System and method for news events detection and visualization

Information

  • Patent Grant
  • 10929436
  • Patent Number
    10,929,436
  • Date Filed
    Tuesday, December 12, 2017
    6 years ago
  • Date Issued
    Tuesday, February 23, 2021
    3 years ago
  • CPC
  • Field of Search
    • CPC
    • G06F17/30011
    • G06F16/93
    • G06F17/30598
    • G06F16/285
    • G06F17/30705
    • G06F16/35
    • G06F17/3071
    • G06F16/355
    • G06F17/30699
    • G06F16/335
    • G06F16/287
    • G06F16/9535
    • G06F16/24578
  • International Classifications
    • G06F7/02
    • G06F16/00
    • G06F16/28
    • G06F16/24
    • G06F16/35
    • G06F16/93
    • G06F16/9535
    • G06F16/2457
    • G06F40/106
    • G06F3/0482
    • G06F3/0484
    • Term Extension
      433
Abstract
Systems and methods are disclosed for news events detection and visualization. In accordance with one implementation, a method is provided for news events detection and visualization. The method includes, for example, obtaining one or more documents, the one or more documents being grouped into one or more clusters having a score, and the one or more clusters being grouped into one or more megaclusters, presenting information associated with the one or more documents on one or more timelines, wherein the one or more documents are grouped into different megaclusters being presented in a visually distinct way, and filtering the presented information based on the scores associated with the one or more clusters.
Description
BACKGROUND

Vast amounts of data are readily available to readers, analysts, and researchers today, on the one hand allowing them to perform more complicated and detailed data analyses than ever, but on the other hand making it more difficult to quickly sort through the data. Automatically characterizing, grouping, and visually presenting the data in a concise and informative way can help users to identify data that is most relevant for their particular needs.





BRIEF DESCRIPTION OF THE DRAWINGS

Reference will now be made to the accompanying drawings, which illustrate exemplary embodiments of the present disclosure. In the drawings:



FIG. 1 is a block diagram of an exemplary electronic device, consistent with embodiments of the present disclosure;



FIG. 2 is a flowchart of an exemplary method for clustering documents, consistent with embodiments of the present disclosure;



FIG. 3 is a flowchart of an exemplary method for adding a new cluster to a matching megacluster, consistent with embodiments of the present disclosure;



FIG. 4 illustrates an exemplary user interface, consistent with embodiments of the present disclosure; and



FIG. 5 illustrates another exemplary user interface, consistent with embodiments of the present disclosure.





DESCRIPTION OF EXEMPLARY EMBODIMENTS

Reference will now be made in detail to several exemplary embodiments of the present disclosure, including those illustrated in the accompanying drawings. Whenever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.


Embodiments disclosed herein are directed to, among other things, to systems and methods that can analyze large volumes of documents (e.g., news articles), automatically group the documents into clusters (e.g., news events), further group the clusters into megaclusters (e.g., news storylines), and present the documents, the clusters, and the megaclusters to the user in a concise and informative manner. For example, the systems and methods can obtain a document, obtain from the document a plurality of tokens, obtain a document vector based on a plurality of frequencies associated with the plurality of tokens, obtain one or more clusters of documents, each cluster associated with a plurality of documents and a cluster vector, determine a matching cluster from the one or more clusters based at least on the similarity between the document vector and the cluster vector of the matching cluster, and update a database to associate the document with the matching cluster.


According to some embodiments, the operations, techniques, and/or components described herein can be implemented by an electronic device, which can include one or more special-purpose computing devices. The special-purpose computing devices can be hard-wired to perform the operations, techniques, and/or components described herein, or can include digital electronic devices such as one or more application-specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs) that are persistently programmed to perform the operations, techniques and/or components described herein, or can include one or more hardware processors programmed to perform such features of the present disclosure pursuant to program instructions in firmware, memory, other storage, or a combination. Such special-purpose computing devices can also combine custom hard-wired logic, ASICs, or FPGAs with custom programming to accomplish the technique and other features of the present disclosure. The special-purpose computing devices can be desktop computer systems, portable computer systems, handheld devices, networking devices, or any other device that incorporates hard-wired and/or program logic to implement the techniques and other features of the present disclosure.


The one or more special-purpose computing devices can be generally controlled and coordinated by operating system software, such as iOS, Android, Blackberry, Chrome OS, Windows XP, Windows Vista, Windows 7, Windows 8, Windows Server, Windows CE, Unix, Linux, SunOS, Solaris, VxWorks, or other compatible operating systems. In other embodiments, the computing device can be controlled by a proprietary operating system. Operating systems control and schedule computer processes for execution, perform memory management, provide file system, networking, I/O services, and provide a user interface functionality, such as a graphical user interface (“GUI”), among other things.


By way of example, FIG. 1 is a block diagram that illustrates an implementation of an electronic device 110, which, as described above, can comprise one or more electronic devices. Electronic device 110 includes a bus 102 or other communication mechanism for communicating information, and one or more hardware processors 104, coupled with bus 102 for processing information. One or more hardware processors 104 can be, for example, one or more microprocessors.


Electronic device 110 also includes a main memory 106, such as a random access memory (RAM) or other dynamic storage device, coupled to bus 102 for storing information and instructions to be executed by processor 104. Main memory 106 also can be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 104. Such instructions, when stored in non-transitory storage media accessible to one or more processors 104, render electronic device 110 into a special-purpose machine that is customized to perform the operations specified in the instructions.


Electronic device 110 further includes a read only memory (ROM) 108 or other static storage device coupled to bus 102 for storing static information and instructions for processor 104. A storage device 150, such as a magnetic disk, optical disk, or USB thumb drive (Flash drive), etc., is provided and coupled to bus 102 for storing information and instructions.


Electronic device 110 can be coupled via bus 102 to a display 112, such as a cathode ray tube (CRT), an LCD display, or a touchscreen, for displaying information to a computer user. An input device 114, including alphanumeric and other keys, is coupled to bus 102 for communicating information and command selections to processor 104. Another type of user input device is cursor control 116, such as a mouse, a trackball, or cursor direction keys for communicating direction information and command selections to processor 104 and for controlling cursor movement on display 112. The input device typically has two degrees of freedom in two axes, a first axis (for example, x) and a second axis (for example, y), that allows the device to specify positions in a plane. In some embodiments, the same direction information and command selections as cursor control may be implemented via receiving touches on a touch screen without a cursor.


Electronic device 110 can include a user interface module to implement a GUI that may be stored in a mass storage device as executable software codes that are executed by the one or more computing devices. This and other modules may include, by way of example, components, such as software components, object-oriented software components, class components and task components, processes, functions, attributes, procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.


In general, the word “module,” as used herein, refers to logic embodied in hardware or firmware, or to a collection of software instructions, possibly having entry and exit points, written in a programming language, such as, for example, Java, Lua, C, and C++. A software module can be compiled and linked into an executable program, installed in a dynamic link library, or written in an interpreted programming language such as, for example, BASIC, Perl, Python, or Pig. It will be appreciated that software modules can be callable from other modules or from themselves, and/or can be invoked in response to detected events or interrupts. Software modules configured for execution on computing devices can be provided on a computer readable medium, such as a compact disc, digital video disc, flash drive, magnetic disc, or any other tangible medium, or as a digital download (and can be originally stored in a compressed or installable format that requires installation, decompression, or decryption prior to execution). Such software code can be stored, partially or fully, on a memory device of the executing computing device, for execution by the computing device. Software instructions can be embedded in firmware, such as an EPROM. It will be further appreciated that hardware modules can be comprised of connected logic units, such as gates and flip-flops, and/or can be comprised of programmable units, such as programmable gate arrays or processors. The modules or computing device functionality described herein are preferably implemented as software modules, but can be represented in hardware or firmware. Generally, the modules described herein refer to logical modules that may be combined with other modules or divided into sub-modules despite their physical organization or storage.


Electronic device 110 can implement the techniques and other features described herein using customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic which in combination with the electronic device causes or programs electronic device 110 to be a special-purpose machine. According to some embodiments, the techniques and other features described herein are performed by electronic device 110 in response to one or more processors 104 executing one or more sequences of one or more instructions contained in main memory 106. Such instructions can be read into main memory 106 from another storage medium, such as storage device 150. Execution of the sequences of instructions contained in main memory 106 causes processor 104 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry can be used in place of or in combination with software instructions.


The term “non-transitory media” as used herein refers to any media storing data and/or instructions that cause a machine to operate in a specific fashion. Such non-transitory media can comprise non-volatile media and/or volatile media. Non-volatile media includes, for example, optical or magnetic disks, such as storage device 150. Volatile media includes dynamic memory, such as main memory 106. Common forms of non-transitory media include, for example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge, and networked versions of the same.


Non-transitory media is distinct from, but can be used in conjunction with, transmission media. Transmission media participates in transferring information between storage media. For example, transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise bus 102. Transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.


Various forms of media can be involved in carrying one or more sequences of one or more instructions to processor 104 for execution. For example, the instructions can initially be carried on a magnetic disk or solid state drive of a remote computer. The remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modem local to electronic device 110 can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal. An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on bus 102. Bus 102 carries the data to main memory 106, from which processor 104 retrieves and executes the instructions. The instructions received by main memory 106 can optionally be stored on storage device 150 either before or after execution by processor 104.


Electronic device 110 also includes a communication interface 118 coupled to bus 102. Communication interface 118 provides a two-way data communication coupling to a network link 120 that is connected to a local network 122. For example, communication interface 118 can be an integrated services digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection to a corresponding type of telephone line. As another example, communication interface 118 can be a local area network (LAN) card to provide a data communication connection to a compatible LAN. Wireless links can also be implemented. In any such implementation, communication interface 118 sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.


Network link 120 typically provides data communication through one or more networks to other data devices. For example, network link 120 can provide a connection through local network 122 to a host computer 124 or to data equipment operated by an Internet Service Provider (ISP) 126. ISP 126 in turn provides data communication services through the world wide packet data communication network now commonly referred to as the “Internet” 128. Local network 122 and Internet 128 both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on network link 120 and through communication interface 118, which carry the digital data to and from electronic device 110, are example forms of transmission media.


Electronic device 110 can send messages and receive data, including program code, through the network(s), network link 120 and communication interface 118. In the Internet example, a server 130 might transmit a requested code for an application program through Internet 128, ISP 126, local network 122 and communication interface 118.


The received code can be executed by processor 104 as it is received, and/or stored in storage device 150, or other non-volatile storage for later execution.



FIG. 2 shows a flowchart representing an exemplary method 200 for clustering documents. In some embodiments, method 200 can be performed by a client application (e.g., a web browser, a plug-in to a web browser, a standalone executable application, etc.) running on a client device, by a server (e.g., a web server), or it can have some steps or parts thereof executed on the client device, and some steps or parts thereof executed on the server. Thus, method 200 can be performed by one or more electronic devices, such as electronic device 110. And while method 200 and the other following embodiments described herein can be performed by multiple electronic devices each having one or more processors, for purposes of simplicity and without limitation, these embodiments will be explained with respect to a single electronic device (e.g., electronic device 110). While the flowchart discloses the following steps in a particular order, it is appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure.


Referring to FIG. 2, at step 210, the electronic device obtains a new document. The electronic device can obtain the new document from one or more databases that can be stored locally at the electronic device and/or on one or more remote devices. The document can be of any type of digital format (e.g., HTML, PDF, MS Word, Email, or any other format containing digital text) and can originate from any public or private source, for example, from an Internet webpage, a library archive, a proprietary subscription-based archive such as IEEE Xplore® digital library, Dow Jones's Factiva collection of news articles, or any other source of information. The document can also be obtained from search results returned by a search engine in response to a search query.


In some embodiments, the electronic device can obtain the document by periodically (e.g., once a day, once a week, once a month, etc.) searching a document database for any updates including new documents not previously processed by the electronic device. In other embodiments, the document can be submitted or pushed to the electronic device by a source system (e.g., blablubb). In other embodiments, the electronic device can obtain the document responsive to an input received from the user, the input identifying the requested document. In some embodiments, the obtained document can be associated, among other things, with a title, a URL, a revision number, provenance information, and a date, such as the date of its publication, the date of its most recent update, and so forth.


In some embodiments, the document can also be associated with one or more entities, such as one or more companies, persons, political parties, organizations, groups, or industries, or any other concept or topic, such as geographic locations. For example, the document can be associated with one or more tags, codes, or other types of metadata that describes products, companies, and/or industries related to the document, for example, all products, companies, and/or industries discussed in the document, or only key products, companies, and/or industries to which the document was directed. As an example, a news article discussing a new iPhone® device being released by Apple Inc., can be pre-tagged (e.g., automatically or manually by a person) with one or more tags or codes such as “iPhone,” “Apple,” “AAPL,” “consumer electronics,” and the like. The document may also be associated with tags or codes from the source system marking subject, document types, document importance, etc. In some embodiments, the document can be stored in a data structure indexed by document ID.


At step 220, the electronic device can preprocess the obtained document. For example, the electronic device can obtain the text of the document and break it down into tokens. In some embodiments, each token can include one word. In other embodiments, each token can include parts of word, a transformed or a canonicalized word, or sequences of two or more words. In some embodiments, the electronic device can discard any tokens that do not correspond to predetermined types of speech. For example, the electronic device can keep only those tokens that correspond to nouns and verbs, and discard all other tokens such as adjectives, adverbs, prepositions, articles, etc. In some embodiments, the electronic device can also normalize the document by reducing each token to its morphological root or lemma, using any suitable stemming and/or lemmatization methods.


At step 230, the electronic device can calculate a document vector representing the document. In some embodiments, the electronic device calculates the document vector by analyzing the preprocessed tokens and calculates, for each preprocessed token, a frequency value. In some embodiments, the frequency value can be calculated as a term frequency-inverse document frequency ratio (TF/IDF) where TF can reflect the number of times a token occurs in the obtained document. TF can be represented as a frequency, a Boolean frequency, a logarithmically scaled frequency, or an augmented frequency. IDF can reflect how common or rare the term is across a large corpus of documents. Accordingly, the TF/IDF measure can reflect how important a particular token is to a document because it increases proportionally to the number of times a token appears in the document, but is offset by the frequency of the token in the corpus, which helps to control for the fact that some tokens are generally more common than others.


In some embodiments, the electronic device can obtain the IDF portion of the TF/IDF ratio from a statistical model that reflects frequencies of various tokens in a corpus of documents. In some embodiments, multiple statistical models can be available (e.g., stored on or remotely accessible by the electronic device), each statistical model associated with and generated based on a different corpus of documents, where each corpus of documents can be associated with a particular entity, such as a particular person, company, industry, etc. For example, a corpus of documents can contain only documents that were tagged or coded with a code corresponding to a particular entity. As another example, the corpus of documents can contain search results corresponding to a search query related to a particular entity. In these embodiments, the electronic device can select, among the various statistical models, a statistical model that is associated with (was generated based on) a corpus of documents associated with an entity with which the obtained document is associated. For example, if the obtained document is coded with a code “AAPL,” the electronic device can calculate the IDF value based on a statistical model generated based on a corpus of documents also coded with the code “AAPL.” In some embodiments, the electronic device can also update the statistical model to reflect the segment frequencies in the obtained document, if it does not already reflect them.


Still referring to step 230, the electronic device can calculate frequency values for all non-discarded tokens in the document, the frequency values together constituting, for example, a vector of frequency values, the vector representing the document.


At step 240, the electronic device can find a matching cluster of documents to which the obtained document can be added, or to create a new cluster if no matching cluster is found. The electronic device can access, for example, a database of document clusters (hereinafter, “clusters”) which can be stored remotely and/or on the electronic device, in a volatile memory (e.g., in main memory 106) and/or in a non-volatile memory (e.g., in storage device 150). In some embodiments, each cluster can represent or be associated with one or more documents, such as documents previously processed by the electronic device. In some embodiments, the database can store, for each cluster, information identifying the documents contained in the cluster (e.g., title, publication date, URL, etc.) and a vector representing a hypothetical, idiosyncratic document of the cluster. The vector representing the cluster can be, for example, a centroid vector of the vectors of all the documents within the cluster, or any other vector or expression that provides a good approximation of the vectors of the documents in the cluster. In some embodiments, the database can also store, for each cluster, the individual vectors for each of the documents and/or the similarities (e.g., cosine similarities) between the individual vectors and the representative vector. In some embodiments, the electronic device can also store, for each cluster, the cluster's weight, the cluster's score, and whether the cluster is active or inactive, as further discussed below.


Finding a matching cluster for the obtained document can include calculating similarities between each of the active clusters and the obtained document. To calculate similarities, the electronic device can calculate, for example, similarities between the vector of the document and the representative vector of each of the active clusters. In some embodiments, the electronic device can calculate the similarity between the vector of the document and each of the stored vectors for the cluster, combining each of the similarities with some function. A level of similarity between two vectors can be measured, for example, using cosine similarity, or any other suitable distance of similarity measure between vectors.


In some embodiments, each cluster can also be associated with (or represented by) a weight. For example, when a new cluster is created, the electronic device can assign a default weight to the new cluster. The electronic device can then periodically (e.g., on a daily basis) decrease each cluster's weight by a predetermined decay factor or according to some other function. In some embodiments, when a cluster's weight falls below a predetermined minimal weight, the electronic device can either keep that cluster in the database but mark it as inactive or, in some embodiments, remove the cluster from the database. In some embodiments, when a new document is added to a cluster, the electronic device can increase the cluster's weight, for example, by a predetermined additive value. The value can be a fixed number, it can be proportionately related to the total number of documents added to the cluster on the same day, or some other function. Thus, clusters to which no or few documents are added for some period of time are likely to drop in weight below a minimal weight and become inactive over time. On the other hand, clusters to which documents are frequently added will remain active for a longer period of time. Because in some embodiments new documents cannot be added to inactive clusters, and are unlikely to be added to active clusters with low weights, for reasons discussed below, the periodic weight decrease mechanism described above causes the clustering of documents that are not only similar in content but are also temporally local, e.g., published around the same time.


In some embodiments, after calculating the similarities between the obtained document and the active clusters, the electronic device can assign the document to one or more clusters based at least on the clusters' similarities and weights. For example, electronic device can calculate a match value for each active cluster, the match value being in direct relation (e.g., directly proportional) to the cluster's similarity to the obtained document (assuming higher similarity values represent higher levels of similarity) and also in direct relation (e.g., directly proportional) to the cluster's weight. For example, each match value can be a product of the cluster's similarity and weight, a linear combination of the cluster's similarity and weight, and so forth. Accordingly, in some embodiments, a document is being matched with a cluster based on how similar the document's content is to the contents of the documents in the cluster, and based on how temporally local the document is to the documents in the cluster. The higher the similarity between the document and the cluster, the less temporally local the document needs to be to still be added to the cluster, and vice versa; the more temporally local the document is with the cluster, the less similar it needs to be to still be added to the cluster.


In some embodiments, the electronic device can select as the matching cluster a cluster having the highest match value, or a cluster having the highest match value above a predetermined match threshold. In other embodiments, the electronic device can first preselect one or more clusters having match values above a predetermined threshold, and then select, among the preselected clusters, a cluster having the highest similarity value. Because of the predetermined threshold, it is possible, in some embodiments, that no cluster is determined by the electronic device to be a matching cluster.


At step 250, the electronic device can add the obtained document to the matching cluster found at step 240, or to a new cluster if no matching cluster was found. In some embodiments, after the electronic device adds the obtained document to a cluster, it can update the database, for example, by updating information identifying documents contained in the cluster and by updating the vector representing the cluster (e.g., a centroid vector) based on the obtained document's vector, such that the updated vector accurately represents all documents in the cluster, including the newly added document. Accordingly, if a new cluster was created and currently only includes the obtained document, that cluster's initial representative vector can be set by the electronic device to be the same as the vector of the obtained document.


After updating the representative vector, the electronic device can also recalculate and update the similarities between the representative vector and each individual document in the cluster, if those similarities are stored in the database. Also, as discussed above, the cluster's weight can be increased by a predetermined additive value, or a default weight can be assigned to the cluster if the cluster was just created.


At step 260, the electronic device can update the score of the cluster to which the obtained document was added. In some embodiments, the score can be based on a combination (e.g., a linear combination) of the following factors: the number of documents contained in the cluster, the similarities (e.g., the average or the total of all cosine similarities) between the cluster's documents and the representative vector, the number of documents that are annotated with special tags indicating their importance (e.g., “contract document”, “frontpage article”, “frequently accessed document”, etc.), or any other factors.


In some embodiments, a cluster's score can also be calculated based on a similarity between a low-IDF vector and the representative vector, where the low-IDF vector can be constructed or obtained by the electronic device from the database or from the statistical model, and can include all tokens within the corpus of documents that are extremely common (and therefore heavily penalized by the IDF term), e.g., whose IDF value is lower than a predetermined threshold. High similarities between the low-IDF vector and cluster's representative vector can indicate that the cluster is well aligned to the overall corpus of documents, and is therefore less likely to be an outlier, and vice versa. Accordingly, in some embodiments, the cluster's score can be in direct relationship with (e.g., directly proportional to) the similarity between the low-IDF vector and the cluster's representative vector.


While in some embodiments each document obtained at step 210 can have a publication date that is more recent that all previously processed documents (e.g., the electronic device can pre-sort the documents by date before performing method 200), in some embodiments, some documents can have a publication date that is older than some previously processed documents. In these embodiments, instead of using the current (most recent) weights and representative vectors in the above-described steps of method 200, the electronic device can use historical weights and vectors corresponding to the state of the clusters on the date of the document's publication. In these embodiments, the electronic device can store, in association with each cluster, its weight, its representative vector, and any other relevant data (e.g., the cluster's score) each time that data is modified, allowing the electronic device to later check these historical data. In some embodiments, historical data can be stored as a series of snapshots, in which each snapshot can represent the entirety of the cluster state (e.g., cluster weight, representative vector, cluster score, which documents are in which cluster, etc.) for each historical date. In other embodiments, historical data can be stored relative to each historical date. For example, historical data can be stored as an incremental delta. When historical data is stored incrementally, the electronic device can determine the cluster state for the next historical date from the cluster state of the previous historical date and the incremental delta.


In some embodiments, method 200 can be performed in parallel for a plurality documents and a plurality of corpora. For example, at step 210, method 200 can obtain a plurality of documents in different corpora. In some embodiments a document can be associated with multiple corpora. The plurality of documents can be preprocessed, e.g. parsed into tokens, independent of the document's corpus. Each document can be associated with a corpus and a representative vector can be determined based on the parsed document and the TF/IDF state for the corpus. Independently for each corpus, method 200 can proceed with steps 240-260 described above to match each document with a cluster in its associated corpus (or open a new cluster), add the document to the cluster, and update the cluster state of the each corpus, e.g. cluster score.


In some embodiments, the electronic device can further group clusters into groups of one or more clusters, hereinafter referred to as megaclusters. FIG. 3 shows a flowchart representing an exemplary method 300 for adding a new cluster to a matching megacluster. In some embodiments, method 300 can be performed by a client application (e.g., a web browser, a plug-in to a web browser, a standalone executable application, etc.) running on a client device, by a server (e.g., a web server), or it can have some steps or parts thereof executed on the client device, and some steps or parts thereof executed on the server. Thus, method 300 can be performed by one or more electronic devices, such as electronic device 110. And while method 300 and the other following embodiments described herein can be performed by multiple electronic devices each having one or more processors, for purposes of simplicity and without limitation, these embodiments will be explained with respect to a single electronic device (e.g., electronic device 110). While the flowchart discloses the following steps in a particular order, it is appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure.


In some embodiments, method 300 can be performed for a cluster after a new document has been added to the cluster. In some embodiments, method 300 can also be performed periodically (e.g., daily, weekly, etc.) for all clusters that are active at the time or that have changed since the last time that method 300 was performed. At step 310, the electronic device obtains the new cluster to be added to a matching megacluster.


At step 320, the electronic device can obtain the next megacluster (or the first megacluster if step 320 is performed for the first time). The electronic device can obtain the next megacluster, for example, from a database of megaclusters, which can be stored remotely and/or on the electronic device, in a volatile memory (e.g., in main memory 106) and/or in a non-volatile memory (e.g., in storage device 150). In some embodiments, each megacluster can represent or be associated with one or more clusters. In some embodiments, the database can store, for each megacluster, information identifying the clusters contained in the cluster, the number of clusters, the total number of documents contained in all the clusters, and so forth.


At step 330, the electronic device can calculate an acceptance threshold for the obtained megacluster. In some embodiments, the acceptance threshold can be in direct relationship (e.g., directly proportional) to the megacluster's size (e.g., the number of clusters and/or documents contained in the megacluster), thereby making the acceptance threshold higher for larger megaclusters and lower for smaller megaclusters. In other embodiments, the acceptance threshold can be a fixed predetermined number. In some embodiments, the acceptance threshold can be time-independent, e.g., it may be independent of the megacluster's creation date or publication dates associated with documents contained in the megacluster's clusters.


At step 340, the electronic device can calculate a sum of similarities between the obtained cluster with each cluster in the megacluster (or only with some clusters in the megacluster), for example, using cosine similarities between the cluster's representative vectors. In some embodiments, instead of adding the similarities together, another function (e.g., a linear combination) representing all the similarities can be used.


At step 350, the electronic device can determine whether the sum of similarities is greater than the acceptance threshold of the obtained megacluster. In some embodiments (not shown in FIG. 3) if the answer is “yes,” the electronic device can add the obtained cluster to the obtained megacluster and method 300 can end. In some embodiments, however, if the answer at step 350 is “yes,” the electronic device can proceed to step 360 where it can preselect the obtained megacluster and then proceed to step 370. If the sum of similarities is not greater than the acceptance threshold of the obtained megacluster, the electronic device can proceed to step 370 directly, without preselecting the megacluster.


At step 370, the electronic device determines whether there are additional megaclusters in the database, and if so, it proceeds to step 320. Otherwise, the method proceeds to step 380. At step 380, the electronic device can analyze the preselected megaclusters (if any). If only one megacluster has been preselected, then the electronic device can add the obtained cluster to the preselected megacluster. If more than one megacluster has been preselected, then the electronic device can join the preselected megaclusters into a single megacluster, and can add the obtained cluster to the joined megacluster. To prevent the formation of a single megacluster containing all of clusters, the electronic device can also increase the acceptance threshold for the megacluster. If no megacluster has been preselected, e.g., if no megacluster was similar enough to cause the sum of similarities to exceed the acceptance threshold, the electronic device can open a new megacluster and add the obtained cluster to the new megacluster.


In some embodiments, the electronic device can also calculate a score for each megacluster. A score of a megacluster can be, for example, the highest, the average, or the median score among the clusters of the megacluster. The megacluster's score can also depend on the size of the megacluster, or it can be independent of the size of the megacluster. The megacluster's score can also be based on other properties of the clusters or the documents within those clusters, e.g. low-IDF vector similarity or any other factor that can be used to score the cluster.


While the above-described methods can be performed on any types of documents, in some embodiments, the documents can include news articles, where each news article is associated with one or more entities (e.g., Apple, Inc.). As discussed above, an article can have one or more codes or tags (e.g., stock tickers) attached to it, either manually or automatically, where the codes can indicate, for example, which entities are being discussed in the article. In these embodiments, by grouping (e.g., using method 200) news articles that are related to the same entity, that are similar in content, and that are temporally local into the same cluster, the resulting cluster can include mostly or only news articles that are likely to discuss the same particular news event, such as a release of a new iPhone® device. Thus, the electronic device can assist a user who is analyzing vast numbers of news articles (or other documents) by grouping all articles related to the same event.


In addition, by further grouping (e.g., using method 300) similar, but not necessarily temporally local, clusters into megaclusters, the electronic device can further assist the user by grouping different but related events into storylines. Accordingly, for purposes of simplicity, but without limitation, the following examples refer to clusters as “events” and to megaclusters as “storylines.”


In some embodiments, grouping documents into clusters (e.g., using method 200) and/or grouping clusters into megaclusters (e.g., using method 300) can be performed by the electronic device responsive to receiving a user input. For example, the user can enter an input requesting information about a particular entity and the electronic device can, responsive to the input, obtain a plurality of documents associated with the particular entity, group those documents into clusters and megaclusters, and present them to the user, e.g., using user interface 400 discussed below.


In some embodiments, however, the electronic device can obtain a corpus of documents and group them into clusters and megaclusters offline (e.g., periodically) before the user specifically requested to group and present that corpus. In some embodiments, the electronic device can place the corpus of documents in a queue. The electronic device can process the queue asynchronously to group the corpus into clusters and megaclusters. For example, the electronic device can periodically obtain a corpus of documents associated with a particular entity (e.g., each document being coded with that entity's code), perform methods 200 and 300 to group that corpus of documents into clusters and megaclusters, and store the results in a local or remote database. In some embodiments, the electronic device can process each document in the queue based on the document's priority. For example, the electronic device can perform separate methods 200 and 300 for documents with different levels of priority, e.g. high-priority and low-priority. To ensure sequential access to cluster state, the electronic device can block the low-priority methods from accessing the cluster state until the high-priority methods are complete. The electronic device can perform such periodic pre-calculations for any entity (e.g., any company or any person), for example, for all companies traded on a particular stock exchange, or only to most popular (e.g., most frequently requested) companies, as determined, for example, by previous requests of a particular user or a plurality of users. The frequency that the electronic device can perform these pre-calculations of clusters or megaclusters can depend on the relative importance of the corpus of documents and the rate at which the electronic device receives these documents. In some embodiments, the electronic device can use, for example, a priority queue to determine which corpus to update the cluster state.


In some embodiments, the electronic device can merge clusters and megaclusters from different corpora. For example, the electronic device can perform a full text search of all the documents in the corpora and determine the most common entities in those corpora. The electronic device can determine which clusters and megaclusters are tagged with these entities and combine clusters or megaclusters with sufficient article overlap.



FIG. 4 illustrates an exemplary user interface 400 provided by the electronic device (e.g., electronic device 110) for display (e.g., display 112) in accordance with some embodiments. User interface 400 can include, for example, an entity selection widget 410, allowing the user to enter text identifying a particular entity (e.g., a person, a company, an industry, etc.) and/or to select a particular entity from a precompiled list of entities, such as dropdown list. In some embodiments, the electronic device can determine which entity the user is interested in without receiving express identification input by the user. Instead, the electronic device can determine the entity of interest based on user behavior, for example, based on the user's most recent search query, or based on display context, for example, based on which articles are currently being displayed on the display. In some embodiments, the electronic device can determine the entity of interest based on the curation of an editor who, for example, can select relevant or interesting entities based on his or her judgment.


User interface 400 can also include a date selection widget 430, allowing the user to select a desired date (or time) range. In some embodiments, date selection widget 430 can include preselected date ranges such as “today,” “last week,” “last month,” “last year,” etc. In some embodiments, the electronic device can preset the date range to a default range, such as a range that includes all articles available for the particular entity.


In some embodiments, after the user identifies a desired entity and a desired date range, or after the electronic devices determines the entity and/or the date range automatically as discussed above, the electronic device can automatically obtain a plurality of articles corresponding to that entity (e.g., coded with the entity's code) and corresponding to that date range (e.g., published or last updated within that date range). The electronic device can then group the obtained plurality of articles into events and storylines, for example, by performing method 200 for each article to add that article to a matching event, and then performing method 300 for each event to add that event to a matching storyline. As discussed above, in some embodiments, the electronic device can group all articles for a particular entity into events or storylines ahead of time, and store the event and storyline information in the database, in which case methods 200 and 300 may not need to be performed in real time, allowing the electronic device to display the results faster, e.g., almost instantaneously.


In some embodiments, the electronic device can display the obtained articles, events, and storylines, on a timeline 440. For example, for each obtained storyline the electronic device can display its own graph (e.g., graphs 450a and 450b), each graph being visually distinct from other graphs (e.g., having a different color and/or shading), and the spikes in the graphs representing the volume of documents from that storyline that are associated with (e.g., published on) a particular day. In some embodiments, the user can select a particular storyline, for example, by clicking on or pointing at the corresponding graph with a mouse or another pointing device. When a particular storyline is selected, the electronic device can emphasize its graph and/or de-emphasize graphs of other storylines, e.g., by saturating and/or de-saturating their colors, respectively.


In some embodiments, the electronic device can display next to the timeline and/or next to the graph, events 460 of the selected storyline. For example, each event can be represented by a shape, such as a circle, whose size indicates some measure of the importance of the event (e.g., the score of the corresponding cluster). In some embodiments, event circles can be hidden based on certain criteria. For example, if two clusters are temporally local, the electronic device can display only the circle representing the cluster with the higher cluster score. Events can also be represented by event titles 470, which can be obtained by the electronic device, for example, by finding, within the articles of the corresponding event, tokens having the highest frequencies (e.g., TF/IDF frequency where term frequencies are taken for the set of documents in the cluster instead of for single documents) and then finding a phrase or a sentence containing a majority of those tokens. In some embodiments, events can be represented by the title of one of the articles, for example, by the title that is the most grammatically correct or the most concise, by the title of the earliest document in the cluster, by a title selected by which publication the document appears in using a ranked list of preferences of publication, or by a title based on scoring other codes or tags on the document, or by a title that is selected by a combination (e.g., linear combination) of these criteria. In some embodiments, the electronic device can hide titles. For example, if two clusters are temporally local, the electronic device can display only the title representing the cluster with the higher cluster score.


In some embodiments, the user can also select a particular event within a storyline, for example, by clicking on or pointing at the corresponding event 460 or a spike in the graph corresponding to the event with a mouse or another pointing device. The electronic device can then display information regarding articles 490 included in the selected event, for example, in the article preview window 480. For example, the electronic device can display in article preview window 480 the publication date and the title of each article. In some embodiments, the user can select a particular article 490 (e.g., by clicking), and the electronic device can then display the full article to the user, for example, by opening a new window containing that article. In some embodiments, some articles 490 can be associated with a hyperlink, and the electronic device can open the hyperlink corresponding to the selected article in a browser window. In some embodiments, the articles can be sorted by similarity to the representative vector of the event (cluster), by publication date, by number of clicks or reads of the article, by special tags, e.g., “frontpage article,” by social media recommendations, e.g. “Facebook Likes,” or by any other sortable category.


In some embodiments, user interface 400 can also include an event density widget 420. The density widget 420 can be a slider, allowing the user to set a range of cluster scores, a range of storyline scores, or both. In some embodiments, the density widget 420 can allow the user to set a range of percentiles, a range of densities, or both. The electronic device can be configured to only display events and storylines that are within the corresponding range of scores. Thus, if too many events and/or storylines are originally displayed by the electronic device, the user can increase the minimum score, and the electronic device will eliminate from display any events and/or storylines, whose score is below the minimum score. In some embodiments, the density widget 420 can be preset to display a fraction of the number of events and stories or a fixed number of events and storylines, e.g., ten. In other embodiments, the density can be preset to display a predefined number of overlapping events, e.g. three.



FIG. 5 illustrates another exemplary user interface 500 provided by the electronic device (e.g., electronic device 110) for display (e.g., display 112) in accordance with some embodiments. User interface 500 does not show the entity selection widget and the date selection widget. Those widgets can be displayed, for example, in a separate window (e.g., at a webpage) and user interface 500 can be displayed, for example, after the user used those widgets to select an entity (e.g., “Yahoo! Inc.”) and a date range (e.g., “last three months”), and after the electronic device has obtained the articles, events, and storylines, associated with the entity and date range. In some embodiments, the entity selection widget, the date selection widget, and/or the event density widget can be included in user interface 500.


User interface 500 can contain a title box 510 indicating, for example, the selected entity and date range. In some embodiments, the electronic device can allow the user to change the selected entity and/or date range from title box 510.


User interface 500 can also include one or more storyline preview windows 520, for example, located side by side in a row or in two or more rows (not shown), each storyline preview window 520 including information related to one of the storylines. The information can include the storyline's title, which, in some embodiments, can be the title of the highest-scored event (cluster) within the storyline (megacluster), where the event title can be obtained using methods discussed above. The information can also include a graph representing the articles within the storyline's events, each spike representing some function of the number of articles published on a particular date or the properties of the articles or their clusters (to account for normalization or incorporating scores).


The user can select one of the storyline preview windows, for example, by clicking on or pointing at it with a pointing device. When the user selects a storyline preview window, the electronic device can display one or more event preview boxes 530, positioned, for example, one over another in a column below or above the storyline preview windows 520. Each event preview box 530 can include information about the event, such as the event's title, the event's score (e.g., indicated by a size of a shape displayed in or next to the box), the dates of the earliest and the latest published article within the event, and so forth.


The user can select an event, for example, by clicking on or pointing at the corresponding event preview box with a pointing device, or by clicking on or pointing, in the corresponding storyline preview window, at a date containing articles included in the event. After the user selects an event, the electronic device can display information regarding articles included in the selected event, for example, in the article preview window 540, positioned, for example, next to event preview boxes 530 and below or above storyline preview windows 520. For example, the electronic device can display in article preview window 540 the publication date, the source, and the title of each article, or any other information related to the article. In some embodiments, as discussed above in connection with user interface 400, the user can select a particular article (e.g., by clicking), and the electronic device can then display the full article to the user, for example, by opening a new window containing that article. In some embodiments, some articles can be associated with a hyperlink, and the electronic device can open the hyperlink corresponding to the selected article in a browser window.


Embodiments of the present disclosure have been described herein with reference to numerous specific details that can vary from implementation to implementation. Certain adaptations and modifications of the described embodiments can be made. Other embodiments can be apparent to those skilled in the art from consideration of the specification and practice of the embodiments disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the present disclosure being indicated by the following claims. It is also intended that the sequence of steps shown in figures are only for illustrative purposes and are not intended to be limited to any particular sequence of steps. As such, it is appreciated that these steps can be performed in a different order while implementing the exemplary methods or processes disclosed herein.

Claims
  • 1. An electronic device comprising: one or more computer-readable storage media configured to store instructions; andone or more processors configured to execute the instructions to cause the electronic device to: obtain a plurality of documents, wherein the documents of the plurality of documents are grouped into a plurality of clusters, and wherein the plurality of clusters are grouped into a plurality of megaclusters;simultaneously present information associated with the plurality of megaclusters as a plurality of storylines on a single timeline, wherein each of the plurality of storylines represents a different one of the plurality of megaclusters, and wherein the storylines visually indicate changes in volumes over time of the plurality of documents grouped into each of the different megaclusters; andin response to receiving a selection of a first storyline of the plurality of storylines, present visual indications of one or more clusters of a first megacluster represented by the first storyline,wherein the one or more clusters are associated with respective scores, and wherein the visual indications are sized according to respective scores associated with the one or more clusters of the first megacluster.
  • 2. The electronic device of claim 1, wherein the visual indications are spatially positioned relative to the timeline based at least in part on dates associated with documents grouped into the one or more clusters of the first megacluster.
  • 3. The electronic device of claim 1, wherein the visual indications are sized according to volumes of documents grouped into the one or more clusters of the first megacluster.
  • 4. The electronic device of claim 1, wherein the clusters are associated with respective scores, and wherein the one or more processors are further configured to execute the instructions to cause the electronic device to: filter the presented information based on the scores associated with the clusters.
  • 5. The electronic device of claim 1, wherein the one or more processors are further configured to execute the instructions to cause the electronic device to: based on a selection of a visual indication of a first cluster, present information associated with the one or more documents grouped into the first cluster.
  • 6. The electronic device of claim 5, wherein the one or more processors are further configured to execute the instructions to cause the electronic device to: based on a selection of a first document, present contents of the first document on a display.
  • 7. The electronic device of claim 1, wherein the one or more processors are further configured to execute the instructions to cause the electronic device to: obtain one or more user inputs;determine, based on the user inputs, an entity and a date range; andfilter the presented information based on the entity and the date range.
  • 8. The electronic device of claim 7, wherein the one or more processors are further configured to execute the instructions to cause the electronic device to: obtain a new user input;determine, based on the new user input, an updated entity or an updated date range; andupdate the presented information based on the updated entity or the updated date range.
  • 9. A method performed by one or more processors, the method comprising: obtaining a plurality of documents, wherein the documents of the plurality of documents are grouped into a plurality of clusters, and wherein the plurality of clusters are grouped into a plurality of megaclusters;simultaneously presenting information associated with the plurality of megaclusters as a plurality of storylines on a single timeline, wherein each of the plurality of storylines represents a different one of the plurality of megaclusters, and wherein the storylines visually indicate changes in volumes over time of the plurality of documents grouped into each of the different megaclusters; andin response to receiving a selection of a first storyline of the plurality of storylines, presenting visual indications of one or more clusters of a first megacluster represented by the first storyline,wherein the one or more clusters are associated with respective scores, and wherein the visual indications are sized according to respective scores associated with the one or more clusters of the first megacluster.
  • 10. The method of claim 9, wherein the visual indications are spatially positioned relative to the timeline based at least in part on dates associated with documents grouped into the one or more clusters of the first megacluster.
  • 11. The method of claim 9, wherein the visual indications are sized according to volumes of documents grouped into the clusters of the first megacluster.
  • 12. The method of claim 9, wherein the clusters are associated with respective scores, and wherein the method further comprises: filtering the presented information based on the scores associated with the clusters.
  • 13. The method of claim 9 further comprising: based on a selection of a visual indication of a first cluster, presenting information associated with the one or more documents grouped into the first cluster.
  • 14. The method of claim 13 further comprising: based on a selection of a first document, presenting contents of the first document on a display.
  • 15. The method of claim 9 further comprising: obtaining one or more user inputs;determining, based on the user inputs, an entity and a date range; andfiltering the presented information based on the entity and the date range.
  • 16. The method of claim 15 further comprising: obtaining a new user input;determining, based on the new user input, an updated entity or an updated date range; andupdating the presented information based on the updated entity or the updated date range.
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/053,155, filed Feb. 25, 2016, and U.S. patent application Ser. No. 15/053,177, filed Feb. 25, 2016, which applications are continuations of U.S. patent application Ser. No. 14/326,738, filed Jul. 9, 2014, now U.S. Pat. No. 9,298,678, which is a continuation of U.S. patent application Ser. No. 14/323,935, filed Jul. 3, 2014, now U.S. Pat. No. 9,256,664, the contents of which are expressly incorporated herein by reference in their entireties. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.

US Referenced Citations (819)
Number Name Date Kind
5109399 Thompson Apr 1992 A
5329108 Lamoure Jul 1994 A
5632009 Rao et al. May 1997 A
5670987 Doi et al. Sep 1997 A
5781704 Rossmo Jul 1998 A
5798769 Chiu et al. Aug 1998 A
5845300 Comer Dec 1998 A
5978475 Schneier et al. Nov 1999 A
6057757 Arrowsmith et al. May 2000 A
6091956 Hollenberg Jul 2000 A
6161098 Wallman Dec 2000 A
6219053 Tachibana et al. Apr 2001 B1
6232971 Haynes May 2001 B1
6247019 Davies Jun 2001 B1
6253203 O'Flaherty et al. Jun 2001 B1
6279018 Kudrolli et al. Aug 2001 B1
6341310 Leshem et al. Jan 2002 B1
6366933 Ball et al. Apr 2002 B1
6369835 Lin Apr 2002 B1
6374251 Fayyad et al. Apr 2002 B1
6385619 Eichstaedt et al. May 2002 B1
6430305 Decker Aug 2002 B1
6456997 Shukla Sep 2002 B1
6549944 Weinberg et al. Apr 2003 B1
6560620 Ching May 2003 B1
6567936 Yang et al. May 2003 B1
6581068 Bensoussan et al. Jun 2003 B1
6594672 Lampson et al. Jul 2003 B1
6631496 Li et al. Oct 2003 B1
6642945 Sharpe Nov 2003 B1
6674434 Chojnacki et al. Jan 2004 B1
6714936 Nevin, III Mar 2004 B1
6725240 Asad et al. Apr 2004 B1
6775675 Nwabueze et al. Aug 2004 B1
6807569 Bhimani et al. Oct 2004 B1
6820135 Dingman Nov 2004 B1
6828920 Owen et al. Dec 2004 B2
6839745 Dingari et al. Jan 2005 B1
6877137 Rivette et al. Apr 2005 B1
6976210 Silva et al. Dec 2005 B1
6978419 Kantrowitz Dec 2005 B1
6980984 Huffman et al. Dec 2005 B1
6985950 Hanson et al. Jan 2006 B1
7017046 Doyle et al. Mar 2006 B2
7036085 Barros Apr 2006 B2
7043702 Chi et al. May 2006 B2
7055110 Kupka et al. May 2006 B2
7069586 Winneg et al. Jun 2006 B1
7139800 Bellotti et al. Nov 2006 B2
7158878 Rasmussen et al. Jan 2007 B2
7162475 Ackerman Jan 2007 B2
7168039 Bertram Jan 2007 B2
7171427 Witowski et al. Jan 2007 B2
7225468 Waisman et al. May 2007 B2
7269786 Malloy et al. Sep 2007 B1
7278105 Kitts Oct 2007 B1
7290698 Poslinski et al. Nov 2007 B2
7333998 Heckerman et al. Feb 2008 B2
7370047 Gorman May 2008 B2
7373669 Eisen May 2008 B2
7379811 Rasmussen et al. May 2008 B2
7379903 Caballero et al. May 2008 B2
7426654 Adams et al. Sep 2008 B2
7451397 Weber et al. Nov 2008 B2
7454466 Bellotti et al. Nov 2008 B2
7461077 Greenwood Dec 2008 B1
7467375 Tondreau et al. Dec 2008 B2
7487139 Fraleigh et al. Feb 2009 B2
7496567 Steichen Feb 2009 B1
7502786 Liu et al. Mar 2009 B2
7525422 Bishop et al. Apr 2009 B2
7529727 Arning et al. May 2009 B2
7529734 Dirisala May 2009 B2
7558677 Jones Jul 2009 B2
7574409 Patinkin Aug 2009 B2
7574428 Leiserowitz et al. Aug 2009 B2
7579965 Bucholz Aug 2009 B2
7596285 Brown et al. Sep 2009 B2
7614006 Molander Nov 2009 B2
7617232 Gabbert et al. Nov 2009 B2
7620628 Kapur et al. Nov 2009 B2
7627812 Chamberlain et al. Dec 2009 B2
7634717 Chamberlain et al. Dec 2009 B2
7703021 Flam Apr 2010 B1
7706817 Bamrah et al. Apr 2010 B2
7712049 Williams et al. May 2010 B2
7716077 Mikurak May 2010 B1
7725530 Sah et al. May 2010 B2
7725547 Albertson et al. May 2010 B2
7730082 Sah et al. Jun 2010 B2
7730109 Rohrs et al. Jun 2010 B2
7756843 Palmer Jul 2010 B1
7770032 Nesta et al. Aug 2010 B2
7770100 Chamberlain et al. Aug 2010 B2
7783658 Bayliss Aug 2010 B1
7801871 Gosnell Sep 2010 B2
7805457 Viola et al. Sep 2010 B1
7809703 Balabhadrapatruni et al. Oct 2010 B2
7814102 Miller et al. Oct 2010 B2
7818658 Chen Oct 2010 B2
7870493 Pall et al. Jan 2011 B2
7894984 Rasmussen et al. Feb 2011 B2
7899611 Downs et al. Mar 2011 B2
7899796 Borthwick et al. Mar 2011 B1
7917376 Bellin et al. Mar 2011 B2
7920963 Jouline et al. Apr 2011 B2
7933862 Chamberlain et al. Apr 2011 B2
7941321 Greenstein et al. May 2011 B2
7962281 Rasmussen et al. Jun 2011 B2
7962495 Jain et al. Jun 2011 B2
7962848 Bertram Jun 2011 B2
7970240 Chao et al. Jun 2011 B1
7971150 Raskutti et al. Jun 2011 B2
7984374 Caro et al. Jul 2011 B2
8001465 Kudrolli et al. Aug 2011 B2
8001482 Bhattiprolu et al. Aug 2011 B2
8010545 Stefik et al. Aug 2011 B2
8015487 Roy et al. Sep 2011 B2
8024778 Cash et al. Sep 2011 B2
8036632 Cona et al. Oct 2011 B1
8036971 Aymeloglu et al. Oct 2011 B2
8037046 Udezue et al. Oct 2011 B2
8046283 Burns Oct 2011 B2
8046362 Bayliss Oct 2011 B2
8054756 Chand et al. Nov 2011 B2
8103543 Zwicky Jan 2012 B1
8134457 Velipasalar et al. Mar 2012 B2
8135679 Bayliss Mar 2012 B2
8135719 Bayliss Mar 2012 B2
8145703 Frishert et al. Mar 2012 B2
8181253 Zaitsev et al. May 2012 B1
8185819 Sah et al. May 2012 B2
8190893 Benson et al. May 2012 B2
8196184 Amirov et al. Jun 2012 B2
8214361 Sandler et al. Jul 2012 B1
8214490 Vos et al. Jul 2012 B1
8214764 Gemmell et al. Jul 2012 B2
8225201 Michael Jul 2012 B2
8229902 Vishniac et al. Jul 2012 B2
8229947 Fujinaga Jul 2012 B2
8230333 Decherd et al. Jul 2012 B2
8239668 Chen et al. Aug 2012 B1
8266168 Bayliss Sep 2012 B2
8271461 Pike et al. Sep 2012 B2
8280880 Aymeloglu et al. Oct 2012 B1
8290838 Thakur et al. Oct 2012 B1
8290926 Ozzie et al. Oct 2012 B2
8290942 Jones et al. Oct 2012 B2
8301464 Cave et al. Oct 2012 B1
8301904 Gryaznov Oct 2012 B1
8302855 Ma et al. Nov 2012 B2
8312367 Foster Nov 2012 B2
8312546 Alme Nov 2012 B2
8321943 Walters et al. Nov 2012 B1
8347398 Weber Jan 2013 B1
8352881 Champion et al. Jan 2013 B2
8368695 Howell et al. Feb 2013 B2
8386377 Xiong et al. Feb 2013 B1
8397171 Klassen et al. Mar 2013 B2
8412707 Mianji Apr 2013 B1
8447674 Choudhuri et al. May 2013 B2
8447722 Ahuja et al. May 2013 B1
8452790 Mianji May 2013 B1
8463036 Ramesh et al. Jun 2013 B1
8463790 Joshi Jun 2013 B1
8473454 Evanitsky et al. Jun 2013 B2
8484115 Aymeloglu et al. Jul 2013 B2
8484168 Bayliss Jul 2013 B2
8489331 Kopf et al. Jul 2013 B2
8489641 Seefeld et al. Jul 2013 B1
8495077 Bayliss Jul 2013 B2
8498969 Bayliss Jul 2013 B2
8498984 Hwang et al. Jul 2013 B1
8510743 Hackborn et al. Aug 2013 B2
8514082 Cova et al. Aug 2013 B2
8515207 Chau Aug 2013 B2
8554579 Tribble et al. Oct 2013 B2
8554653 Falkenborg et al. Oct 2013 B2
8554709 Goodson et al. Oct 2013 B2
8560413 Quarterman Oct 2013 B1
8577911 Stepinski et al. Nov 2013 B1
8589273 Creeden et al. Nov 2013 B2
8595234 Siripuapu et al. Nov 2013 B2
8600872 Yan Dec 2013 B1
8620641 Farnsworth et al. Dec 2013 B2
8639757 Zang et al. Jan 2014 B1
8646080 Williamson et al. Feb 2014 B2
8676857 Adams et al. Mar 2014 B1
8683322 Cooper Mar 2014 B1
8688573 Ruknoic et al. Apr 2014 B1
8689108 Duffield et al. Apr 2014 B1
8713467 Goldenberg et al. Apr 2014 B1
8726379 Stiansen et al. May 2014 B1
8739278 Varghese May 2014 B2
8742934 Sarpy et al. Jun 2014 B1
8744890 Bernier Jun 2014 B1
8745516 Mason et al. Jun 2014 B2
8769412 Gill et al. Jul 2014 B2
8781169 Jackson et al. Jul 2014 B2
8782794 Ramcharran Jul 2014 B2
8787939 Papakipos et al. Jul 2014 B2
8788405 Sprague et al. Jul 2014 B1
8788407 Singh et al. Jul 2014 B1
8799799 Cervelli et al. Aug 2014 B1
8806355 Twiss et al. Aug 2014 B2
8812960 Sun et al. Aug 2014 B1
8818892 Sprague et al. Aug 2014 B1
8830322 Nerayoff et al. Sep 2014 B2
8832594 Thompson et al. Sep 2014 B1
8868537 Colgrove et al. Oct 2014 B1
8917274 Ma et al. Dec 2014 B2
8924388 Elliot et al. Dec 2014 B2
8924389 Elliot et al. Dec 2014 B2
8924872 Bogomolov et al. Dec 2014 B1
8931043 Cooper et al. Jan 2015 B2
8937619 Sharma et al. Jan 2015 B2
8938686 Erenrich et al. Jan 2015 B1
8949164 Mohler Feb 2015 B1
9009171 Grossman et al. Apr 2015 B1
9009827 Albertson et al. Apr 2015 B1
9021260 Falk et al. Apr 2015 B1
9021384 Beard et al. Apr 2015 B1
9043696 Meiklejohn et al. May 2015 B1
9043894 Dennison et al. May 2015 B1
9049117 Nucci et al. Jun 2015 B1
9069842 Melby Jun 2015 B2
9100428 Visbal Aug 2015 B1
9111281 Stibel et al. Aug 2015 B2
9116975 Shankar et al. Aug 2015 B2
9129219 Robertson et al. Sep 2015 B1
9135658 Sprague et al. Sep 2015 B2
9146954 Boe et al. Sep 2015 B1
9165299 Stowe et al. Oct 2015 B1
9171334 Visbal et al. Oct 2015 B1
9177344 Singh et al. Nov 2015 B1
9202249 Cohen et al. Dec 2015 B1
9230280 Maag et al. Jan 2016 B1
9256664 Chakerian et al. Feb 2016 B2
9298678 Chakerian et al. Mar 2016 B2
9335897 Goldenberg May 2016 B2
9338013 Castellucci et al. May 2016 B2
9619557 Kesin et al. Apr 2017 B2
9875293 Chakerian et al. Jan 2018 B2
9881074 Chakerian et al. Jan 2018 B2
20020033848 Sciammarella et al. Mar 2002 A1
20020065708 Senay et al. May 2002 A1
20020091707 Keller Jul 2002 A1
20020095360 Joao Jul 2002 A1
20020095658 Shulman Jul 2002 A1
20020103705 Brady Aug 2002 A1
20020112157 Doyle et al. Aug 2002 A1
20020116120 Ruiz et al. Aug 2002 A1
20020147805 Leshem et al. Oct 2002 A1
20020174201 Ramer et al. Nov 2002 A1
20020194119 Wright et al. Dec 2002 A1
20030028560 Kudrolli et al. Feb 2003 A1
20030033228 Bosworth-Davies et al. Feb 2003 A1
20030036848 Sheha et al. Feb 2003 A1
20030039948 Donahue Feb 2003 A1
20030074368 Schuetze et al. Apr 2003 A1
20030097330 Hillmer et al. May 2003 A1
20030126102 Borthwick Jul 2003 A1
20030140106 Raguseo Jul 2003 A1
20030144868 MacIntyre et al. Jul 2003 A1
20030163352 Surpin et al. Aug 2003 A1
20030225755 Iwayama et al. Dec 2003 A1
20030229848 Arend et al. Dec 2003 A1
20040032432 Baynger Feb 2004 A1
20040034570 Davis Feb 2004 A1
20040064256 Barinek et al. Apr 2004 A1
20040085318 Hassler et al. May 2004 A1
20040095349 Bito et al. May 2004 A1
20040111410 Burgoon et al. Jun 2004 A1
20040111480 Yue Jun 2004 A1
20040123139 Aiello et al. Jun 2004 A1
20040126840 Cheng et al. Jul 2004 A1
20040143602 Ruiz et al. Jul 2004 A1
20040143796 Lerner et al. Jul 2004 A1
20040153418 Hanweck Aug 2004 A1
20040163039 Gorman Aug 2004 A1
20040193600 Kaasten et al. Sep 2004 A1
20040205524 Richter et al. Oct 2004 A1
20040221223 Yu et al. Nov 2004 A1
20040230577 Kawatani Nov 2004 A1
20040236688 Bozeman Nov 2004 A1
20040250124 Chesla et al. Dec 2004 A1
20040260702 Cragun et al. Dec 2004 A1
20040267746 Marcjan et al. Dec 2004 A1
20050010472 Quatse et al. Jan 2005 A1
20050027705 Sadri et al. Feb 2005 A1
20050028094 Allyn Feb 2005 A1
20050039119 Parks et al. Feb 2005 A1
20050065811 Chu et al. Mar 2005 A1
20050078858 Yao et al. Apr 2005 A1
20050080769 Gemmell Apr 2005 A1
20050086207 Heuer et al. Apr 2005 A1
20050108063 Madill et al. May 2005 A1
20050125715 Di Franco et al. Jun 2005 A1
20050154628 Eckart et al. Jul 2005 A1
20050154769 Eckart et al. Jul 2005 A1
20050157662 Bingham et al. Jul 2005 A1
20050162523 Darrell et al. Jul 2005 A1
20050166144 Gross Jul 2005 A1
20050180330 Shapiro Aug 2005 A1
20050182764 Evans Aug 2005 A1
20050182793 Keenan et al. Aug 2005 A1
20050183005 Denoue et al. Aug 2005 A1
20050204009 Hazarika et al. Sep 2005 A1
20050210409 Jou Sep 2005 A1
20050222928 Steier et al. Oct 2005 A1
20050229256 Banzhof Oct 2005 A2
20050246327 Yeung et al. Nov 2005 A1
20050251786 Citron et al. Nov 2005 A1
20050262556 Waisman et al. Nov 2005 A1
20050275638 Kolmykov-Zotov et al. Dec 2005 A1
20060026120 Carolan et al. Feb 2006 A1
20060026170 Kreitler et al. Feb 2006 A1
20060031928 Conley et al. Feb 2006 A1
20060059139 Robinson Mar 2006 A1
20060069912 Zheng et al. Mar 2006 A1
20060074881 Vembu et al. Apr 2006 A1
20060080283 Shipman Apr 2006 A1
20060080619 Carlson et al. Apr 2006 A1
20060093222 Saffer et al. May 2006 A1
20060095521 Patinkin May 2006 A1
20060129746 Porter Jun 2006 A1
20060139375 Rasmussen et al. Jun 2006 A1
20060142949 Helt Jun 2006 A1
20060143034 Rothermel Jun 2006 A1
20060143075 Carr et al. Jun 2006 A1
20060143079 Basak et al. Jun 2006 A1
20060149596 Surpin et al. Jul 2006 A1
20060179003 Steele et al. Aug 2006 A1
20060184889 Molander Aug 2006 A1
20060203337 White Sep 2006 A1
20060209085 Wong et al. Sep 2006 A1
20060212931 Shull et al. Sep 2006 A1
20060218637 Thomas et al. Sep 2006 A1
20060241974 Chao et al. Oct 2006 A1
20060242040 Rader Oct 2006 A1
20060242630 Koike et al. Oct 2006 A1
20060265747 Judge Nov 2006 A1
20060271277 Hu et al. Nov 2006 A1
20060279630 Aggarwal et al. Dec 2006 A1
20070000999 Kubo et al. Jan 2007 A1
20070011150 Frank Jan 2007 A1
20070011304 Error Jan 2007 A1
20070016363 Huang et al. Jan 2007 A1
20070038646 Thota Feb 2007 A1
20070038962 Fuchs et al. Feb 2007 A1
20070057966 Ohno et al. Mar 2007 A1
20070078832 Ott et al. Apr 2007 A1
20070083541 Fraleigh et al. Apr 2007 A1
20070094389 Nussey et al. Apr 2007 A1
20070106582 Baker et al. May 2007 A1
20070112867 Evans et al. May 2007 A1
20070143851 Nicodemus Jun 2007 A1
20070150368 Arora Jun 2007 A1
20070150369 Zivin Jun 2007 A1
20070150801 Chidlovskii et al. Jun 2007 A1
20070156673 Maga Jul 2007 A1
20070162454 D'Albora et al. Jul 2007 A1
20070174760 Chamberlain et al. Jul 2007 A1
20070185867 Maga Aug 2007 A1
20070192122 Routson et al. Aug 2007 A1
20070192265 Chopin et al. Aug 2007 A1
20070198571 Ferguson et al. Aug 2007 A1
20070208497 Downs et al. Sep 2007 A1
20070208498 Barker et al. Sep 2007 A1
20070208736 Tanigawa et al. Sep 2007 A1
20070233709 Abnous Oct 2007 A1
20070240062 Christena et al. Oct 2007 A1
20070266336 Nojima et al. Nov 2007 A1
20070284433 Domenica et al. Dec 2007 A1
20070294200 Au Dec 2007 A1
20070294643 Kyle Dec 2007 A1
20070294766 Mir et al. Dec 2007 A1
20080040275 Paulsen et al. Feb 2008 A1
20080040684 Crump Feb 2008 A1
20080051989 Welsh Feb 2008 A1
20080052142 Bailey et al. Feb 2008 A1
20080065655 Chakravarthy et al. Mar 2008 A1
20080077597 Butler Mar 2008 A1
20080077642 Carbone et al. Mar 2008 A1
20080082486 Lermant et al. Apr 2008 A1
20080104019 Nath May 2008 A1
20080104063 Gallivan et al. May 2008 A1
20080104407 Horne et al. May 2008 A1
20080126951 Sood et al. May 2008 A1
20080133567 Ames et al. Jun 2008 A1
20080148398 Mezack et al. Jun 2008 A1
20080155440 Trevor et al. Jun 2008 A1
20080162616 Gross et al. Jul 2008 A1
20080195417 Surpin et al. Aug 2008 A1
20080195608 Clover Aug 2008 A1
20080201580 Savitzky et al. Aug 2008 A1
20080208735 Balet et al. Aug 2008 A1
20080222295 Robinson et al. Sep 2008 A1
20080222706 Renaud et al. Sep 2008 A1
20080229422 Hudis et al. Sep 2008 A1
20080249983 Meisels et al. Oct 2008 A1
20080255973 El Wade et al. Oct 2008 A1
20080263468 Cappione et al. Oct 2008 A1
20080267107 Rosenberg Oct 2008 A1
20080276167 Michael Nov 2008 A1
20080278311 Grange et al. Nov 2008 A1
20080288306 MacIntyre et al. Nov 2008 A1
20080288425 Posse et al. Nov 2008 A1
20080294663 Heinley et al. Nov 2008 A1
20080301643 Appleton et al. Dec 2008 A1
20080313132 Hao et al. Dec 2008 A1
20090002492 Velipasalar et al. Jan 2009 A1
20090018940 Wang et al. Jan 2009 A1
20090024505 Patel et al. Jan 2009 A1
20090027418 Maru et al. Jan 2009 A1
20090030915 Winter et al. Jan 2009 A1
20090044279 Crawford et al. Feb 2009 A1
20090055251 Shah et al. Feb 2009 A1
20090082997 Tokman et al. Mar 2009 A1
20090083184 Eisen Mar 2009 A1
20090088964 Schaaf et al. Apr 2009 A1
20090094270 Alirez et al. Apr 2009 A1
20090103442 Douville Apr 2009 A1
20090106178 Chu Apr 2009 A1
20090112745 Stefanescu Apr 2009 A1
20090119309 Gibson et al. May 2009 A1
20090125359 Knapic May 2009 A1
20090125369 Kloosstra et al. May 2009 A1
20090125459 Norton et al. May 2009 A1
20090132921 Hwangbo et al. May 2009 A1
20090132953 Reed et al. May 2009 A1
20090143052 Bates et al. Jun 2009 A1
20090144262 White et al. Jun 2009 A1
20090144274 Fraleigh et al. Jun 2009 A1
20090157732 Hao et al. Jun 2009 A1
20090164934 Bhattiprolu et al. Jun 2009 A1
20090171939 Athsani et al. Jul 2009 A1
20090172511 Decherd et al. Jul 2009 A1
20090172821 Daira et al. Jul 2009 A1
20090177962 Gusmorino et al. Jul 2009 A1
20090179892 Tsuda et al. Jul 2009 A1
20090187464 Bai et al. Jul 2009 A1
20090187546 Whyte et al. Jul 2009 A1
20090187548 Ji et al. Jul 2009 A1
20090192957 Subramanian et al. Jul 2009 A1
20090222400 Kupershmidt et al. Sep 2009 A1
20090222759 Drieschner Sep 2009 A1
20090222760 Halverson et al. Sep 2009 A1
20090228701 Lin Sep 2009 A1
20090234720 George et al. Sep 2009 A1
20090249244 Robinson et al. Oct 2009 A1
20090254842 Leacock et al. Oct 2009 A1
20090254970 Agarwal et al. Oct 2009 A1
20090254971 Herz Oct 2009 A1
20090271343 Vaiciulis et al. Oct 2009 A1
20090281839 Lynn et al. Nov 2009 A1
20090287470 Farnsworth et al. Nov 2009 A1
20090292626 Oxford Nov 2009 A1
20090307049 Elliott et al. Dec 2009 A1
20090313463 Pang et al. Dec 2009 A1
20090318775 Michelson et al. Dec 2009 A1
20090319418 Herz Dec 2009 A1
20090319891 MacKinlay Dec 2009 A1
20090328222 Helman et al. Dec 2009 A1
20100011282 Dollard et al. Jan 2010 A1
20100030722 Goodson et al. Feb 2010 A1
20100031141 Summers et al. Feb 2010 A1
20100042922 Bradateanu et al. Feb 2010 A1
20100057622 Faith et al. Mar 2010 A1
20100057716 Stefik et al. Mar 2010 A1
20100070523 Delgo et al. Mar 2010 A1
20100070842 Aymeloglu et al. Mar 2010 A1
20100070845 Facemire et al. Mar 2010 A1
20100070897 Aymeloglu et al. Mar 2010 A1
20100077481 Polyakov et al. Mar 2010 A1
20100077483 Stolfo et al. Mar 2010 A1
20100098318 Anderson Apr 2010 A1
20100100963 Mahaffey Apr 2010 A1
20100103124 Kruzeniski et al. Apr 2010 A1
20100106611 Paulsen et al. Apr 2010 A1
20100106752 Eckardt et al. Apr 2010 A1
20100114887 Conway et al. May 2010 A1
20100122152 Chamberlain et al. May 2010 A1
20100125546 Barrett et al. May 2010 A1
20100131457 Heimendinger May 2010 A1
20100131502 Fordham May 2010 A1
20100161735 Sharma Jun 2010 A1
20100162176 Dunton Jun 2010 A1
20100169237 Howard et al. Jul 2010 A1
20100179831 Brown et al. Jul 2010 A1
20100185691 Irmak et al. Jul 2010 A1
20100191563 Schlaifer et al. Jul 2010 A1
20100198684 Eraker et al. Aug 2010 A1
20100199225 Coleman et al. Aug 2010 A1
20100211535 Rosenberger Aug 2010 A1
20100228812 Uomini Sep 2010 A1
20100235915 Memon et al. Sep 2010 A1
20100250412 Wagner Sep 2010 A1
20100262688 Hussain et al. Oct 2010 A1
20100280857 Liu et al. Nov 2010 A1
20100293174 Bennett et al. Nov 2010 A1
20100306029 Jolley Dec 2010 A1
20100306713 Geisner et al. Dec 2010 A1
20100312769 Bailey Dec 2010 A1
20100312837 Bodapati et al. Dec 2010 A1
20100313119 Baldwin et al. Dec 2010 A1
20100318924 Frankel et al. Dec 2010 A1
20100321399 Ellren et al. Dec 2010 A1
20100325526 Ellis et al. Dec 2010 A1
20100325581 Finkelstein et al. Dec 2010 A1
20100330801 Rouh Dec 2010 A1
20110004498 Readshaw Jan 2011 A1
20110029526 Knight et al. Feb 2011 A1
20110047159 Baid et al. Feb 2011 A1
20110060753 Shaked et al. Mar 2011 A1
20110060910 Gormish et al. Mar 2011 A1
20110061013 Bilicki et al. Mar 2011 A1
20110066933 Ludwig Mar 2011 A1
20110074811 Hanson et al. Mar 2011 A1
20110078055 Faribault et al. Mar 2011 A1
20110078173 Seligmann et al. Mar 2011 A1
20110087519 Fordyce, III et al. Apr 2011 A1
20110093327 Fordyce, III et al. Apr 2011 A1
20110099133 Chang et al. Apr 2011 A1
20110117878 Barash et al. May 2011 A1
20110119100 Ruhl et al. May 2011 A1
20110131122 Griffin et al. Jun 2011 A1
20110131547 Elaasar Jun 2011 A1
20110137766 Rasmussen et al. Jun 2011 A1
20110153384 Horne et al. Jun 2011 A1
20110161096 Buehler et al. Jun 2011 A1
20110167105 Ramakrishnan et al. Jul 2011 A1
20110167493 Song et al. Jul 2011 A1
20110170799 Carrino et al. Jul 2011 A1
20110173032 Payne et al. Jul 2011 A1
20110173093 Psota et al. Jul 2011 A1
20110178842 Rane et al. Jul 2011 A1
20110181598 O'Neall et al. Jul 2011 A1
20110185316 Reid et al. Jul 2011 A1
20110202555 Cordover et al. Aug 2011 A1
20110208565 Ross et al. Aug 2011 A1
20110208724 Jones et al. Aug 2011 A1
20110213655 Henkin Sep 2011 A1
20110218934 Elser Sep 2011 A1
20110218955 Tang Sep 2011 A1
20110219321 Gonzalez et al. Sep 2011 A1
20110219450 McDougal et al. Sep 2011 A1
20110225198 Edwards et al. Sep 2011 A1
20110225650 Margolies et al. Sep 2011 A1
20110231223 Winters Sep 2011 A1
20110238413 Wu et al. Sep 2011 A1
20110238495 Kang Sep 2011 A1
20110238510 Rowen et al. Sep 2011 A1
20110238553 Raj et al. Sep 2011 A1
20110238570 Li et al. Sep 2011 A1
20110246229 Pacha Oct 2011 A1
20110251951 Kolkowtiz Oct 2011 A1
20110258158 Resende et al. Oct 2011 A1
20110270604 Qi et al. Nov 2011 A1
20110270705 Parker Nov 2011 A1
20110270834 Sokolan et al. Nov 2011 A1
20110289397 Eastmond et al. Nov 2011 A1
20110289407 Naik et al. Nov 2011 A1
20110289420 Morioka et al. Nov 2011 A1
20110291851 Whisenant Dec 2011 A1
20110295649 Fine Dec 2011 A1
20110307382 Siegel et al. Dec 2011 A1
20110310005 Chen et al. Dec 2011 A1
20110314007 Dassa et al. Dec 2011 A1
20110314024 Chang et al. Dec 2011 A1
20120004904 Shin et al. Jan 2012 A1
20120011238 Rathod Jan 2012 A1
20120011245 Gillette et al. Jan 2012 A1
20120019559 Siler et al. Jan 2012 A1
20120022945 Falkenborg et al. Jan 2012 A1
20120036013 Neuhaus et al. Feb 2012 A1
20120036434 Oberstein Feb 2012 A1
20120050293 Carlhian et al. Mar 2012 A1
20120054284 Rakshit Mar 2012 A1
20120059853 Jagota Mar 2012 A1
20120066166 Curbera et al. Mar 2012 A1
20120066296 Appleton et al. Mar 2012 A1
20120072825 Sherkin et al. Mar 2012 A1
20120075324 Cardno et al. Mar 2012 A1
20120079363 Folting et al. Mar 2012 A1
20120079592 Pandrangi Mar 2012 A1
20120084117 Tavares et al. Apr 2012 A1
20120084118 Bai et al. Apr 2012 A1
20120084135 Nissan et al. Apr 2012 A1
20120084287 Lakshminarayan et al. Apr 2012 A1
20120084866 Stolfo Apr 2012 A1
20120106801 Jackson May 2012 A1
20120110674 Belani et al. May 2012 A1
20120117082 Koperda et al. May 2012 A1
20120131512 Takeuchi et al. May 2012 A1
20120137235 Ts et al. May 2012 A1
20120144335 Abeln et al. Jun 2012 A1
20120158527 Cannelongo et al. Jun 2012 A1
20120159307 Chung et al. Jun 2012 A1
20120159362 Brown et al. Jun 2012 A1
20120159399 Bastide et al. Jun 2012 A1
20120169593 Mak et al. Jul 2012 A1
20120170847 Tsukidate Jul 2012 A1
20120173381 Smith Jul 2012 A1
20120173985 Peppel Jul 2012 A1
20120180002 Campbell et al. Jul 2012 A1
20120196557 Reich et al. Aug 2012 A1
20120196558 Reich et al. Aug 2012 A1
20120197651 Robinson et al. Aug 2012 A1
20120203708 Psota et al. Aug 2012 A1
20120208636 Feige Aug 2012 A1
20120215784 King et al. Aug 2012 A1
20120215898 Shah et al. Aug 2012 A1
20120218305 Patterson et al. Aug 2012 A1
20120221511 Gibson et al. Aug 2012 A1
20120221553 Wittmer et al. Aug 2012 A1
20120221580 Barney Aug 2012 A1
20120226523 Weiss Sep 2012 A1
20120245976 Kumar et al. Sep 2012 A1
20120246148 Dror Sep 2012 A1
20120254129 Wheeler et al. Oct 2012 A1
20120254188 Koperski Oct 2012 A1
20120284345 Costenaro et al. Nov 2012 A1
20120284791 Miller et al. Nov 2012 A1
20120290879 Shibuya et al. Nov 2012 A1
20120296907 Long et al. Nov 2012 A1
20120310831 Harris et al. Dec 2012 A1
20120310838 Harris et al. Dec 2012 A1
20120311684 Paulsen et al. Dec 2012 A1
20120323888 Osann, Jr. Dec 2012 A1
20120330801 McDougal et al. Dec 2012 A1
20120330973 Ghuneim et al. Dec 2012 A1
20130006426 Healey et al. Jan 2013 A1
20130006655 Van Arkel et al. Jan 2013 A1
20130006668 Van Arkel et al. Jan 2013 A1
20130006725 Simanek et al. Jan 2013 A1
20130006916 McBride et al. Jan 2013 A1
20130016106 Yip et al. Jan 2013 A1
20130018796 Kolhatkar et al. Jan 2013 A1
20130019306 Lagar-Cavilla et al. Jan 2013 A1
20130024268 Manickavelu Jan 2013 A1
20130024307 Fuerstenberg et al. Jan 2013 A1
20130024339 Choudhuri et al. Jan 2013 A1
20130046635 Grigg et al. Feb 2013 A1
20130046842 Muntz et al. Feb 2013 A1
20130050217 Armitage Feb 2013 A1
20130054306 Bhalla Feb 2013 A1
20130057551 Ebert et al. Mar 2013 A1
20130060786 Serrano et al. Mar 2013 A1
20130061169 Pearcy et al. Mar 2013 A1
20130073377 Heath Mar 2013 A1
20130073454 Busch Mar 2013 A1
20130078943 Biage et al. Mar 2013 A1
20130086482 Parsons Apr 2013 A1
20130096988 Grossman et al. Apr 2013 A1
20130097482 Marantz et al. Apr 2013 A1
20130097709 Basavapatna et al. Apr 2013 A1
20130101159 Chao et al. Apr 2013 A1
20130110746 Ahn May 2013 A1
20130110822 Ikeda et al. May 2013 A1
20130110876 Meijer et al. May 2013 A1
20130110877 Bonham et al. May 2013 A1
20130111320 Campbell et al. May 2013 A1
20130117011 Ahmed et al. May 2013 A1
20130117651 Waldman et al. May 2013 A1
20130132381 Chakrabarti et al. May 2013 A1
20130139268 An et al. May 2013 A1
20130150004 Rosen Jun 2013 A1
20130151148 Parundekar et al. Jun 2013 A1
20130151388 Falkenborg et al. Jun 2013 A1
20130151453 Bhanot et al. Jun 2013 A1
20130157234 Gulli et al. Jun 2013 A1
20130160120 Malaviya et al. Jun 2013 A1
20130166348 Scotto Jun 2013 A1
20130166480 Popescu et al. Jun 2013 A1
20130166550 Buchmann et al. Jun 2013 A1
20130176321 Mitchell et al. Jul 2013 A1
20130179420 Park et al. Jul 2013 A1
20130185245 Anderson Jul 2013 A1
20130185307 El-Yaniv et al. Jul 2013 A1
20130197925 Blue Aug 2013 A1
20130211985 Clark et al. Aug 2013 A1
20130218879 Park et al. Aug 2013 A1
20130224696 Wolfe et al. Aug 2013 A1
20130225212 Khan Aug 2013 A1
20130226318 Procyk Aug 2013 A1
20130226953 Markovich et al. Aug 2013 A1
20130232045 Tai et al. Sep 2013 A1
20130238616 Rose et al. Sep 2013 A1
20130239217 Kindler et al. Sep 2013 A1
20130246170 Gross et al. Sep 2013 A1
20130246537 Gaddala Sep 2013 A1
20130246597 Iizawa et al. Sep 2013 A1
20130251233 Yang et al. Sep 2013 A1
20130262527 Hunter et al. Oct 2013 A1
20130263019 Castellanos et al. Oct 2013 A1
20130267207 Hao et al. Oct 2013 A1
20130268520 Fisher et al. Oct 2013 A1
20130276799 Davidson Oct 2013 A1
20130279757 Kephart Oct 2013 A1
20130282696 John et al. Oct 2013 A1
20130290011 Lynn et al. Oct 2013 A1
20130290825 Arndt et al. Oct 2013 A1
20130297619 Chandrasekaran et al. Nov 2013 A1
20130304770 Boero et al. Nov 2013 A1
20130311375 Priebatsch Nov 2013 A1
20130318594 Hoy et al. Nov 2013 A1
20130325859 Porter Dec 2013 A1
20130339218 Subramanian et al. Dec 2013 A1
20140006109 Callioni et al. Jan 2014 A1
20140012796 Petersen et al. Jan 2014 A1
20140013451 Kulka et al. Jan 2014 A1
20140019936 Cohanoff Jan 2014 A1
20140032506 Hoey et al. Jan 2014 A1
20140033010 Richardt et al. Jan 2014 A1
20140040371 Gurevich et al. Feb 2014 A1
20140047319 Eberlein Feb 2014 A1
20140047357 Alfaro et al. Feb 2014 A1
20140058763 Zizzamia et al. Feb 2014 A1
20140058914 Song et al. Feb 2014 A1
20140059038 McPherson et al. Feb 2014 A1
20140059683 Ashley Feb 2014 A1
20140067611 Adachi et al. Mar 2014 A1
20140068487 Steiger et al. Mar 2014 A1
20140074855 Zhao et al. Mar 2014 A1
20140081652 Klindworth Mar 2014 A1
20140095273 Tang et al. Apr 2014 A1
20140095509 Patton Apr 2014 A1
20140108068 Williams Apr 2014 A1
20140108380 Gotz et al. Apr 2014 A1
20140108985 Scott et al. Apr 2014 A1
20140122456 Dies May 2014 A1
20140122501 Shen et al. May 2014 A1
20140123279 Bishop et al. May 2014 A1
20140129261 Bothwell et al. May 2014 A1
20140136285 Carvalho May 2014 A1
20140143009 Brice et al. May 2014 A1
20140149130 Getchius May 2014 A1
20140149272 Hirani et al. May 2014 A1
20140149436 Bahrami et al. May 2014 A1
20140156527 Grigg et al. Jun 2014 A1
20140157172 Peery et al. Jun 2014 A1
20140164502 Khodorenko et al. Jun 2014 A1
20140173712 Ferdinand Jun 2014 A1
20140173738 Condry et al. Jun 2014 A1
20140188895 Wang et al. Jul 2014 A1
20140189536 Lange et al. Jul 2014 A1
20140195515 Baker et al. Jul 2014 A1
20140195887 Ellis et al. Jul 2014 A1
20140214579 Shen et al. Jul 2014 A1
20140222521 Chait Aug 2014 A1
20140222793 Sadkin et al. Aug 2014 A1
20140229422 Jain et al. Aug 2014 A1
20140229554 Grunin et al. Aug 2014 A1
20140244388 Manouchehri et al. Aug 2014 A1
20140258246 Lo Faro et al. Sep 2014 A1
20140267294 Ma Sep 2014 A1
20140267295 Sharma Sep 2014 A1
20140279824 Tamayo Sep 2014 A1
20140283107 Walton et al. Sep 2014 A1
20140310266 Greenfield Oct 2014 A1
20140310282 Sprague et al. Oct 2014 A1
20140316911 Gross Oct 2014 A1
20140333651 Cervelli et al. Nov 2014 A1
20140337772 Cervelli et al. Nov 2014 A1
20140344230 Krause et al. Nov 2014 A1
20140351070 Christner et al. Nov 2014 A1
20140358829 Hurwitz Dec 2014 A1
20140366132 Stiansen et al. Dec 2014 A1
20150019394 Unser et al. Jan 2015 A1
20150039565 Lucas Feb 2015 A1
20150046870 Goldenberg et al. Feb 2015 A1
20150073929 Psota et al. Mar 2015 A1
20150073954 Braff Mar 2015 A1
20150081803 Dick et al. Mar 2015 A1
20150089424 Duffield et al. Mar 2015 A1
20150095773 Gonsalves et al. Apr 2015 A1
20150100897 Sun et al. Apr 2015 A1
20150100907 Erenrich et al. Apr 2015 A1
20150106170 Bonica Apr 2015 A1
20150106379 Elliot et al. Apr 2015 A1
20150128274 Giokas May 2015 A1
20150134599 Banerjee et al. May 2015 A1
20150134666 Gattiker et al. May 2015 A1
20150135256 Hoy et al. May 2015 A1
20150142888 Browning May 2015 A1
20150169709 Kara et al. Jun 2015 A1
20150169726 Kara et al. Jun 2015 A1
20150170077 Kara et al. Jun 2015 A1
20150178825 Huerta Jun 2015 A1
20150178877 Bogomolov et al. Jun 2015 A1
20150186532 Agarwal et al. Jul 2015 A1
20150186821 Wang et al. Jul 2015 A1
20150187036 Wang et al. Jul 2015 A1
20150188715 Castelluci et al. Jul 2015 A1
20150188872 White Jul 2015 A1
20150227295 Meiklejohn et al. Aug 2015 A1
20150227518 Kallan Aug 2015 A1
20150229664 Hawthorn et al. Aug 2015 A1
20150235334 Wang et al. Aug 2015 A1
20150242401 Liu Aug 2015 A1
20150248563 Alfarano et al. Sep 2015 A1
20150261847 Ducott et al. Sep 2015 A1
20150324868 Kaftan et al. Nov 2015 A1
20150326601 Grondin et al. Nov 2015 A1
20150338233 Cervelli et al. Nov 2015 A1
20150347903 Saxena et al. Dec 2015 A1
20150348157 Garcia Dec 2015 A1
20150370888 Fonseca et al. Dec 2015 A1
20150378996 Kesin et al. Dec 2015 A1
20150379413 Robertson et al. Dec 2015 A1
20160004764 Chakerian et al. Jan 2016 A1
20160004864 Falk et al. Jan 2016 A1
20160028759 Visbal Jan 2016 A1
20160034470 Sprague et al. Feb 2016 A1
20160034545 Shankar et al. Feb 2016 A1
20160048937 Mathura et al. Feb 2016 A1
20170132219 Deng May 2017 A1
20170277780 Kesin et al. Sep 2017 A1
Foreign Referenced Citations (62)
Number Date Country
2014250678 Feb 2016 AU
101729531 Jun 2010 CN
102546446 Jul 2012 CN
103167093 Jun 2013 CN
103281301 Sep 2013 CN
102054015 May 2014 CN
102014103482 Sep 2014 DE
102014204827 Sep 2014 DE
102014204830 Sep 2014 DE
102014204834 Sep 2014 DE
102014215621 Feb 2015 DE
1191463 Mar 2002 EP
1672527 Jun 2006 EP
1962222 Aug 2008 EP
2487610 Aug 2012 EP
2551799 Jan 2013 EP
2555153 Feb 2013 EP
2560134 Feb 2013 EP
2778977 Sep 2014 EP
2835745 Feb 2015 EP
2835770 Feb 2015 EP
2838039 Feb 2015 EP
2846241 Mar 2015 EP
2851852 Mar 2015 EP
2858014 Apr 2015 EP
2858018 Apr 2015 EP
2863326 Apr 2015 EP
2863346 Apr 2015 EP
2869211 May 2015 EP
2881868 Jun 2015 EP
2884439 Jun 2015 EP
2884440 Jun 2015 EP
2889814 Jul 2015 EP
2891992 Jul 2015 EP
2892197 Jul 2015 EP
2897051 Jul 2015 EP
2911078 Aug 2015 EP
2911100 Aug 2015 EP
2963577 Jan 2016 EP
2963578 Jan 2016 EP
2963595 Jan 2016 EP
2985974 Feb 2016 EP
2516155 Jan 2015 GB
2518745 Apr 2015 GB
2012778 Nov 2014 NL
2013306 Feb 2015 NL
2011642 Aug 2015 NL
624557 Dec 2014 NZ
WO 2000009529 Feb 2000 WO
WO 2002065353 Aug 2002 WO
WO 2005010685 Feb 2005 WO
WO 2005104736 Nov 2005 WO
WO 2005116851 Dec 2005 WO
WO 2008011728 Jan 2008 WO
WO 2008064207 May 2008 WO
WO 2008113059 Sep 2008 WO
WO 2009061501 May 2009 WO
WO 2010000014 Jan 2010 WO
WO 2010030913 Mar 2010 WO
WO 2013010157 Jan 2013 WO
WO 2013102892 Jul 2013 WO
WO 2013126281 Aug 2013 WO
Non-Patent Literature Citations (345)
Entry
US 8,712,906 B1, 04/2014, Sprague et al. (withdrawn)
“A First Look: Predicting Market Demand for Food Retail using a Huff Analysis,” TRF Policy Solutions, Jul. 2012, pp. 30.
“A Quick Guide to UniProtKB Swiss-Prot & TrEMBL,” Sep. 2011, pp. 2.
“A Word About Banks and the Laundering of Drug Money,” Aug. 18, 2012, http://www.golemxiv.co.uk/2012/08/a-word-about-banks-and-the-laundering-of-drug-money/.
About 80 Minutes, “Palantir in a Number of Parts—Part 6—Graph,” Mar. 21, 2013, pp. 1-6, retrieved from the internet http://about80minutes.blogspot.nl/2013/03/palantir-in-number-of-parts-part-6-graph.html retrieved on Aug. 18, 2015.
Acklen, Laura, “Absolute Beginner's Guide to Microsoft Word 2003,” Dec. 24, 2003, pp. 15-18, 34-41, 308-316.
Alfred, Rayner “Summarizing Relational Data Using Semi-Supervised Genetic Algorithm-Based Clustering Techniques”, Journal of Computer Science, 2010, vol. 6, No. 7, pp. 775-784.
Amnet, “5 Great Tools for Visualizing Your Twitter Followers,” posted Aug. 4, 2010, http://www.amnetblog.com/component/content/article/115-5-grate-tools-for-visualizing-your-twitter-followers.html.
Ananiev et al., “The New Modality API,” http://web.archive.org/web/20061211011958/http://java.sun.com/developer/technicalArticles/J2SE/Desktop/javase6/modality/ Jan. 21, 2006, pp. 8.
Appacts, “Smart Thinking for Super Apps,” <http://www.appacts.com> Printed Jul. 18, 2013 in 4 pages.
Apsalar, “Data Powered Mobile Advertising,” “Free Mobile App Analytics” and various analytics related screen shots <http://apsalar.com> Printed Jul. 18, 2013 in 8 pages.
Bhuyan et al., “Network Anomaly Detection: Methods, Systems and Tools,” First Quarter 2014, IEEE.
Bluttman et al., “Excel Formulas and Functions for Dummies,” 2005, Wiley Publishing, Inc., pp. 280, 284-286.
Boyce, Jim, “Microsoft Outlook 2010 Inside Out,” Aug. 1, 2010, retrieved from the internet https://capdtron.files.wordpress.com/2013/01/outlook-2010-inside_out.pdf.
Bugzilla@Mozilla, “Bug 18726—[feature] Long-click means of invoking contextual menus not supported,” http://bugzilla.mozilla.org/show_bug.cgi?id=18726 printed Jun. 13, 2013 in 11 pages.
Canese et al., “Chapter 2: PubMed: The Bibliographic Database,” The NCBI Handbook, Oct. 2002, pp. 1-10.
Capptain—Pilot Your Apps, <http://www.capptain.com> Printed Jul. 18, 2013 in 6 pages.
Celik, Tantek, “CSS Basic User Interface Module Level 3 (CSS3 UI),” Section 8 Resizing and Overflow, Jan. 17, 2012, retrieved from internet http://www.w3.org/TR/2012/WD-css3-ui-20120117/#resizing-amp-overflow retrieved on May 18, 2015.
Chaudhuri et al., “An Overview of Business Intelligence Technology,” Communications of the ACM, Aug. 2011, vol. 54, No. 8.
Chen et al., “Bringing Order to the Web: Automatically Categorizing Search Results,” CHI 2000, Proceedings of the SIGCHI conference on Human Factors in Computing Systems, Apr. 1-6, 2000, The Hague, The Netherlands, pp. 145-152.
Chung, Chin-Wan, “Dataplex: An Access to Heterogeneous Distributed Databases,” Communications of the ACM, Association for Computing Machinery, Inc., vol. 33, No. 1, Jan. 1, 1990, pp. 70-80.
Cohn, et al., “Semi-supervised clustering with user feedback,” Constrained Clustering: Advances in Algorithms, Theory, and Applications 4.1 (2003): 17-32.
Conner, Nancy, “Google Apps: The Missing Manual,” May 1, 2008, pp. 15.
Countly Mobile Analytics, <http://count.ly/> Printed Jul. 18, 2013 in 9 pages.
Definition “Identify”, downloaded Jan. 22, 2015, 1 page.
Definition “Overlay”, downloaded Jan. 22, 2015, 1 page.
Delcher et al., “Identifying Bacterial Genes and Endosymbiont DNA with Glimmer,” BioInformatics, vol. 23, No. 6, 2007, pp. 673-679.
DISTIMO—App Analytics, <http://www.distimo.com/app-analytics> Printed Jul. 18, 2013 in 5 pages.
Dramowicz, Ela, “Retail Trade Area Analysis Using the Huff Model,” Directions Magazine, Jul. 2, 2005 in 10 pages, http://www.directionsmag.com/articles/retail-trade-area-analysis-using-the-huff-model/123411.
“The FASTA Program Package,” fasta-36.3.4, Mar. 25, 2011, pp. 29.
FireEye, <http://www.fireeye.com/> Printed Jun. 30, 2014 in 2 pages.
Flurry Analytics, <http://www.flurry.com/> Printed Jul. 18, 2013 in 14 pages.
Gesher, Ari, “Palantir Screenshots in the Wild: Swing Sightings,” The Palantir Blog, Sep. 11, 2007, pp. 1-12, retrieved from the internet https://www.palantir.com/2007/09/palantir-screenshots/ retrieved on Aug. 18, 2015.
GIS-NET 3 Public _ Department of Regional Planning. Planning & Zoning Information for Unincorporated LA County. Retrieved Oct. 2, 2013 from http://gis.planning.lacounty.gov/GIS-NET3_Public/Viewer.html.
Google Analytics Official Website—Web Analytics & Reporting, <http://www.google.com/analytics.index.html> Printed Jul. 18, 2013 in 22 pages.
Gorr et al., “Crime Hot Spot Forecasting: Modeling and Comparative Evaluation”, Grant 98-IJ-CX-K005, May 6, 2002, 37 pages.
Goswami, Gautam, “Quite Writly Said!,” One Brick at a Time, Aug. 21, 2005, pp. 7.
Griffith, Daniel A., “A Generalized Huff Model,” Geographical Analysis, Apr. 1982, vol. 14, No. 2, pp. 135-144.
Gu et al., “Record Linkage: Current Practice and Future Directions,” Jan. 15, 2004, pp. 32.
Hansen et al., “Analyzing Social Media Networks with NodeXL: Insights from a Connected World”, Chapter 4, pp. 53-67 and Chapter 10, pp. 143-164, published Sep. 2010.
Hardesty, “Privacy Challenges: Analysis: It's Surprisingly Easy to Identify Individuals from Credit-Card Metadata,” MIT News on Campus and Around the World, MIT News Office, Jan. 29, 2015, 3 pages.
Hibbert et al., “Prediction of Shopping Behavior Using a Huff Model Within a GIS Framework,” Healthy Eating in Context, Mar. 18, 2011, pp. 16.
Hogue et al., “Thresher: Automating the Unwrapping of Semantic Content from the World Wide Web,” 14th International Conference on World Wide Web, WWW 2005: Chiba, Japan, May 10-14, 2005, pp. 86-95.
Hua et al., “A Multi-attribute Data Structure with Parallel Bloom Filters for Network Services”, HiPC 2006, LNCS 4297, pp. 277-288, 2006.
Huang et al., “Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources,” Nature Protocols, 4.1, 2008, 44-57.
Huff et al., “Calibrating the Huff Model Using ArcGIS Business Analyst,” ESRI, Sep. 2008, pp. 33.
Huff, David L., “Parameter Estimation in the Huff Model,” ESRI, ArcUser, Oct.-Dec. 2003, pp. 34-36.
“HunchLab: Heat Map and Kernel Density Calculation for Crime Analysis,” Azavea Journal, printed from www.azavea.com/blogs/newsletter/v4i4/kernel-density-capabilities-added-to-hunchlab/ on Sep. 9, 2014, 2 pages.
Kahan et al., “Annotea: an Open RDF Infrastructure for Shared Web Annotations”, Computer Networks, Elsevier Science Publishers B.V., vol. 39, No. 5, dated Aug. 5, 2002, pp. 589-608.
Keylines.com, “An Introduction to KeyLines and Network Visualization,” Mar. 2014, <http://keylines.com/wp-content/uploads/2014/03/KeyLines-White-Paper.pdf> downloaded May 12, 2014 in 8 pages.
Keylines.com, “KeyLines Datasheet,” Mar. 2014, <http://keylines.com/wp-content/uploads/2014/03/KeyLines-datasheet.pdf> downloaded May 12, 2014 in 2 pages.
Keylines.com, “Visualizing Threats: Improved Cyber Security Through Network Visualization,” Apr. 2014, <http://keylines.com/wp-content/uploads/2014/04/Visualizing-Threats1.pdf> downloaded May 12, 2014 in 10 pages.
Kitts, Paul, “Chapter 14: Genome Assembly and Annotation Process,” The NCBI Handbook, Oct. 2002, pp. 1-21.
Kontagent Mobile Analytics, <http://www.kontagent.com/> Printed Jul. 18, 2013 in 9 pages.
Lee et al., “A Data Mining and CIDF Based Approach for Detecting Novel and Distributed Intrusions,” Lecture Notes in Computer Science, vol. 1907 Nov. 11, 2000, pp. 49-65.
Li et al., “Interactive Multimodal Visual Search on Mobile Device,” IEEE Transactions on Multimedia, vol. 15, No. 3, Apr. 1, 2013, pp. 594-607.
Liu, Tianshun, “Combining GIS and the Huff Model to Analyze Suitable Locations for a New Asian Supermarket in the Minneapolis and St. Paul, Minnesota USA,” Papers in Resource Analysis, 2012, vol. 14, pp. 8.
Localytics—Mobile App Marketing & Analytics, <http://www.localytics.com/> Printed Jul. 18, 2013 in 12 pages.
Madden, Tom, “Chapter 16: The BLAST Sequence Analysis Tool,” The NCBI Handbook, Oct. 2002, pp. 1-15.
Manno et al., “Introducing Collaboration in Single-user Applications through the Centralized Control Architecture,” 2010, pp. 10.
Manske, “File Saving Dialogs,” <http://www.mozilla.org/editor/ui_specs/FileSaveDialogs.html>, Jan. 20, 1999, pp. 7.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.yahoo.com.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.bing.com.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.google.com.
Microsoft—Developer Network, “Getting Started with VBA in Word 2010,” Apr. 2010, <http://msdn.microsoft.com/en-us/library/ff604039%28v=office.14%29.aspx> as printed Apr. 4, 2014 in 17 pages.
Microsoft Office—Visio, “About connecting shapes,” <http://office.microsoft.com/en-us/visio-help/about-connecting-shapes-HP085050369.aspx> printed Aug. 4, 2011 in 6 pages.
Microsoft Office—Visio, “Add and glue connectors with the Connector tool,” <http://office.microsoft.com/en-us/visio-help/add-and-glue-connectors-with-the-connector-tool-HA010048532.aspx?CTT=1> printed Aug. 4, 2011 in 1 page.
Mixpanel—Mobile Analytics, <https://mixpanel.com/> Printed Jul. 18, 2013 in 13 pages.
Mizrachi, Ilene, “Chapter 1: GenBank: The Nuckeotide Sequence Database,” The NCBI Handbook, Oct. 2002, pp. 1-14.
“Money Laundering Risks and E-Gaming: A European Overview and Assessment,” 2009, http://www.cf.ac.uk/socsi/resources/Levi_Final_Money_Laundering_Risks_egaming.pdf.
Nierman, “Evaluating Structural Similarity in XML Documents”, 6 pages, 2002.
Nolan et al., “MCARTA: A Malicious Code Automated Run-Time Analysis Framework,” Homeland Security (HST) 2012 IEEE Conference on Technologies for, Nov. 13, 2012, pp. 13-17.
Olanoff, Drew, “Deep Dive with the New Google Maps for Desktop with Google Earth Integration, It's More than Just a Utility,” May 15, 2013, pp. 1-6, retrieved from the internet: http://web.archive.org/web/20130515230641/http://techcrunch.com/2013/05/15/deep-dive-with-the-new-google-maps-for-desktop-with-google-earth-integration-its-more-than-just-a-utility/.
Open Web Analytics (OWA), <http://www.openwebanalytics.com/> Printed Jul. 19, 2013 in 5 pages.
Palantir Technologies, “Palantir Labs—Timeline,” Oct. 1, 2010, retrieved from the internet https://www.youtube.com/watch?v=JCgDW5bru9M retrieved on Aug. 19, 2015.
Palmas et al. “An Edge-Bunding Layout for Interactive Parallel Coordinates” 2014 IEEE Pacific Visualization Symposium, pp. 57-64.
Perdisci et al., “Behavioral Clustering of HTTP-Based Malware and Signature Generation Using Malicious Network Traces,” USENIX, Mar. 18, 2010, pp. 1-14.
Piwik—Free Web Analytics Software. <http://piwik.org/> Printed Jul. 19, 2013 in 18 pages.
“Potential Money Laundering Warning Signs,” snapshot taken 2003, https://web.archive.org/web/20030816090055/http:/finsolinc.com/ANTI-MONEY%20LAUNDERING%20TRAINING%20GUIDES.pdf.
“Refresh CSS Ellipsis When Resizing Container—Stack Overflow,” Jul. 31, 2013, retrieved from internet http://stackoverflow.com/questions/17964681/refresh-css-ellipsis-when-resizing-container, retrieved on May 18, 2015.
Rouse, Margaret, “OLAP Cube,” <http://searchdatamanagement.techtarget.com/definition/OLAP-cube>, Apr. 28, 2012, pp. 16.
Shah, Chintan, “Periodic Connections to Control Server Offer New Way to Detect Botnets,” Oct. 24, 2013 in 6 pages, <http://www.blogs.mcafee.com/mcafee-labs/periodic-links-to-control-server-offer-new-way-to-detect-botnets>.
Shi et al., “A Scalable Implementation of Malware Detection Based on Network Connection Behaviors,” 2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, IEEE, Oct. 10, 2013, pp. 59-66.
Sigrist, et al., “PROSITE, a Protein Domain Database for Functional Characterization and Annotation,” Nucleic Acids Research, 2010, vol. 38, pp. D161-D166.
Sirotkin et al., “Chapter 13: The Processing of Biological Sequence Data at NCBI,” The NCBI Handbook, Oct. 2002, pp. 1-11.
StatCounter—Free Invisible Web Tracker, Hit Counter and Web Stats, <http://statcounter.com/> Printed Jul. 19, 2013 in 17 pages.
Symantec Corporation, “E-Security Begins with Sound Security Policies,” Announcement Symantec, Jun. 14, 2001.
TestFlight—Beta Testing on the Fly, <http://testflightapp.com/> Printed Jul. 18, 2013 in 3 pages.
Thompson, Mick, “Getting Started with GEO,” Getting Started with GEO, Jul. 26, 2011.
trak.io, <http://trak.io/> printed Jul. 18, 2013 in 3 pages.
Umagandhi et al., “Search Query Recommendations Using Hybrid User Profile with Query Logs,” International Journal of Computer Applications, vol. 80, No. 10, Oct. 1, 2013, pp. 7-18.
UserMetrix, <http://usermetrix.com/android-analytics> printed Jul. 18, 2013 in 3 pages.
“Using Whois Based Geolocation and Google Maps API for Support Cybercrime Investigations,” http://wseas.us/e-library/conferences/2013/Dubrovnik/TELECIRC/TELECIRC-32.pdf.
Valentini et al., “Ensembles of Learning Machines”, M. Marinaro and R. Tagliaferri (Eds.): WIRN VIETRI 2002, LNCS 2486, pp. 3-20.
VirusTotal—About, <http://www.virustotal.com/en/about/> Printed Jun. 30, 2014 in 8 pages.
Vose et al., “Help File for ModelRisk Version 5,” 2007, Vose Software, pp. 349-353. [Uploaded in 2 Parts].
Wang et al., “Research on a Clustering Data De-Duplication Mechanism Based on Bloom Filter,” IEEE 2010, 5 pages.
Wiggerts, T.A., “Using Clustering Algorithms in Legacy Systems Remodularization,” Reverse Engineering, Proceedings of the Fourth Working Conference, Netherlands, Oct. 6-8, 1997, IEEE Computer Soc., pp. 33-43.
Wikipedia, “Federated Database System,” Sep. 7, 2013, retrieved from the internet on Jan. 27, 2015 http://en.wikipedia.org/w/index.php?title=Federated_database_system&oldid=571954221.
Wikipedia, “Multimap,” Jan. 1, 2013, https://en.wikipedia.org/w/index.php?title=Multimap&oldid=530800748.
Wright et al., “Palantir Technologies VAST 2010 Challenge Text Records—Investigations into Arms Dealing,” Oct. 29, 2010, pp. 1-10, retrieved from the internet http://hcil2.cs.umd.edu/newvarepository/VAST%20Challenge%202010/challenges/MC1%20-%20Investigations%20into%20Arms%20Dealing/entries/Palantir%20Technologies/ retrieved on Aug. 20, 2015.
Yang et al., “HTML Page Analysis Based on Visual Cues”, A129, pp. 859-864, 2001.
Zheng et al., “GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis,” Nucleic acids research 36.suppl 2 (2008): pp. W385-W363.
Notice of Acceptance for Australian Patent Application No. 2014250678 dated Oct. 7, 2015.
Notice of Allowance for U.S. Appl. No. 13/247,987 dated Mar. 17, 2016.
Notice of Allowance for U.S. Appl. No. 14/102,394 dated Aug. 25, 2014.
Notice of Allowance for U.S. Appl. No. 14/108,187 dated Aug. 29, 2014.
Notice of Allowance for U.S. Appl. No. 14/135,289 dated Oct. 14, 2014.
Notice of Allowance for U.S. Appl. No. 14/139,628 dated Jun. 24, 2015.
Notice of Allowance for U.S. Appl. No. 14/139,640 dated Jun. 17, 2015.
Notice of Allowance for U.S. Appl. No. 14/139,713 dated Jun. 12, 2015.
Notice of Allowance for U.S. Appl. No. 14/148,568 dated Aug. 26, 2015.
Notice of Allowance for U.S. Appl. No. 14/192,767 dated Dec. 16, 2014.
Notice of Allowance for U.S. Appl. No. 14/223,918 dated Jan. 6, 2016.
Notice of Allowance for U.S. Appl. No. 14/225,084 dated May 4, 2015.
Notice of Allowance for U.S. Appl. No. 14/264,445 dated May 14, 2015.
Notice of Allowance for U.S. Appl. No. 14/268,964 dated Dec. 3, 2014.
Notice of Allowance for U.S. Appl. No. 14/278,963 dated Sep. 2, 2015.
Notice of Allowance for U.S. Appl. No. 14/294,098 dated Dec. 29, 2014.
Notice of Allowance for U.S. Appl. No. 14/319,161 dated May 4, 2015.
Notice of Allowance for U.S. Appl. No. 14/319,765 dated Nov. 25, 2016.
Notice of Allowance for U.S. Appl. No. 14/323,935 dated Oct. 1, 2015.
Notice of Allowance for U.S. Appl. No. 14/326,738 dated Nov. 18, 2015.
Notice of Allowance for U.S. Appl. No. 14/473,552 dated Jul. 24, 2015.
Notice of Allowance for U.S. Appl. No. 14/473,860 dated Jan. 5, 2015.
Notice of Allowance for U.S. Appl. No. 14/479,863 dated Mar. 31, 2015.
Notice of Allowance for U.S. Appl. No. 14/486,991 dated May 1, 2015.
Notice of Allowance for U.S. Appl. No. 14/504,103 dated May 18, 2015.
Notice of Allowance for U.S. Appl. No. 14/552,336 dated Nov. 3, 2015.
Notice of Allowance for U.S. Appl. No. 14/616,080 dated Apr. 2, 2015.
Notice of Allowance for U.S. Appl. No. 14/746,671 dated Jan. 21, 2016.
Notice of Allowance for U.S. Appl. No. 14/823,935 dated Apr. 25, 2016.
Notice of Allowance for U.S. Appl. No. 14/858,647 dated Mar. 4, 2016.
Notice of Allowance for U.S. Appl. No. 14/970,317 dated May 26, 2016.
Notice of Allowance for U.S. Appl. No. 15/053,177 dated Sep. 15, 2017.
Official Communication for Australian Patent Application No. 2014201511 dated Feb. 27, 2015.
Official Communication for Australian Patent Application No. 2014202442 dated Mar. 19, 2015.
Official Communication for Australian Patent Application No. 2014210604 dated Jun. 5, 2015.
Official Communication for Australian Patent Application No. 2014210614 dated Jun. 5, 2015.
Official Communication for Australian Patent Application No. 2014213553 dated May 7, 2015.
Official Communication for Australian Patent Application No. 2014250678 dated Jun. 17, 2015.
Official Communication for European Patent Application No. 14158861.6 dated Jun. 16, 2014.
Official Communication for European Patent Application No. 14159464.8 dated Sep. 22, 2014.
Official Communication for European Patent Application No. 14159464.8 dated Jul. 31, 2014.
Official Communication for European Patent Application No. 14159535.5 dated May 22, 2014.
Official Communication for European Patent Application No. 14180142.3 dated Feb. 6, 2015.
Official Communication for European Patent Application No. 14180281.9 dated Jan. 26, 2015.
Official Communication for European Patent Application No. 14180321.3 dated Apr. 17, 2015.
Official Communication for European Patent Application No. 14180432.8 dated Jun. 23, 2015.
Official Communication for European Patent Application No. 14186225.0 dated Feb. 13, 2015.
Official Communication for European Patent Application No. 14187739.9 dated Jul. 6, 2015.
Official Communication for European Patent Application No. 14187996.5 dated Feb. 12, 2015.
Official Communication for European Patent Application No. 14187996.5 dated Feb. 19, 2016.
Official Communication for European Patent Application No. 14189344.6 dated Feb. 20, 2015.
Official Communication for European Patent Application No. 14189347.9 dated Mar. 4, 2015.
Official Communication for European Patent Application No. 14189802.3 dated May 11, 2015.
Official Communication for European Patent Application No. 14191540.5 dated May 27, 2015.
Official Communication for European Patent Application No. 14197879.1 dated Apr. 28, 2015.
Official Communication for European Patent Application No. 14197895.7 dated Apr. 28, 2015.
Official Communication for European Patent Application No. 14197938.5 dated Apr. 28, 2015.
Official Communication for European Patent Application No. 14199180.2 dated Jun. 22, 2015.
Official Communication for European Patent Application No. 14199180.2 dated Aug. 31, 2015.
Official Communication for European Patent Application No. 14199182.8 dated Mar. 13, 2015.
Official Communication for European Patent Application No. 14200246.8 dated May 29, 2015.
Official Communication for European Patent Application No. 14200298.9 dated May 13, 2015.
Official Communication for European Patent Application No. 14200298.9 dated Mar. 15, 2016.
Official Communication for European Patent Application No. 15155845.9 dated Oct. 6, 2015.
Official Communication for European Patent Application No. 15155846.7 dated Jul. 8, 2015.
Official Communication for European Patent Application No. 15156004.2 dated Aug. 24, 2015.
Official Communication for European Patent Application No. 15165244.3 dated Aug. 27, 2015.
Official Communication for European Patent Application No. 15175106.2 dated Nov. 5, 2015.
Official Communication for European Patent Application No. 15175151.8 dated Nov. 25, 2015.
Official Communication for European Patent Application No. 15180515.7 dated Dec. 14, 2015.
Official Communication for European Patent Application No. 15180985.2 dated Jan. 15, 2016.
Official Communication for European Patent Application No. 15181419.1 dated Sep. 29, 2015.
Official Communication for European Patent Application No. 15184764.7 dated Dec. 14, 2015.
Official Communication for Great Britain Patent Application No. 1404457.2 dated Aug. 14, 2014.
Official Communication for Great Britain Patent Application No. 1404486.1 dated May 21, 2015.
Official Communication for Great Britain Patent Application No. 1404486.1 dated Aug. 27, 2014.
Official Communication for Great Britain Patent Application No. 1404489.5 dated May 21, 2015.
Official Communication for Great Britain Patent Application No. 1404489.5 dated Aug. 27, 2014.
Official Communication for Great Britain Patent Application No. 1404489.5 dated Oct. 6, 2014.
Official Communication for Great Britain Patent Application No. 1404499.4 dated Jun. 11, 2015.
Official Communication for Great Britain Patent Application No. 1404499.4 dated Aug. 20, 2014.
Official Communication for Great Britain Patent Application No. 1404499.4 dated Sep. 29, 2014.
Official Communication for Great Britain Patent Application No. 1404574.4 dated Dec. 18, 2014.
Official Communication for Great Britain Patent Application No. 1408025.3 dated Nov. 6, 2014.
Official Communication for Great Britain Patent Application No. 1411984.6 dated Dec. 22, 2014.
Official Communication for Great Britain Patent Application No. 1413935.6 dated Jan. 27, 2015.
Official Communication for Netherlands Patent Application No. 2012417 dated Sep. 18, 2015.
Official Communication for Netherlands Patent Application No. 2012421 dated Sep. 18, 2015.
Official Communication for Netherlands Patent Application No. 2012438 dated Sep. 21, 2015.
Official Communication for Netherlands Patent Application No. 2013306 dated Apr. 24, 2015.
Official Communication for New Zealand Patent Application No. 622473 dated Jun. 19, 2014.
Official Communication for New Zealand Patent Application No. 622473 dated Mar. 27, 2014.
Official Communication for New Zealand Patent Application No. 622513 dated Apr. 3, 2014.
Official Communication for New Zealand Patent Application No. 622517 dated Apr. 3, 2014.
Official Communication for New Zealand Patent Application No. 624557 dated May 14, 2014.
Official Communication for New Zealand Patent Application No. 627962 dated Aug. 5, 2014.
Official Communication for New Zealand Patent Application No. 628161 dated Aug. 25, 2014.
Official Communication for New Zealand Patent Application No. 628263 dated Aug. 12, 2014.
Official Communication for New Zealand Patent Application No. 628495 dated Aug. 19, 2014.
Official Communication for New Zealand Patent Application No. 628585 dated Aug. 26, 2014.
Official Communication for New Zealand Patent Application No. 628840 dated Aug. 28, 2014.
Official Communication for U.S. Appl. No. 12/556,318 dated Jul. 2, 2015.
Official Communication for U.S. Appl. No. 13/247,987 dated Apr. 2, 2015.
Official Communication for U.S. Appl. No. 13/247,987 dated Sep. 22, 2015.
Official Communication for U.S. Appl. No. 13/827,491 dated Dec. 1, 2014.
Official Communication for U.S. Appl. No. 13/827,491 dated Jun. 22, 2015.
Official Communication for U.S. Appl. No. 13/827,491 dated Oct. 9, 2015.
Official Communication for U.S. Appl. No. 13/831,791 dated Mar. 4, 2015.
Official Communication for U.S. Appl. No. 13/831,791 dated Aug. 6, 2015.
Official Communication for U.S. Appl. No. 13/835,688 dated Jun. 17, 2015.
Official Communication for U.S. Appl. No. 13/839,026 dated Aug. 4, 2015.
Official Communication for U.S. Appl. No. 14/134,558 dated Oct. 7, 2015.
Official Communication for U.S. Appl. No. 14/141,252 dated Apr. 14, 2016.
Official Communication for U.S. Appl. No. 14/141,252 dated Nov. 28, 2017.
Official Communication for U.S. Appl. No. 14/141,252 dated Oct. 8, 2015.
Official Communication for U.S. Appl. No. 14/148,568 dated Oct. 22, 2014.
Official Communication for U.S. Appl. No. 14/148,568 dated Mar. 26, 2015.
Official Communication for U.S. Appl. No. 14/196,814 dated May 5, 2015.
Official Communication for U.S. Appl. No. 14/223,918 dated Jun. 8, 2015.
Official Communication for U.S. Appl. No. 14/225,006 dated Sep. 10, 2014.
Official Communication for U.S. Appl. No. 14/225,006 dated Sep. 2, 2015.
Official Communication for U.S. Appl. No. 14/225,006 dated Dec. 21, 2015.
Official Communication for U.S. Appl. No. 14/225,006 dated Feb. 27, 2015.
Official Communication for U.S. Appl. No. 14/225,084 dated Sep. 11, 2015.
Official Communication for U.S. Appl. No. 14/225,084 dated Sep. 2, 2014.
Official Communication for U.S. Appl. No. 14/225,084 dated Feb. 20, 2015.
Official Communication for U.S. Appl. No. 14/225,084 dated Feb. 26, 2016.
Official Communication for U.S. Appl. No. 14/225,084 dated Jan. 4, 2016.
Official Communication for U.S. Appl. No. 14/225,160 dated Feb. 11, 2015.
Official Communication for U.S. Appl. No. 14/225,160 dated Aug. 12, 2015.
Official Communication for U.S. Appl. No. 14/225,160 dated May 20, 2015.
Official Communication for U.S. Appl. No. 14/225,160 dated Oct. 22, 2014.
Official Communication for U.S. Appl. No. 14/225,160 dated Jan. 25, 2016.
Official Communication for U.S. Appl. No. 14/225,160 dated Jul. 29, 2014.
Official Communication for U.S. Appl. No. 14/251,485 dated Oct. 1, 2015.
Official Communication for U.S. Appl. No. 14/264,445 dated Apr. 17, 2015.
Official Communication for U.S. Appl. No. 14/268,964 dated Sep. 3, 2014.
Official Communication for U.S. Appl. No. 14/278,963 dated Jan. 30, 2015.
Official Communication for U.S. Appl. No. 14/280,490 dated Jul. 24, 2014.
Official Communication for U.S. Appl. No. 14/289,596 dated Jul. 18, 2014.
Official Communication for U.S. Appl. No. 14/289,596 dated Jan. 26, 2015.
Official Communication for U.S. Appl. No. 14/289,596 dated Apr. 30, 2015.
Official Communication for U.S. Appl. No. 14/289,599 dated Jul. 22, 2014.
Official Communication for U.S. Appl. No. 14/289,599 dated May 29, 2015.
Official Communication for U.S. Appl. No. 14/289,599 dated Sep. 4, 2015.
Official Communication for U.S. Appl. No. 14/294,098 dated Aug. 15, 2014.
Official Communication for U.S. Appl. No. 14/294,098 dated Nov. 6, 2014.
Official Communication for U.S. Appl. No. 14/306,138 dated Sep. 14, 2015.
Official Communication for U.S. Appl. No. 14/306,138 dated Mar. 17, 2016.
Official Communication for U.S. Appl. No. 14/306,138 dated Feb. 18, 2015.
Official Communication for U.S. Appl. No. 14/306,138 dated Sep. 23, 2014.
Official Communication for U.S. Appl. No. 14/306,138 dated Dec. 24, 2015.
Official Communication for U.S. Appl. No. 14/306,138 dated May 26, 2015.
Official Communication for U.S. Appl. No. 14/306,138 dated Dec. 3, 2015.
Official Communication for U.S. Appl. No. 14/306,147 dated Feb. 19, 2015.
Official Communication for U.S. Appl. No. 14/306,147 dated Dec. 24, 2015.
Official Communication for U.S. Appl. No. 14/306,147 dated Aug. 7, 2015.
Official Communication for U.S. Appl. No. 14/306,147 dated Sep. 9, 2014.
Official Communication for U.S. Appl. No. 14/306,154 dated Feb. 1, 2016.
Official Communication for U.S. Appl. No. 14/306,154 dated Mar. 11, 2015.
Official Communication for U.S. Appl. No. 14/306,154 dated May 15, 2015.
Official Communication for U.S. Appl. No. 14/306,154 dated Nov. 16, 2015.
Official Communication for U.S. Appl. No. 14/306,154 dated Mar. 17, 2016.
Official Communication for U.S. Appl. No. 14/306,154 dated Jul. 6, 2015.
Official Communication for U.S. Appl. No. 14/306,154 dated Sep. 9, 2014.
Official Communication for U.S. Appl. No. 14/319,161 dated Jan. 23, 2015.
Official Communication for U.S. Appl. No. 14/319,765 dated Aug. 1, 2016.
Official Communication for U.S. Appl. No. 14/319,765 dated Feb. 1, 2016.
Official Communication for U.S. Appl. No. 14/319,765 dated Sep. 10, 2015.
Official Communication for U.S. Appl. No. 14/319,765 dated Jun. 16, 2015.
Official Communication for U.S. Appl. No. 14/319,765 dated Nov. 25, 2014.
Official Communication for U.S. Appl. No. 14/319,765 dated Feb. 4, 2015.
Official Communication for U.S. Appl. No. 14/323,935 dated Jun. 22, 2015.
Official Communication for U.S. Appl. No. 14/323,935 dated Nov. 28, 2014.
Official Communication for U.S. Appl. No. 14/323,935 dated Mar. 31, 2015.
Official Communication for U.S. Appl. No. 14/326,738 dated Dec. 2, 2014.
Official Communication for U.S. Appl. No. 14/326,738 dated Jul. 31, 2015.
Official Communication for U.S. Appl. No. 14/326,738 dated Mar. 31, 2015.
Official Communication for U.S. Appl. No. 14/451,221 dated Oct. 21, 2014.
Official Communication for U.S. Appl. No. 14/463,615 dated Sep. 10, 2015.
Official Communication for U.S. Appl. No. 14/463,615 dated Nov. 13, 2014.
Official Communication for U.S. Appl. No. 14/463,615 dated May 21, 2015.
Official Communication for U.S. Appl. No. 14/463,615 dated Jan. 28, 2015.
Official Communication for U.S. Appl. No. 14/463,615 dated Dec. 9, 2015.
Official Communication for U.S. Appl. No. 14/473,552 dated Feb. 24, 2015.
Official Communication for U.S. Appl. No. 14/479,863 dated Dec. 26, 2014.
Official Communication for U.S. Appl. No. 14/483,527 dated Jun. 22, 2015.
Official Communication for U.S. Appl. No. 14/483,527 dated Jan. 28, 2015.
Official Communication for U.S. Appl. No. 14/483,527 dated Oct. 28, 2015.
Official Communication for U.S. Appl. No. 14/486,991 dated Mar. 10, 2015.
Official Communication for U.S. Appl. No. 14/490,612 dated Aug. 18, 2015.
Official Communication for U.S. Appl. No. 14/490,612 dated Jan. 27, 2015.
Official Communication for U.S. Appl. No. 14/490,612 dated Mar. 31, 2015.
Official Communication for U.S. Appl. No. 14/504,103 dated Mar. 31, 2015.
Official Communication for U.S. Appl. No. 14/504,103 dated Feb. 5, 2015.
Official Communication for U.S. Appl. No. 14/518,757 dated Dec. 1, 2015.
Official Communication for U.S. Appl. No. 14/518,757 dated Apr. 2, 2015.
Official Communication for U.S. Appl. No. 14/518,757 dated Jul. 20, 2015.
Official Communication for U.S. Appl. No. 14/552,336 dated Jul. 20, 2015.
Official Communication for U.S. Appl. No. 14/562,524 dated Nov. 10, 2015.
Official Communication for U.S. Appl. No. 14/562,524 dated Sep. 14, 2015.
Official Communication for U.S. Appl. No. 14/571,098 dated Nov. 10, 2015.
Official Communication for U.S. Appl. No. 14/571,098 dated Mar. 11, 2015.
Official Communication for U.S. Appl. No. 14/571,098 dated Feb. 23, 2016.
Official Communication for U.S. Appl. No. 14/571,098 dated Aug. 24, 2015.
Official Communication for U.S. Appl. No. 14/571,098 dated Aug. 5, 2015.
Official Communication for U.S. Appl. No. 14/579,752 dated Aug. 19, 2015.
Official Communication for U.S. Appl. No. 14/579,752 dated May 26, 2015.
Official Communication for U.S. Appl. No. 14/579,752 dated Dec. 9, 2015.
Official Communication for U.S. Appl. No. 14/581,920 dated Mar. 1, 2016.
Official Communication for U.S. Appl. No. 14/631,633 dated Sep. 10, 2015.
Official Communication for U.S. Appl. No. 14/639,606 dated Oct. 16, 2015.
Official Communication for U.S. Appl. No. 14/639,606 dated May 18, 2015.
Official Communication for U.S. Appl. No. 14/639,606 dated Jul. 24, 2015.
Official Communication for U.S. Appl. No. 14/645,304 dated Jan. 25, 2016.
Official Communication for U.S. Appl. No. 14/676,621 dated Oct. 29, 2015.
Official Communication for U.S. Appl. No. 14/676,621 dated Jul. 30, 2015.
Official Communication for U.S. Appl. No. 14/726,353 dated Mar. 1, 2016.
Official Communication for U.S. Appl. No. 14/726,353 dated Sep. 10, 2015.
Official Communication for U.S. Appl. No. 14/731,312 dated Apr. 14, 2016.
Official Communication for U.S. Appl. No. 14/746,671 dated Nov. 12, 2015.
Official Communication for U.S. Appl. No. 14/746,671 dated Sep. 28, 2015.
Official Communication for U.S. Appl. No. 14/800,447 dated Dec. 10, 2015.
Official Communication for U.S. Appl. No. 14/813,749 dated Sep. 28, 2015.
Official Communication for U.S. Appl. No. 14/823,935 dated Dec. 4, 2015.
Official Communication for U.S. Appl. No. 14/842,734 dated Nov. 19, 2015.
Official Communication for U.S. Appl. No. 14/857,071 dated Mar. 2, 2016.
Official Communication for U.S. Appl. No. 14/874,690 dated Dec. 21, 2015.
Official Communication for U.S. Appl. No. 14/923,712 dated Feb. 12, 2016.
Official Communication for U.S. Appl. No. 14/929,584 dated Feb. 4, 2016.
Official Communication for U.S. Appl. No. 14/948,009 dated Feb. 25, 2016.
Official Communication for U.S. Appl. No. 14/970,317 dated Mar. 21, 2016.
Official Communication for U.S. Appl. No. 14/982,699 dated Mar. 25, 2016.
Official Communication for U.S. Appl. No. 15/053,177 dated Mar. 7, 2017.
Official Communication for U.S. Appl. No. 15/071,064 dated Jun. 16, 2016.
Official Communication for U.S. Appl. No. 15/483,731 dated Aug. 11, 2017.
Official Communication for U.S. Appl. No. 15/483,731 dated Sep. 12, 2017.
Restriction Requirement for U.S. Appl. No. 13/839,026 dated Apr. 2, 2015.
Restriction Requirement for U.S. Appl. No. 14/857,071 dated Dec. 11, 2015.
Notice of Allowance for U.S. Appl. No. 15/053,155 dated Sep. 26, 2017.
Official Communication for U.S. Appl. No. 15/053,155 dated Sep. 13, 2017.
Official Communication for U.S. Appl. No. 15/053,155 dated Mar. 7, 2017.
Related Publications (1)
Number Date Country
20180101594 A1 Apr 2018 US
Continuations (4)
Number Date Country
Parent 15053155 Feb 2016 US
Child 15839044 US
Parent 15053177 Feb 2016 US
Child 15053155 US
Parent 14326738 Jul 2014 US
Child 15053177 US
Parent 14323935 Jul 2014 US
Child 14326738 US