The present invention relates to a system and method for wireless communications, and, in particular embodiments, to a system and method for network detection and selection.
The use of wireless networks (e.g., WiFi) is becoming an important component of cellular operation to help operators meet market demand and increase their competitive edge. Cellular operators are motivated to integrate WiFi access into their existing cellular networks, and many existing mobile devices have dual mode (WiFi and cellular) connection capability. One aspect of operating a WiFi capable device is detecting and selecting an appropriate network connection. This network detection and selection technology may be facilitated through the use of various technical standards. For example, the WiFi Alliance is currently defining a Hotspot 2.0 specification to help a dual mode or WiFi-only device better select an appropriate WiFi network connection. Other standards, such as IEEE 802.11u or 3GPP may also help define mechanisms to help devices detect and select an appropriate network, such as a wireless local area network (WLAN) in a fixed network. Further, these network detection and selection technologies may be implemented via policies that may be statically pre-configured by the operator on a user equipment (UE) or dynamically set by the operator by periodically sending the UE a network detection and selection policy (e.g., an access network discovery and selection function (ANDSF) policy in a 3GPP network).
These and other problems are generally solved or circumvented, and technical advantages are generally achieved, by preferred embodiments of the present invention which are systems and methods for network detection and selection.
In accordance with an embodiment, a method for network selection includes receiving, by a user equipment (UE), a network detection and selection policy including a load threshold element, the UE further receiving a load information element associated with an access network (AN), and applying the network detection and selection policy to the AN. Applying the network detection and selection policy includes comparing the load information element with the load threshold element.
In accordance with another embodiment, a user equipment (UE) includes a processor and a computer readable storage medium storing programming for execution by the processor, the programming including instructions to receive a network detection and selection policy including a load threshold element, receive a load information element associated with an access network (AN), and apply the network detection and selection policy to the AN. The instructions to apply the network detection and selection policy includes further instructions to compare a load level indicated by the load information element with the load threshold element.
In accordance with another embodiment, setting a network selection policy includes sending, by a network device, a network detection and selection policy including a load threshold element, for use by the UE in applying the network detection and selection policy by comparing a load level indicated by a load information element associated with an access network (AN) with the load threshold element.
In accordance with another embodiment, a network device includes a processor and a computer readable storage medium storing programming for execution by the processor, the programming including instructions to send to a user equipment (UE) a network detection and selection policy including a WAN traffic load threshold, for use by the UE in applying the network detection and selection policy by comparing a load level indicated by a load information element associated with an access network (AN) with the load threshold element.
In accordance with another embodiment, a method for updating a network selection policy includes receiving, by a user equipment (UE), a network detection and selection policy including a timer, wherein the timer specifies an update interval for when the UE should next check for an updated network detection and selection policy, waiting the duration of the update interval, checking, by the UE, for an updated network detection and selection policy.
In accordance with another embodiment, a user equipment (UE) includes a processor and a computer readable storage medium storing programming for execution by the processor, the programming including instructions to receive a network detection and selection policy including a timer, wherein the timer specifies an update interval for when the UE should next check for an updated network detection and selection policy, wait the duration of the update interval; check for an updated network detection and selection policy.
In accordance with yet another embodiment, a network device includes a processor and a computer readable storage medium storing programming for execution by the processor, the programming including instructions to send a user equipment (UE) a network detection and selection policy including a policy timer, wherein the policy timer indicates an interval for when the UE should next check for an updated network detection and selection policy.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
The making and using of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
UE 102 may then select a particular AP to connect to using network detection and selection policies. UE 102's operator may set these policies by periodically sending a network detection and selection policy to UE 102. For example, under 3GPP standards, an operator may set a network detection and selection policy for UE 102 using an access network discovery and selection function (ANDSF) within the operator's network.
UE 102 then gathers information about available APs and implements the network detection and selection policy set by the operator. Information gathering may be conducted over GAS using AP 104's IEEE 802.11u access network query protocol (ANQP), a query/response operation. The information provided through the ANQP typically includes the different features and available services of network 106. UE 102 may also gather information on AP 104 itself using various other control messages from AP 104 (e.g., AP 104's beacon or response probe). After UE 102 determines which AP to connect to, UE 102 carries out an authentication process, connects to an AP, and joins the AP's network. Network detection and selection policies, such as an ANDSF policy, may also set out parameters for determining when and how UE 102 changes connection to APs and/or networks.
Current network detection and selection policies (e.g., an ANDSF policy and the like) may be overly simplistic and fail to utilize the full range of available information to a UE in selecting an appropriate AN and corresponding network. Further, current methods to update network detection and selection policies may be inefficient and use unnecessary network resources.
Various embodiments are described with respect to preferred embodiments in a specific context, namely a wireless communications system operating in accordance with various Hotspot 2.0, IEEE802.11u, and/or 3GPP standards, wherein a network detection and selection policy may be implemented using a 3GPP standard (i.e., a network detection and selection policy being an ANDSF policy sent by an ANDSF server). Embodiments may also be applied, however, to other systems that may operate in accordance with a set of Hotspot 2.0, IEEE802.11u, 3GPP, or other standards, and a network detection and selection policy may be implemented according to a non-3GPP standard, such as a Hotspot 2.0 standard and the like. Embodiments may be implemented in, for example, 3GPP SA2 specification (23.402), or CT 24.402, 24.312. Furthermore, various embodiments are described with respect to connecting to wireless networks via access points, but various other forms of access networks (e.g., universal terrestrial radio access networks (UTRAN) or evolved UTRANs (E-UTRAN)) may be used to connect to a wireless network. Various embodiments may also be applied to WiFi access points (AP), access controller, ANDSF server, WiFi and cellular dual mode UEs, UEs with Hotspot 2.0 support, and the like.
The current policies for AN (e.g., AP) selection may be too broadly defined and may not utilize the full extent of information made available by current standards in making an appropriate selection. For example, Hotspot 2.0 standards support multiple frequency band operation for an AN, which allows a UE to operate in one of several frequency bands supported by an AN. In current network detection and selection policy, such as ANDSF policy, there is no consideration regarding frequency band information. Therefore, the smallest granularity of current network selection is per AN, not per frequency band supported by an AN.
An embodiment increases granularity of access technology selection and allows a UE to connect to different frequency bands supported by the available ANs. A frequency band element is added to the network detection and selection policy set by an operator. This frequency band element may include the detection of available bands at an AN and create a policy for selecting a particular frequency band.
For example,
Current network detection and selection policies may also fail to account for network traffic load. For example, IEEE 802.11u standards allow an AN (e.g., AP) to send information regarding wide area network (WAN) traffic load information through the AP's ANQP. The transmittable WAN traffic information may include WAN backhaul uplink load information, backhaul downlink load information, backhaul uplink speed, backhaul downlink speed, backhaul uplink bandwidth, backhaul downlink bandwidth, and the like. This WAN traffic load information could help improve load sharing in a network by preventing a UE from selecting a heavily-loaded network. However, current network detection and selection policy does not consider traffic load information for network selection, and specifically lacks consideration of load sharing cases. Further, current network detection and selection policies fail to properly account for situations where the UE may beneficially move to another network or to move from a wireless connection to WiFi due to its currently-associated network being overloaded.
An embodiment incorporates WAN traffic load threshold element into a network detection and selection policy (e.g., an ANDSF ISRP and/or ISMP). This traffic WAN traffic load threshold element may apply to either cellular or WLAN WAN traffic loads. The specific thresholds to be implemented are determined by operator policy, but the inclusion of a threshold may improve load sharing among networks, for example, by preventing a UE from selecting a heavily-loaded network.
In steps 404 and 406, the UE uses an ANQP query/response to receive a WAN traffic load information element from an AN. The AN may be an WiFi AP or some other form of AN (e.g., a UTRAN, or an E-UTRAN). This WAN traffic load information element may indicate a wide range of information related to the WAN traffic load level. For example, the WAN traffic load information may inform the UE that the WAN uplink load at the AN is at 90%. The UE then implements the ANDSF policy in step 408 by comparing the WAN load level with the WAN load threshold. Because the uplink load does not meet the threshold (actual uplink load is at 90%, which is greater than the 80% threshold), the UE determines that the AN should not be selected. The numbers in this example are for illustrative purposes only; the particulars as to the number and types of thresholds set in a network detection and selection policy depends the operator's preferences.
The inclusion of a WAN traffic load threshold in a network detection and selection policy allows the UE to determine which ANs are appropriate candidates for selection. An AN's traffic load meeting a threshold does not necessarily require the UE to select the AN. Other considerations set by the network detection and selection policy may still apply. The threshold merely acts to create a list of potential candidate ANs the UE could select. In an alternative embodiment, the WAN traffic load threshold may also act as a trigger point for when the UE should decide to change to join an alternative network because the network the UE is currently associated with has become overloaded.
In an alternative embodiment, the UE may need to calculate the WAN traffic load level for comparison against a WAN traffic load threshold. For example, the network detection and selection policy may contain a minimum available WAN backhaul bandwidth threshold. However, the WAN traffic load information element sent by the AN may not include information regarding WAN backhaul bandwidth. The AN may instead send the UE information regarding WAN throughput. The UE may calculate the appropriate WAN bandwidth load level associated with the AN using known equations and the information received regarding WAN throughput. In an embodiment, calculating the WAN bandwidth load level includes predicting and expected WAN bandwidth load level. The UE may then use the calculated WAN bandwidth load level to compare against the threshold.
Further, current network detection and selection policies fail to account for available air-interface load information. An AN may provide information on the air-interface load, for example, via its beacon or probe response. The AN may be an WiFi AP or some other form of AN (e.g., a UTRAN, or an E-UTRAN). According to IEEE 802.11-2007 standards, the AN can include the basic service set (BSS) load information element on its beacon or probe response. This air-interface load element may include information about the number of UEs currently associated with this AN, the channel utilization percentage (percentage of time the AN sensed it was busy), and the remaining admission control time that may be allocated to a UE. This air-interface load information may indicate the applicable quality of service (QoS) for a UE if it connects to the AN. Currently, network detection and selection policy (e.g. ANDSF ISRP/ISMP policy) does not consider air-interface information for network selection.
An embodiment provides for a network detection and selection policy including an air-interface load threshold element. This enhanced network detection and selection policy provides better AN/network selection by setting air-interface load thresholds for a UE. The air-interface load threshold may be a BSS load threshold, an air-interface QoS threshold, a number of user equipment (UE) associated with an AN threshold; a channel utilization percentage of an AN threshold, a remaining admission control time available to a UE threshold, etc. The inclusion of this threshold may allow UEs to only select an AN that can support an appropriate load level.
An alternative embodiment includes air-interface load thresholds with an evaluation period in a network detection and selection policy for air-interface load evaluation. Evaluation periods may be implemented to avoid a ping pong situation (i.e., when an UE wants to connect to multiple ANs at the same time). The evaluation period sets up a time frame for considering applicable air-interface load information when applying the policy. Air-interface load information outside of the time frame would not be considered. For example, a network detection and selection policy with an evaluation period may require a UE to compare the air-interface load threshold with the averaged BSS load values during the evaluation period from an AN.
In step 504, the UE uses an AP's beacon (illustrated in
The inclusion of an air-interface load threshold element in a network detection and selection policy allows the UE to determine which ANs are appropriate candidates for selection. As in the case regarding WAN threshold elements, meeting the threshold does guarantee the UE will select the AN because other considerations set by the network detection and selection policy may still apply. The threshold merely acts to create a list of potential candidate ANs the UE could select. In an alternative embodiment, the air-interface load threshold may also act as a trigger point for when the UE should decide to change to join an alternate AN (or join an alternate network) because the AN the UE is currently associated with can no longer support a desired air-interface load.
Typically, there are two ways for the policy to be sent to a UE: push mode (where the network pushes policy to the UE) or pull mode (where the UE requests policy from network). Due to push methods being dependent on network server implementation, which may be unsuitable for moving UEs, pull methods are more practical and generally preferred. An aspect of implementing a pull method is the synchronization of a UE with the network server to obtain the latest policy. For example, current 3GPP 24.312 standards define an update policy indication for a UE to determine whether or not to request an ANDSF policy update. A problem with this approach is the network server does not know what policy is the UE currently uses and what updates are needed. In some cases, a UE may only require a portion of its policy to be updated, instead of the entire policy. An embodiment creates a new policy indication and procedure associated with updating network detection and selection policies.
An embodiment further includes in step 1002, wherein the UE receives a policy version element along with the network detection and selection policy from the network that indicates the current existing policy at the UE (version 1.1). In step 1008, when the UE checks for an updated policy, the network may send a latest policy version element to the UE indicating the most current network detection and selection policy known to the network (version 1.2). The UE uses the latest policy version element returned by network to compare against the existing policy version element to determine if an update is needed. Because version 1.2 is fresher than version 1.1, in step 1010, the UE pulls the latest network detection and selection policy (version 1.2) from the network. In an alternative embodiment, the UE may also use the policy version element to determine which portions of its policy is outdated, triggering the UE to only pull those portions of the updated policy that are different from the exiting policy at the UE.
Alternatively, if the latest policy version element indicates the latest policy is not fresher than the current policy at the UE (not shown), the UE determines no update is needed. The UE may then wait the duration of the update interval to check for an updated policy again. If no update is needed again (i.e., the latest policy version element indicates that the policy has not been updated), the UE waits the duration of the update interval and then checks for a policy update. In an iterative process, the UE may constantly check the network for an updated policy after an update interval until the UE determines an update is needed.
In alternative embodiment, the policy version element may also be used by the network to determine whether to push a new policy to the UE. Further, based on the UE's query, the network may only push the portion of the policy that differs from the existing policy at the UE.
The bus may be one or more of any type of several bus architectures including a memory bus or memory controller, a peripheral bus, video bus, or the like. The CPU may comprise any type of electronic data processor. The memory may comprise any type of system memory such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous DRAM (SDRAM), read-only memory (ROM), a combination thereof, or the like. In an embodiment, the memory may include ROM for use at boot-up, and DRAM for program and data storage for use while executing programs.
The mass storage device may comprise any type of storage device configured to store data, programs, and other information and to make the data, programs, and other information accessible via the bus. The mass storage device may comprise, for example, one or more of a solid state drive, hard disk drive, a magnetic disk drive, an optical disk drive, or the like.
The video adapter and the I/O interface provide interfaces to couple external input and output devices to the processing unit. As illustrated, examples of input and output devices include the display coupled to the video adapter and the mouse/keyboard/printer coupled to the I/O interface. Other devices may be coupled to the processing unit, and additional or fewer interface cards may be utilized. For example, a serial interface such as Universal Serial Bus (USB) (not shown) may be used to provide an interface for a printer.
The processing unit also includes one or more network interfaces, which may comprise wired links, such as an Ethernet cable or the like, and/or wireless links to access nodes or different networks. The network interface allows the processing unit to communicate with remote units via the networks. For example, the network interface may provide wireless communication via one or more transmitters/transmit antennas and one or more receivers/receive antennas. In an embodiment, the processing unit is coupled to a local-area network or a wide-area network for data processing and communications with remote devices, such as other processing units, the Internet, remote storage facilities, or the like.
The following references are related to subject matter of the present application. Each of these references is incorporated herein by reference in its entirety:
While this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.
This application claims the benefit of U.S. Provisional Application No. 61/647,287, filed on May 15, 2012, entitled “System and Method for Access Network Discovery and Selection Function,” which application is hereby incorporated herein by reference. This application further claims the benefit of U.S. Provisional Application No. 61/665,712, filed on Jun. 28, 2012, entitled “System and Method for Network Selection with Quality of Service Consideration,” which application is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
20100323698 | Rune et al. | Dec 2010 | A1 |
20110093845 | Kwak | Apr 2011 | A1 |
20110138037 | Sharma et al. | Jun 2011 | A1 |
20120042076 | Kawa et al. | Feb 2012 | A1 |
20120324100 | Tomici et al. | Dec 2012 | A1 |
20140080539 | Scherzer et al. | Mar 2014 | A1 |
20140089475 | Limont et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
101304366 | Nov 2008 | CN |
102395157 | Mar 2012 | CN |
2237610 | Oct 2010 | EP |
2006079783 | Aug 2006 | WO |
Entry |
---|
IEEE Std. 802.11u, IEEE Standard for Information Technology; Telecommunications and Information Exchange Between Systems; Local and Metropolitan Area Networks; Specific Requirements; “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 9: Interworking with External Networks,” Feb. 25, 2011, IEEE, 208 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the INternational Searching Authority, or the Declaration received in Application No. PCT/CN2013/075652, mailed Aug. 22, 2013, 10 pages. |
Extended European Search Report received in Application No. 123790227.6-1857 mailed Feb. 19, 2015, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20130308445 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
61647287 | May 2012 | US | |
61665712 | Jun 2012 | US |