Jul 2004 A1
20040146170 Zint Jul 2004 A1
20040189264 Matsuura Sep 2004 A1
20050090295 Ali et al. Apr 2005 A1
20050117771 Vosburgh et al. Jun 2005 A1
20050129248 Kraemer et al. Jun 2005 A1
20050175185 Korner Aug 2005 A1
20050201572 Lindahl et al. Sep 2005 A1
20050249272 Kirkeby et al. Nov 2005 A1
20050254564 Tsutsui Nov 2005 A1
20060034467 Sleboda et al. Feb 2006 A1
20060064301 Aguilar et al. Mar 2006 A1
20060098827 Paddock et al. May 2006 A1
20060115107 Vincent et al. Jun 2006 A1
20060126851 Yuen et al. Jun 2006 A1
20060126865 Blamey et al. Jun 2006 A1
20060138285 Oleski et al. Jun 2006 A1
20060140319 Eldredge et al. Jun 2006 A1
20060153281 Karlsson Jul 2006 A1
20060189841 Pluvinage Aug 2006 A1
20060285696 Houtsma Dec 2006 A1
20060291670 King et al. Dec 2006 A1
20070010132 Nelson Jan 2007 A1
20070030994 Ando et al. Feb 2007 A1
20070119421 Lewis et al. May 2007 A1
20070165872 Bridger et al. Jul 2007 A1
20070173990 Smith et al. Jul 2007 A1
20070177459 Behn Aug 2007 A1
20070206643 Egan Sep 2007 A1
20070223713 Gunness Sep 2007 A1
20070223717 Boersma Sep 2007 A1
20070253577 Yen et al. Nov 2007 A1
20080031462 Walsh et al. Feb 2008 A1
20080040116 Cronin Feb 2008 A1
20080069385 Revit Mar 2008 A1
20080093157 Drummond et al. Apr 2008 A1
20080112576 Bongiovi May 2008 A1
20080123870 Stark May 2008 A1
20080123873 Bjorn-Josefsen et al. May 2008 A1
20080137876 Kassal et al. Jun 2008 A1
20080137881 Bongiovi Jun 2008 A1
20080165989 Seil et al. Jul 2008 A1
20080181424 Schulein et al. Jul 2008 A1
20080219459 Bongiovi et al. Sep 2008 A1
20080255855 Lee et al. Oct 2008 A1
20090022328 Neugebauer et al. Jan 2009 A1
20090054109 Hunt Feb 2009 A1
20090062946 Bongiovi et al. Mar 2009 A1
20090086996 Bongiovi et al. Apr 2009 A1
20090282810 Leone et al. Nov 2009 A1
20090290725 Huang Nov 2009 A1
20090296959 Bongiovi Dec 2009 A1
20100166222 Bongiovi Jul 2010 A1
20100256843 Bergstein et al. Oct 2010 A1
20100278364 Berg Nov 2010 A1
20100303278 Sahyoun Dec 2010 A1
20110013736 Tsukamoto et al. Jan 2011 A1
20110087346 Larsen et al. Apr 2011 A1
20110194712 Potard Aug 2011 A1
20110230137 Hicks et al. Sep 2011 A1
20110257833 Trush et al. Oct 2011 A1
20120014553 Bonanno Jan 2012 A1
20120099741 Gotoh et al. Apr 2012 A1
20120170759 Yuen et al. Jul 2012 A1
20120189131 Ueno et al. Jul 2012 A1
20120213034 Imran Aug 2012 A1
20120213375 Mahabub et al. Aug 2012 A1
20120302920 Bridger et al. Nov 2012 A1
20130083958 Katz et al. Apr 2013 A1
20130121507 Bongiovi et al. May 2013 A1
20130162908 Son et al. Jun 2013 A1
20130163783 Burlingame Jun 2013 A1
20130169779 Pedersen Jul 2013 A1
20130220274 Deshpande et al. Aug 2013 A1
20130227631 Sharma et al. Aug 2013 A1
20130242191 Leyendecker Sep 2013 A1
20130288596 Suzuki et al. Oct 2013 A1
20130338504 Demos et al. Dec 2013 A1
20140067236 Henry et al. Mar 2014 A1
20140100682 Bongiovi Apr 2014 A1
20140112497 Bongiovi Apr 2014 A1
20140153730 Habboushe et al. Jun 2014 A1
20140153765 Gan et al. Jun 2014 A1
20140185829 Bongiovi Jul 2014 A1
20140261301 Leone Sep 2014 A1
20140369504 Bongiovi Dec 2014 A1
20140369521 Bongiovi Dec 2014 A1
20140379355 Hosokawsa Dec 2014 A1
20150215720 Carroll Jul 2015 A1
20150297169 Copt et al. Oct 2015 A1
20150297170 Copt et al. Oct 2015 A1
20160036402 Bongiovi et al. Feb 2016 A1
20160044436 Copt et al. Feb 2016 A1
20160240208 Bongiovi et al. Aug 2016 A1
20160258907 Butera, III et al. Sep 2016 A1
20160344361 Bongiovi et al. Nov 2016 A1
20170033755 Bongiovi Feb 2017 A1
20170041732 Bongiovi Feb 2017 A1
Foreign Referenced Citations (139)
Number Date Country
2005274099 Oct 2010 AU
20070325096 Apr 2012 AU
2012202127 Jul 2014 AU
96114177 Feb 1999 BR
96113723 Jul 1999 BR
2533221 Jun 1995 CA
2161412 Apr 2000 CA
2576829 Jul 2014 CA
1173268 Feb 1998 CN
1221528 Jun 1999 CN
1910816 Feb 2007 CN
101536541 Sep 2009 CN
101946526 Jan 2011 CN
102265641 Nov 2011 CN
102652337 Aug 2012 CN
103004237 Mar 2013 CN
0780050323X May 2013 CN
203057339 Jul 2013 CN
0206746 Aug 1992 EP
0541646 Jan 1995 EP
0580579 Jun 1998 EP
0698298 Feb 2000 EP
0932523 Jun 2000 EP
0666012 Nov 2002 EP
2218599 Oct 1998 ES
2249788 Oct 1998 ES
2219949 Aug 1999 ES
2003707 Mar 1979 GB
2320393 Dec 1996 GB
P0031074 Jun 2012 ID
260362 Apr 2014 IN
198914 Jul 2014 IS
3150910 Jun 1991 JP
7106876 Apr 1995 JP
2005500768 Jan 2005 JP
4787255 Jul 2011 JP
5048782 Jul 2012 JP
201543561 Mar 2015 JP
1020040022442 Mar 2004 KR
1020090101209 Sep 2009 KR
101503541 Mar 2015 KR
J001182 Oct 2013 MO
274143 Aug 2005 MX
301172 Nov 2006 MX
315197 Nov 2013 MX
553744 Jan 2009 NZ
574141 Apr 2010 NZ
557201 May 2012 NZ
12009501073 Nov 2014 PH
2407142 Dec 2010 RU
2483363 May 2013 RU
152762 Dec 2011 SG
155213 Feb 2013 SG
1319288 Jun 1987 SU
WO 9219080 Oct 1992 WO
WO 9311637 Jun 1993 WO
WO 9321743 Oct 1993 WO
WO 9427331 Nov 1994 WO
WO 9514296 May 1995 WO
WO 9531805 Nov 1995 WO
WO 9535628 Dec 1995 WO
WO 9601547 Jan 1996 WO
WO 9611465 Apr 1996 WO
WO 9708847 Mar 1997 WO
WO 9709698 Mar 1997 WO
WO 9709840 Mar 1997 WO
WO 9709841 Mar 1997 WO
WO 9709842 Mar 1997 WO
WO 9709843 Mar 1997 WO
WO 9709844 Mar 1997 WO
WO 9709845 Mar 1997 WO
WO 9709846 Mar 1997 WO
WO 9709848 Mar 1997 WO
WO 9709849 Mar 1997 WO
WO 9709852 Mar 1997 WO
WO 9709853 Mar 1997 WO
WO 9709854 Mar 1997 WO
WO 9709855 Mar 1997 WO
WO 9709856 Mar 1997 WO
WO 9709857 Mar 1997 WO
WO 9709858 Mar 1997 WO
WO 9709859 Mar 1997 WO
WO 9709861 Mar 1997 WO
WO 9709862 Mar 1997 WO
WO 9717818 May 1997 WO
WO 9717820 May 1997 WO
WO 9813942 Apr 1998 WO
WO 9816409 Apr 1998 WO
WO 9828942 Jul 1998 WO
WO 9831188 Jul 1998 WO
WO 9834320 Aug 1998 WO
WO 9839947 Sep 1998 WO
WO 9842536 Oct 1998 WO
WO 9843464 Oct 1998 WO
WO 9852381 Nov 1998 WO
WO 9852383 Nov 1998 WO
WO 9853638 Nov 1998 WO
WO 9902012 Jan 1999 WO
WO 9908479 Feb 1999 WO
WO 9911490 Mar 1999 WO
WO 9912387 Mar 1999 WO
WO 9913684 Mar 1999 WO
WO 9921397 Apr 1999 WO
WO 9935636 Jul 1999 WO
WO 9935883 Jul 1999 WO
WO 9937121 Jul 1999 WO
WO 9938155 Jul 1999 WO
WO 9941939 Aug 1999 WO
WO 9952322 Oct 1999 WO
WO 9952324 Oct 1999 WO
WO 9956497 Nov 1999 WO
WO 9962294 Dec 1999 WO
WO 9965274 Dec 1999 WO
WO 0001264 Jan 2000 WO
WO 0002417 Jan 2000 WO
WO 0007408 Feb 2000 WO
WO 0007409 Feb 2000 WO
WO 0013464 Mar 2000 WO
WO 0015003 Mar 2000 WO
WO 0033612 Jun 2000 WO
WO 0033613 Jun 2000 WO
WO 03104924 Dec 2003 WO
WO 2006020427 Feb 2006 WO
WO 2007092420 Aug 2007 WO
WO 2008067454 Jun 2008 WO
WO 2009070797 Jun 2009 WO
WO 2009114746 Sep 2009 WO
WO 2009155057 Dec 2009 WO
WO 2010027705 Mar 2010 WO
WO 2010051354 May 2010 WO
WO 2011081965 Jul 2011 WO
WO 2013055394 Apr 2013 WO
WO 2013076223 May 2013 WO
WO 2014201103 Dec 2014 WO
WO 2015061393 Apr 2015 WO
WO 2015077681 May 2015 WO
WO 2015161034 Oct 2015 WO
WO 2016019263 Feb 2016 WO
WO 2016022422 Feb 2016 WO
Non-Patent Literature Citations (2)
Entry
NovaSound Int., http://www.novasoundint.com/new—page—t.htm, 2004.
Sepe, Michael. “Density & Molecular Weight in Polyethylene.” Plastics Technology. Gardner Business Media, Inc., May 29, 2012. Web. <http://www.ptonline.com/columns/density-molecular-weight-in-polethylene>.
Related Publications (1)
Number Date Country
20160240208 A1 Aug 2016 US
Provisional Applications (1)
Number Date Country
61834071 Jun 2013 US
Continuations (1)
Number Date Country
Parent 14032347 Sep 2013 US
Child 15044768 US