Nuclear magnetic resonance (NMR) is associated with coherent resonant rotation of magnetic atomic nuclei, around an axis parallel to a large static applied magnetic field, following excitation by a radio-frequency pulse. The rotation frequency (the Larmor frequency) is proportional to the applied magnetic field, given by f=γB, where γ=42 MHz/T for the hydrogen nucleus (proton) and of similar magnitude for other nuclei. The coherent decay time, known as T2, is typically of order 100 ms, reflecting the very high-Q nuclear rotations with only weak interactions with the atomic environments. In magnetic resonance imaging (MRI), appropriate weak gradients in applied magnetic field are used to obtain frequency gradients, thus enabling Fourier transforms of the nuclear signal to be mapped onto spatial images. However, the coherent signal is extremely weak, corresponding to radio frequency (RF) magnetic fields (for 1-mm resolution) of order 10−14 T (=10 fT) in an applied field of order 1 T. For an applied field in the z-direction, the RF magnetic signal rotates in the x-y plane at the Larmor frequency, corresponding to circular polarization (see
Magnetic resonance imaging (MRI) is primarily a medical imaging technique commonly used in radiology to visualize detailed internal structures and limited functions of the body, but also used in non-destructive testing and other fields. MRI is useful because it provides great contrast between the different soft tissues of the body, such as lipid and aqueous. MRI is discussed in detail at en.wikipedia.org/wiki/Magnetic_resonance_imaging (incorporated herein by reference).
In addition to the desired RF signal, the measured RF fields also comprise noise within the same frequency band. There may be many sources of noise, including noise associated with electrical currents in the antenna and amplifiers in the receiver. The dominant source of noise in MRI systems typically comprises fluctuating Johnson noise associated with thermally excited eddy currents in the electrically conducting medium of the human body or other object under examination. Johnson noise is the electrical noise generated by the thermal agitation of charge carriers, such as electrons and ions, inside an electrical conductor at equilibrium. Johnson noise is approximately white, meaning that its spectral density is nearly equal throughout the frequency spectrum, and therefore including even the relatively narrow bands of interest during MRI signal processing. See, for example, “Signal-to-noise ratio in MRI”, T. W. Redpath, British Journal of Radiology, vol. 71, pp. 704-707 (1998), incorporated herein by reference. This Johnson noise is largely independent of the static magnetic field, while the signal of interest is proportional to the applied field. (This is the main impetus for the use of very large magnetic fields.) These eddy currents create broadband RF magnetic fields which also couple to the pickup coil or coils, with a form within a narrow band of interest that may be expressed as Bn(t)=Bn0 cos(ωt+ϕn), where Bn0 and ϕn are the amplitude and phase of the fluctuating noise component of the magnetic field that couples to the coil. MRI receivers generally filter out all noise outside of the narrow band required for the MRI signal. For example, a typical receiver bandwidth might be 50 kHz or less. In this case, Bn0 and ϕn can vary significantly over a time greater than about 20 microseconds limited by the receiver bandwidth. Note that the nuclear signal itself is coherent for a time T2 of order 100 ms, while the various noise sources are incoherent (or coherent over much shorter timescales), so that signal integration generally increases the signal amplitude linearly with the time, while it increases the noise amplitude with the square root of the time. The signal-to-noise ratio (SNR) thus increases with averaging or measurement repetition. However, performing an integration over the coherence time to maximize the signal to noise ratio may unduly prolong an MRI scan, which is uncomfortable to the patient, and may lead to movement artifacts during the scan.
There has been relatively little effort in the prior art devoted to measuring and characterizing the body noise in MRI. However, U.S. Pat. No. 6,865,494, expressly incorporated herein by reference, proposes to provide “noise tomography”, in which a three dimensional scan of Johnson noise is itself the output, wherein tissues having different conductivity have variations in the measured noise.
One type of MRI antenna is described in by Eydelman in U.S. Pat. No. 6,636,040, incorporated herein by reference. Eydelman's antenna, and that of similar devices, reads both the signal, as well as noise from Eddy Currents caused by various dynamic magnetic fields in the body, including those induced by the MRI machine itself. The isolation of the signal with respect to in-band noise is difficult and often impossible, leading to impaired resolution or aberrations, longer scan time, and/or image noise.
Consider a planar pickup coil in the y-z plane, which detects a field component of the rotating nuclear magnetic signal Bsx(t)=Bs0 cos(ωt) in the x-direction, where w=2πf is the Larmor frequency. An identical coil oriented in the x-z plane will detect the corresponding nuclear magnetic field component Bsy(t)=Bs0 sin(ωt) in the y-direction, shifted by 90° from the first coil. Taken together, the two coils form a quadrature antenna, which is known in the prior art. The prior art further teaches that applying a 90° phase shift and adding the signals from the two antennas will increase the nuclear magnetic signal amplitude by a factor of two. See, for example, U.S. Pat. Nos. 7,649,353; 4,769,605; 5,351,688.
If one has two antennas in a quadrature configuration, adding the two signals with a 90° phase shift increases the signal amplitude by a factor of two, as noted above. If the noise signals Bn from the two antennas are uncorrelated, then adding the two signals increases the noise amplitude by a factor of the square root of two (√2). So the SNR would increase by √2, or about 3 dB in terms of power ratios. Such an improvement is significant but limited.
A further aspect of the prior art is the development of more sensitive low-noise receivers, including cryogenic coils, superconducting sensors (based on superconducting quantum interference devices or SQUIDs), and low-noise amplifiers. These may be useful when the signal of interest is especially weak, as for example in relatively low magnetic fields. See, for example, U.S. patent application Ser. No. 12/954,291, filed Nov. 24, 2010, expressly incorporated herein by reference in its entirety. See also, for example, U.S. Pat. Nos. 6,885,192; 7,053,610; 6,538,445; 5,276,398; see also L. Darasse and J. C. Ginefri, “Perspectives with cryogenic RF probes in biomedical MRI”, Biochimie, vol. 85, p. 915 (2003) and “Calculated SNR of MRI detected with SQUIDs and Faraday detectors”, W. Myers, et al., Journal of Magnetic Resonance, vol. 186, p. 182 (2007), incorporated herein by reference. However, in many cases the receiver noise is already less than the body noise, so that very little additional SNR is obtained from further reduction in receiver noise.
Superconducting quantum interference devices (SQUIDs) are very sensitive magnetometers used to measure extremely weak magnetic fields, such as those produced during MRI medical tests, based on superconducting loops containing Josephson junctions.
See, U.S. Pat. Nos. 7,688,069, 7,671,587, 7,603,158, 7,573,268, 7,573,264, 7,560,289, 7,535,228, 7,525,314, 5,586,064, 3,801,877, 7,521,928, 7,482,807, 7,474,095, 7,466,132, 7,395,107, 7,363,070, 7,248,044, 7,218,104, 7,197,352, 7,193,415, 7,187,169, 7,144,376, 7,130,675, 7,123,952, 7,092,748, 7,038,450, 6,897,654, 6,865,494, 6,697,660, 6,681,131, 6,544,170, 6,522,908, 6,477,398, 6,374,131, 6,370,414, 6,208,884, 6,187,032, 6,159,444, 6,150,809, 6,073,040, 6,031,373, 6,002,254, 5,982,174, 5,827,501, 5,771,894, 5,771,893, 5,755,227, 5,752,514, 5,682,889, 5,671,740, 5,657,756, 5,608,320, 5,601,081, 5,600,243, 5,594,849, 5,543,770, 5,495,849, 5,442,290, 5,426,365, 5,408,178, 5,384,109, 5,351,006, 5,339,811, 5,326,986, 5,325,854, 5,303,705, 5,274,331, 5,233,992, 5,208,534, 5,187,327, 5,057,776, 5,021,739, 4,951,674, 7,116,102, 7,053,610, 6,885,192, 6,724,188, 4,390,840, 4,442,404, 4,573,015, 4,588,947, 4,851,777, 4,864,237, 4,906,931, 4,987,368, 5,057,776, 5,208,533, 5,254,950, 5,300,887, 5,343,147, 5,557,199, 5,600,243, 5,835,995, 6,023,161, 6,031,373, 6,159,444, 6,544,170, 6,724,188, 4,879,516, 4,695,801, 7,126,333, 6,838,875, 5,436,564 and 2006/0186882, each of which is expressly incorporated herein by reference.
The prior art has not effectively solved the issue of noise in bioelectric and/or biomagnetic field measurements, such as the background body noise in MRI systems, so that one may obtain high-resolution images with ultra-sensitive receivers, without requiring the largest magnetic fields and long integration times.
The invention takes advantage of the observation that the body noise (or sample noise) in MRI has a substantially different physical profile than the nuclear signal of interest, and active real-time interference cancelation may thus be applied to reduce the effect of the noise. While the body noise is incoherent and changes quickly, if a real-time measurement of the body noise can be subtracted from the total signal, the signal of interest can be measured more accurately. The relevant distinctive physical properties of the body noise may be examined by considering an element of a transient electric current dipole that is believed to comprise much of the body noise. Such a current dipole is characterized by the following properties:
While a real system of interest may exhibit a large number of interfering noise signals from such current dipole sources at various positions, times, and directions, the principle of body noise cancelation may be illustrated by consideration of a single current dipole source at a time.
One embodiment of the invention focuses on the signal polarization, and provides an enhancement of a quadrature antenna configuration according to the prior art, but rather than simply combining the two signals with a 90° phase delay, it makes use of more sophisticated digital processing to combine the two signals in a way that substantially cancels the background noise. The fact that this may be possible has not been recognized in the prior art. This, for example, enables an enhancement of SNR by much more than the 3 dB predicted in the prior art. Other embodiments provide more complex antennas (e.g., with broader bandwidth) and antenna arrays, for example.
For simplicity, we assume that there is a single dominant noise source, corresponding to a linearly polarized magnetic field vector Bn, pointing in a direction θ relative to the x-axis, as shown in
The detected field components in the two coils in the x- and y-directions are:
Bx(t)=Bsx(t)+Bnx(t)=Bs0 cos(ωt+ϕs)+Bn0 cos(θ)cos(ωt+ϕn) (1)
By(t)=Bsy(t)+Bny(t)=Bs0 sin(ωt+ϕs)+Bn0 sin(θ)cos(ωt+ϕn) (2)
where ϕs the phase shift of Bs, and ϕn is the phase shift of Bn. It is further assumed that while Bs, ϕs, Bn, θ, and ϕn may be functions of time within the bandwidth of the signal, they can be regarded as constants for short times of an RF period.
The useful information content for reconstructing the MRI image is contained within Bs0 and ϕs. There are two equations with five unknowns for each value of t, but given multiple times, the system is fully determined. There may be many ways to solve for Bs0 and ϕs.
In a preferred embodiment of the method, if we can estimate the angle θ (described further below), then we can cancel out the noise by multiplying the first signal by sin(θ) and the second signal by cos(θ), and taking the difference. Then we have:
By(t)cos(θ)−Bx(t)sin(θ)=Bs0[sin(ωt+ϕs)cos(θ)−cos(ωt+ϕs)sin(θ)]=Bs0 sin(ωt+ϕs−θ) (3)
Since we know θ, we can then time-shift the result to obtain:
Bsy(t)=Bs0 sin(ωt+ϕs)=By(t+θ/ω)cos(θ)−Bx(t+θ/ω)sin(θ). (4)
This permits cancellation of the noise, even if Bs0<<Bn0. In fact, this is a preferred regime to focus on, since otherwise this algorithm has less applicability. In that limit, one can obtain a first crude estimate θest by neglecting Bs in Eqs. (1) and (2):
θest=tan−1(By/Bx) (5)
Let us assume that θ lies in the range from −π/2 to +π/2. Then we have
cos(θest)=|Bx|/√(Bx2+By2), (6)
sin(θest)=tan(θest)cos(θest)=sign(Bx)×By/√(Bx2+By2), (7)
where sign(Bx) provides the sign (positive or negative) of the field.
However, this estimate of θ is too crude; substituting these into Eqs. (3) yields the identity Bs0=0, thus cancelling out not only the noise but also the signal of interest.
Since θ is a constant over the timescales here, one can obtain a better estimate by taking an appropriate time-average < . . . >. In order to obtain a reasonable diversity of input for the average, it is preferable to include a range of times covering a major fraction of a period. Taking the average of Eq. (5), one has:
θav=<tan−1(By/Bx)>. (8)
Substituting Eqs. (8) into Eq. (4) leads to
Bsyest(t)=Bs0est sin(ωt+ϕsest)=By(t+θest/ω)cos(θav)−Bx(t+θest/ω)sin(θav) (9)
Alternatively, one may average cos(θest) and sin(θest) separately. Since these are nonlinear functions, the results may be slightly different.
This averaging does indeed lead to an improved estimate of the signal of interest, with most of the noise removed, even for the noise much larger than the signal, as shown in simulations described below.
For longer time-scales (approaching the coherence time T2), one can use this algorithm to track θ(t), so that Bs(t) and ϕs(t) may be extracted, and the imaging signals obtained from the Fourier transform.
A block diagram of a system employing the proposed polarized noise cancellation method is shown in
Digital Angle Calculator module, while the data in the two channels are stored or buffered in a Digital Time Delay module until Eq. (9) may be applied in the Digital Polarized Noise Canceller.
While this simple analysis has focused on instantaneous samples of the RF measurement signals Bx and By, it is shown below that a similar algorithm may be applied to a downconverted intermediate frequency (IF) signal at a much lower frequency fI. The only requirement is that fI>>BW, the noise-limiting bandwidth of the receiver, so that θ should still be essentially constant over the range of times needed for the average.
In a preferred embodiment of the invention, various corresponding algorithms may be applied to digital samples of the RF or IF signal, using a fast digital processor such as a microprocessor, a dedicated digital signal processing (DSP) chip, or a field-programmable gate array (FPGA). The averages may be applied to sequential blocks of data, or to moving averages; in either case, appropriate memory buffers may be employed.
While the analysis above describes a noise signal that is linearly polarized, the same algorithm may also be applied if the noise signal has a more general elliptical polarization. The algorithm will tend to cancel out the primary axis of the noise, while leaving a reduced circularly polarized component that is more difficult to separate.
Likewise, in some cases, the “noise” itself may be useful, since its characteristics will vary spatially in dependence on characteristics of the medium and relationship of the antenna. The present algorithm can be used to separate this signal from other signals having different polarization characteristics.
In an alternative preferred embodiment of the invention, the receiver measures the RF signal over a much wider frequency band than that normally required for the MRI signal of interest (less than 100 kHz). For example, the RF signal may be highly oversampled with respect to the MRI signal of interest, with the large bandwidth preserved through the signal processing chain. This will, of course, increase the total noise entering the receiver, which is contrary to the conventional approach. However, let us assume the broadband body noise comprises a time-series of narrow pulses, caused by fast current dipoles, as shown in
These noise pulses may not all have the same amplitude, or polarity, or spectral characteristics, or emanate from the same location, and may even overlap to some degree, Practically, fast real-time processing may enable these to be identified and subtracted without requiring inordinate amounts of storage. Further pulse discrimination may be obtained using a plurality of pickup coils in different locations, each with its own digital receiver. Since the current dipoles may be localized, the relative pulse-heights may permit further correlation, enabling further noise cancelation.
This narrow pulse discrimination approach requires the use of a very broad-band, low-noise, fast receiver. Such a receiver may comprise digital superconducting components, such as a fast oversampled analog-to-digital converter based on rapid-single-flux-quantum (RSFQ) circuits. See, U.S. Pat. Nos. 7,365,663; 7,728,748; 6,608,581; 7,598,897; 5,140,324; 5,170,080; 5,198,815; 5,289,400, expressly incorporated herein by reference. See, also, K K. Likharev and V. K. Semenov, “RSFQ Logic/Memory Family: A New Josephson-Junction Technology For Sub-Terahertz-Clock-Frequency Digital Systems”, IEEE Transactions on Applied Superconductivity, vol. 1, No. 1, March 1991 (pp. 3-28). Preferred analog to digital converters have a sampling rate of at least 10 gigasamples per second for narrow pulse discrimination (body noise), high linearity, and high dynamic range.
The pulse discrimination noise reduction approach is complementary to the polarization noise reduction approach described above. In some cases, it may be appropriate to first apply the pulse discrimination approach to a broad-band signal, followed by a narrow-band filter, and subsequent application of the polarization algorithm.
It is therefore an object to provide a magnetic resonance imaging system, comprising: at least one receive antenna, oriented to sense a radio frequency field; said radio frequency field comprising a phase coherent narrowband oscillating signal of interest and a broadband interfering signal having at least one component within the narrow band of the signal of interest;
a digital processor, configured to reduce an interference of the interfering signal with the signal of interest based on at least a time-correlated model of the interfering signal; and an output, configured to present the reduced interference signal of interest to an image processing unit.
The at least one antenna may comprise a plurality of antennas configured to determine a spatial characteristic of radio frequency fields, the digital processor being configured to at least partially distinguish between the signal of interest and the interfering signal based on different respective spatial characteristics. The at least one antenna may comprise a plurality of antenna elements configured in a two dimensional array, each element of the array having a different respective spatial sensitivity.
The interfering signal may comprise at least one pulse, and wherein the digital processor is configured to process a set of digital data representing the sensed radio frequency field in a time domain.
The digital processor may be configured to process a set of digital data representing the sensed radio frequency field in a frequency domain. The digital processor may be configured to correlate components of the interfering broadband signal within the narrow band with components of the broadband signal outside of the narrow band. The digital processor may be configured to process sequential time samples representing the radio frequency field, to estimate a waveform of the interfering signal, and to selectively digitally remove the estimated waveform of the interfering signal to produce the reduced interference signal.
According to one embodiment, the at least one antenna comprises at least two of the antennas which are oriented to sense a radio frequency field with different electromagnetic vector components; and the digital processor is configured to accept a time series representing a radio frequency field sensed by the at least two antennas, and to generate a digital output signal that increases a ratio of the signal of interest and noise comprising the interfering signal; further comprising an output processor configured to receive the output and to generate a spatial map corresponding to the output reduced interference signal.
The signal of interest may be substantially circularly polarized, and the interfering signal may be substantially linearly polarized. The at least one antenna may, in turn, comprise at least two antenna elements configured to have a differential response pattern to circularly polarized and linearly polarized radio frequency fields within the narrow band.
The at least one antenna may comprise at least two antennas configured to generate at least two quadrature-related magnetic resonance signals.
The digital processor may operate to reduce an interference of the interfering signal with the signal of interest within the narrowband by greater than about 3 dB. The digital processor may be configured to perform a nonlinear transformation on a representation of the radio frequency field. The digital processor may comprise a real-time pipelined processor.
The system may further comprise an analog-to-digital converter configured to directly oversample a signal representing the radio frequency field substantially without frequency translation. The analog-to-digital converter may sample at a multi-GHz rate, and thus produce digital outputs at a multi-gigasample per second rate. The system may further comprise an analog-to-digital converter configured to process a signal representing the radio frequency field after frequency translation.
Another object provides a magnetic resonance imaging method, comprising: sensing a radio frequency field with at least one antenna, the radio frequency field comprising a phase coherent narrowband oscillating signal of interest and a broadband interfering signal having at least one component within the narrow band of the signal of interest; digitally processing a signal representing the radio frequency field to selectively to reduce an interference of the interfering signal with the signal of interest, based on at least a time-correlated model of the interfering signal to produce a reduced interference signal; and outputting the reduced interference signal.
The signal of interest may be predominantly circularly polarized, and the interfering signal may comprise at least one linearly polarized component, the method further comprising:
receiving at least two signals representing a respective vector sum of the signal of interest and the interfering signal, projected in at least two directions; and analyzing the at least two received signals, to separate out the signal of interest from the interfering signal based on a spatial difference therebetween.
The at least one antenna may comprise a plurality of antenna elements configured in a two dimensional array, each element of the array having a different respective spatial sensitivity.
The at least one receive antenna may comprise at least two of the antennas which are oriented to sense a radio frequency field with different electromagnetic vector components; and the digitally processing may comprise processing a time series representing a radio frequency field sensed by the at least two antennas, and generating a digital output signal that increases a ratio of the signal of interest and noise comprising the interfering signal; the method further comprising generating a spatial map corresponding to the reduced interference signal.
The interfering signal may comprise at least one pulse, and wherein the digitally processing comprises processing a set of digital data representing the sensed radio frequency field in a time domain.
The digitally processing may comprise processing at a rate in excess of 2.5 gigsamples per second.
The digitally processing may comprise processing sequential time samples representing the radio frequency field, to estimate a waveform of the interfering signal, and selectively digitally removing the estimated waveform of the interfering signal to produce the reduced interference signal.
The signal of interest may be substantially circularly polarized, and the interfering signal may be substantially linearly polarized. The at least one antenna may comprise at least two antenna elements configured to have a differential response pattern to circularly polarized and linearly polarized radio frequency fields within the narrow band.
The method may further comprise directly oversampling a signal representing the radio frequency field substantially without frequency translation.
The digitally processing may comprise nonlinearly transforming a representation of the radio frequency field.
The method may comprise Fourier transforming the reduced interference signal, and generating a spatial map corresponding to the reduced interference signal.
The method may further comprise estimating a vector direction of the interfering signal by averaging data over a significant fraction of an oscillation period.
A further object comprises providing an imaging method, comprising: generating an atomic nucleus-orienting magnetic field; sensing outputs of at least one antenna comprising a signal corresponding to a precession of nuclei within the magnetic field in response to the generated magnetic field and an interfering component over time; digitally processing the sensed outputs in a manner sensitive to a time correlation of the signal corresponding to a precession of nuclei within the magnetic field and the interfering component over time, at a rate oversampled with respect to a Nyquist rate of the interfering component; and generating an image corresponding to a spatial origin of the signal corresponding to a procession of nuclei within the magnetic field with algorithmically reduced contribution of the interfering signal.
A still further object provides a method of enhancing detection of a signal of interest in a magnetic resonance imaging system, by selectively measuring or estimating at least one interference signal, and digitally subtracting in a time domain representation the measured or estimated interfering signal from a composite signal comprising the signal of interest and the at least one interference signal. The composite signal may be analyzed for at least one of differences in frequency distribution, time, spatial distribution, and polarization direction to distinguish the interference signal from the signal of interest.
In classic MRI, as shown in
While the prior art has developed arrays of coils that selectively detect different parts of the signal, one aspect of the present invention focuses on detecting and cancelling out the body noise. In one aspect of the invention, this is done using at least one additional coil, for which a perpendicular quadrature coil (the x-coil in
The signals from the two quadrature coils can be combined in several ways. For example, the prior art has taught that one may add the outputs with a 90° (π/2 radian) delay, to enhance the signal. Taking Eqs. (1) and (2) above,
Bx(t−π/2ω)+By(t)=2Bs0 sin(ωt+ϕs)+Bn0[cos(θ)sin(ωt+ϕn)+sin(θ)cos(ωt+ϕn)]=2Bs0 sin(ωt+ϕs)+Bn0 sin(ωt+ϕn+θ) (11)
But this combination does not help to isolate the noise. Alternatively, one may subtract these same two components to cancel the signal:
Bx(t−π/2ω)−By(t)=Bn0 sin(ωt+ϕn−θ) (12)
This permits one to determine directly the amplitude of the body noise, assuming only that the body noise is linearly polarized (LP) and that the receiver noise is negligible. Eq. (12) can also be used together with an estimate of the angle θ (as described above for Eqs. (8) and (9)) to subtract off the noise from either Eq. (1) or (2), as an alternative to applying Eq. (10).
The polarization of the signal in MRI is well known to be circularly polarized. However, the polarization of the noise in MRI does not seem to have been carefully investigated in the prior art. The body noise is believed to be due to one or more eddy currents in the lossy conducting body, and each such source creates a linear polarized (LP) magnetic field. The temporal profile of an eddy current in biological tissue is not well characterized, but may be modeled by a fast current pulse, as indicated in
The most general polarization from a superposition of multiple uncorrelated LP sources will be elliptically polarized (EP). Circular polarization (CP) is a special case of EP where there are two perpendicular components that are equal in magnitude and 90° out of phase. This is possible but generally unlikely for random fields. If the noise is CP at some time, then the method described here will not be effective at reducing this noise. However, more likely is the EP case where the amplitude along the major axis is several times larger than that along the minor axis. In this case as well, substantial reduction in noise is possible. However, a circularly polarized (CP) component of the noise will tend to group with the CP signal rather than with the LP noise in this method. Furthermore, there may also be CP random noise in the nuclear spins, although this is believed to be much smaller than the noise associated with the current dipoles.
While the invention has been illustrated for two antennas oriented in perpendicular directions, this can be easily extended to any other fixed angle β. In that case, the phase delay for the CP signal would be β, and the corresponding projections of the LP noise vector would be cos(θ) and cos(θ−β). Estimating these same factors would enable noise cancellation similarly to that shown in Eqs. (1-4). Furthermore, other algorithms may be employed that are based on distinguishing a coherent CP signal from a varying LP noise source.
A conceptual picture that distinguishes the temporal nature of the MRI signal and broadband body noise is shown in
An alternative preferred embodiment of the invention, that enables detection and cancellation of the body noise narrow pulses, is shown in the block diagram of
The average pulse frequency of the current dipole pulses has not clearly been identified, but will depend on the volume of the body that is coupled to the pickup coil. In general, smaller coils will receive less body noise, with a greater time delay between pulses. If the pulses are broadened or overlap substantially in time, the digital pulse cancellation approach may be unable to work effectively. For this reason, this method is likely to be most applicable for small coils, such as are used in MRI of small animals, or alternatively in human-scale systems comprised of an array of pickup coils. Such parallel arrays of small coils (e.g., a two-dimensional array of surface coils) have increasingly been used in the recent prior art as a method to enhance the scan rate and increase the effective SNR. Furthermore, conventional MRI systems typically use narrowband resonant pickup coils to minimize system noise; these might be modified to be compatible with the broadband noise signal discrimination system in this preferred embodiment of the invention.
A Matlab program is provided which demonstrates the principle of the algorithm for polarized noise reduction, shown in
More generally, the body noise may be elliptically polarized (EP) rather than LP. For example, the simulation shown in
The analysis and algorithm described thus far have dealt with the case where the signals are sampled and averaged at the RF frequency, over a full period. In some cases, this would require digital sampling and computing at a very high frequency, which may be impractical. For example, if the RF frequency is 100 MHz, the direct sampling would require digital processing at multi-GHz rates. While this is possible with advanced digital processors (using, for example, ultrafast superconducting RSFQ circuits, see U.S. Pat. No. 7,443,719), such rapid processing may not be necessary. In most cases, the signals to the two receivers are both narrow-band, with a typical bandwidth that may be BW=50 kHz or less. The amplitude and phase of the signals cannot change significantly over a time of order ½πBW˜3 μs, much greater than the RF period of 10 ns. So any sub-sampling (with a fast sample-and-hold circuit) that samples the signal at a diversity of points within its cycle would also be effective, provided only that the samples included in the average are within the bandwidth-time. This makes the algorithm more readily achievable using real-time computation.
Alternatively, any downconversion technique that retains both the amplitude and phase factors would enable application of the present algorithm at lower speeds, provided that there are sufficient samples over a downconverted period for an appropriate average. That is, envelope detection alone is not enough, but this combined with coherent phase detection would be sufficient. Most MRI receivers use an analog heterodyne receiver with an ADC digitizing the IF output. Such an output would be sufficient for application of the preferred polarized noise reduction algorithm of the present invention, provided that it oversamples the BW by a sufficient factor (e.g., at least about 10) to obtain a diversity of points for the average.
In a practical implementation of the invention, the noise reduction algorithm may be applied to real-time data from the receive antennas, with a pipelined memory buffer to permit active tracking of the noise field direction and real-time correction of the signal, with only a small time-delay. Such an algorithm may be programmed in a fast microprocessor, or alternatively in a custom integrated circuit such as a field-programmable gate array (FPGA). The linearity and dynamic range of the ADC should be compatible with both the weak signal of interest and the strong noise, and the digital circuit should have enough bits for both. The system may be implemented within known computers or automated data processing systems consistent with the requirements herein. The program code for instructing a programmable processor may be stored on or in various computer readable media, or be integral with the design of the processor.
Noise reduction is important in MRI, because a good signal to noise ratio (SNR) can be used either to improve the ultimate spatial resolution, or to speed up the imaging time. Increasing the static magnetic field increases the SNR by increasing the signal magnitude, but it may cause other problems. For example, very large magnets require new systems with extreme homogeneity, and tend to be quite expensive. An alternative strategy is to increase the SNR by decreasing the noise, and decreasing the background body noise is one way to achieve this. The approach of the present invention can be applied to conventional MRI systems, without major modifications in hardware or data processing (although a broader bandwidth receiver may be necessary in some cases). Likewise, other biological signal processing systems may benefit from this technique, which can distinguish signal sources with different polarization and temporal characteristics through use of a plurality of antennas or a complex antenna to detect the signal source characteristics. A module incorporating a noise-reduction algorithm could accept the downconverted quadrature pair signals, and produce an output which goes to a conventional image generating processor that typically uses fast-Fourier transforms to generate spatial information.
An alternative approach is to make use of systems with low- and ultra-low-magnetic fields. These have generally been considered impractical, because the signal is weaker and thus the SNR is too small for a fast, high-resolution image. There has been progress recently in the development of low-noise coils and receivers, in some cases involving cryogenic temperatures. However, the success of this approach may be limited by the body noise, which in practical situations may limit the SNR even if the receiver noise is reduced. In such a regime, the use of digital noise reduction techniques as described in the present application to reduce the body noise will be particularly valuable.
This noise-reduction method may not be limited to magnetic resonance imaging. It may also apply in other situations where one is trying to detect a weak circularly polarized signal field in the presence of a stronger linearly polarized noise field, or where a narrowband signal is dominated by noise from broadband pulses. This may be the case, for example, in spectroscopy for nuclear magnetic resonance or nuclear quadrupole resonance. It may also be relevant for certain communications or radar protocols, where the transmitted signal may be circularly polarized.
The present application is a Continuation of U.S. patent application Ser. No. 13/086,793, filed Apr. 14, 2011, now U.S. Pat. No. 8,970,217, issued Mar. 3, 2015, which claims benefit of priority from U.S. Patent Application No. 61/324,130, filed Apr. 14, 2010, the entirety of which are expressly incorporated here by reference.
Number | Name | Date | Kind |
---|---|---|---|
3801877 | Griese et al. | Apr 1974 | A |
4070708 | Smallcombe et al. | Jan 1978 | A |
4210861 | Tsuda et al. | Jul 1980 | A |
4344052 | Davidson | Aug 1982 | A |
4390840 | Ganssen et al. | Jun 1983 | A |
4434547 | Pascal et al. | Mar 1984 | A |
4438400 | Patt | Mar 1984 | A |
4442404 | Bergmann | Apr 1984 | A |
4470023 | Lukens et al. | Sep 1984 | A |
4484138 | Bottomley et al. | Nov 1984 | A |
4502008 | Ohuchi | Feb 1985 | A |
4513247 | Ernst | Apr 1985 | A |
4521733 | Bottomley et al. | Jun 1985 | A |
4527124 | van Uijen | Jul 1985 | A |
4564811 | Walker | Jan 1986 | A |
4573015 | Abe et al. | Feb 1986 | A |
4585999 | Hilbert et al. | Apr 1986 | A |
4588947 | Ketchen | May 1986 | A |
4591789 | Glover et al. | May 1986 | A |
4594550 | Yamada et al. | Jun 1986 | A |
4594566 | Maudsley | Jun 1986 | A |
4617516 | Schenck | Oct 1986 | A |
4651096 | Buonocore | Mar 1987 | A |
4654593 | Ackerman | Mar 1987 | A |
4654595 | Sepponen | Mar 1987 | A |
4661776 | Takase | Apr 1987 | A |
4672359 | Silver | Jun 1987 | A |
4680545 | Gray et al. | Jul 1987 | A |
4682106 | Vatis et al. | Jul 1987 | A |
4682107 | Bendall et al. | Jul 1987 | A |
4684891 | Feinberg | Aug 1987 | A |
4695801 | Arakawa et al. | Sep 1987 | A |
4701705 | Rollwitz | Oct 1987 | A |
4707664 | Fehn et al. | Nov 1987 | A |
4733186 | Oppelt et al. | Mar 1988 | A |
4739267 | Leroux et al. | Apr 1988 | A |
4742301 | van der Meulen et al. | May 1988 | A |
4751462 | Glover et al. | Jun 1988 | A |
4758429 | Gordon | Jul 1988 | A |
4769605 | Fox | Sep 1988 | A |
4777443 | Yabusaki et al. | Oct 1988 | A |
4814728 | Strayer et al. | Mar 1989 | A |
4820983 | Bendall et al. | Apr 1989 | A |
4843322 | Glover | Jun 1989 | A |
4851777 | Macovski | Jul 1989 | A |
4853635 | Cuppen | Aug 1989 | A |
4857844 | Van Vaals | Aug 1989 | A |
4864237 | Hoenig | Sep 1989 | A |
4876507 | Van Vaals | Oct 1989 | A |
4876509 | Perlmutter | Oct 1989 | A |
4879516 | Mehdizadeh et al. | Nov 1989 | A |
4885549 | Thrift et al. | Dec 1989 | A |
4906931 | Sepponen | Mar 1990 | A |
4910460 | Sebok | Mar 1990 | A |
4922203 | Sillerud et al. | May 1990 | A |
4923850 | Stephan et al. | May 1990 | A |
RE33259 | Crooks et al. | Jul 1990 | E |
4945308 | Doddrell et al. | Jul 1990 | A |
4951674 | Zanakis et al. | Aug 1990 | A |
4952877 | Stormont et al. | Aug 1990 | A |
4977402 | Ko | Dec 1990 | A |
4987368 | Vinegar | Jan 1991 | A |
4987369 | Van Stapele et al. | Jan 1991 | A |
4987371 | Glover et al. | Jan 1991 | A |
5019784 | Garwood et al. | May 1991 | A |
5021739 | Yokosawa et al. | Jun 1991 | A |
5023551 | Kleinberg et al. | Jun 1991 | A |
5045788 | Hayashi et al. | Sep 1991 | A |
5057776 | Macovski | Oct 1991 | A |
5065096 | Muck et al. | Nov 1991 | A |
5087605 | Hegde et al. | Feb 1992 | A |
5099206 | Imaizumi et al. | Mar 1992 | A |
5113137 | Koizumi | May 1992 | A |
5121059 | Wieland | Jun 1992 | A |
5122746 | King et al. | Jun 1992 | A |
5140324 | Przybysz et al. | Aug 1992 | A |
5143894 | Rothschild et al. | Sep 1992 | A |
5151656 | Maier et al. | Sep 1992 | A |
5153171 | Smith et al. | Oct 1992 | A |
5166615 | Sidles | Nov 1992 | A |
5166616 | Doddrell et al. | Nov 1992 | A |
5168227 | Foo et al. | Dec 1992 | A |
5168232 | Glover et al. | Dec 1992 | A |
5170080 | Murphy et al. | Dec 1992 | A |
5170120 | Barbara et al. | Dec 1992 | A |
5172060 | Knuttel | Dec 1992 | A |
5179332 | Kang | Jan 1993 | A |
5185573 | Larson, III | Feb 1993 | A |
5185574 | Ehman et al. | Feb 1993 | A |
5187327 | Ohta et al. | Feb 1993 | A |
5192909 | Hardy et al. | Mar 1993 | A |
5198815 | Przybysz et al. | Mar 1993 | A |
5208533 | Le Roux | May 1993 | A |
5208534 | Okamoto et al. | May 1993 | A |
5208536 | Cory | May 1993 | A |
5211166 | Sepponen | May 1993 | A |
5212448 | Le Roux et al. | May 1993 | A |
5214381 | Cory | May 1993 | A |
5221899 | Gonen et al. | Jun 1993 | A |
5221900 | Larson, III | Jun 1993 | A |
5227723 | Sepponen | Jul 1993 | A |
5227725 | Cory et al. | Jul 1993 | A |
5229718 | Cory | Jul 1993 | A |
5233302 | Xiang et al. | Aug 1993 | A |
5233992 | Holt et al. | Aug 1993 | A |
5248941 | Lee et al. | Sep 1993 | A |
5250900 | Ehnholm | Oct 1993 | A |
5254950 | Fan et al. | Oct 1993 | A |
5257625 | Pelc | Nov 1993 | A |
5262724 | Tanttu | Nov 1993 | A |
5266844 | Ko et al. | Nov 1993 | A |
5274329 | Knuttel et al. | Dec 1993 | A |
5274331 | Macovski | Dec 1993 | A |
5276398 | Withers et al. | Jan 1994 | A |
5281917 | Santyr | Jan 1994 | A |
5289400 | Przybysz et al. | Feb 1994 | A |
5291138 | Macovski | Mar 1994 | A |
5300887 | Macovski | Apr 1994 | A |
5303705 | Nenov | Apr 1994 | A |
5314681 | Leunbach et al. | May 1994 | A |
5321358 | Mohr et al. | Jun 1994 | A |
5321359 | Schneider | Jun 1994 | A |
5322641 | Shiel et al. | Jun 1994 | A |
5323110 | Fielden et al. | Jun 1994 | A |
5325854 | Ehnholm | Jul 1994 | A |
5326986 | Miller, Jr. et al. | Jul 1994 | A |
5327085 | Cory | Jul 1994 | A |
5339811 | Ohta et al. | Aug 1994 | A |
5343147 | Sager et al. | Aug 1994 | A |
5347222 | Fox et al. | Sep 1994 | A |
5351006 | Sumanaweera et al. | Sep 1994 | A |
5355085 | Igarashi et al. | Oct 1994 | A |
5358928 | Ginley et al. | Oct 1994 | A |
5380704 | Tarutani et al. | Jan 1995 | A |
5384109 | Klaveness et al. | Jan 1995 | A |
5389877 | Sezginer et al. | Feb 1995 | A |
5396242 | Lee | Mar 1995 | A |
5397987 | Garritano | Mar 1995 | A |
5406947 | Kimura | Apr 1995 | A |
5408178 | Wikswo, Jr. et al. | Apr 1995 | A |
5412320 | Coates | May 1995 | A |
5420100 | Vittoria et al. | May 1995 | A |
5420586 | Radparvar | May 1995 | A |
5426365 | Sekihara et al. | Jun 1995 | A |
5429134 | Foo | Jul 1995 | A |
5432445 | Dinsmore et al. | Jul 1995 | A |
5436564 | Kreger et al. | Jul 1995 | A |
5442290 | Crooks | Aug 1995 | A |
5451874 | Heflinger | Sep 1995 | A |
5456986 | Majetich et al. | Oct 1995 | A |
5459077 | Moore et al. | Oct 1995 | A |
5467015 | Gotoh | Nov 1995 | A |
5475308 | Piotto et al. | Dec 1995 | A |
5495849 | Hayashi et al. | Mar 1996 | A |
5496534 | Klaveness et al. | Mar 1996 | A |
5498962 | Sepponen | Mar 1996 | A |
5498963 | Schneider et al. | Mar 1996 | A |
5517115 | Prammer | May 1996 | A |
5517122 | Chen | May 1996 | A |
5543770 | Sasaki et al. | Aug 1996 | A |
5548216 | Dumoulin et al. | Aug 1996 | A |
5557199 | Bowman et al. | Sep 1996 | A |
5560360 | Filler et al. | Oct 1996 | A |
5578922 | Lurie et al. | Nov 1996 | A |
5586064 | Grupp | Dec 1996 | A |
5592085 | Ehman | Jan 1997 | A |
5594849 | Kuc et al. | Jan 1997 | A |
5600242 | Hubbell | Feb 1997 | A |
5600243 | Colclough | Feb 1997 | A |
5601081 | Tomita et al. | Feb 1997 | A |
5608320 | Dinsmore et al. | Mar 1997 | A |
5614826 | Dixon | Mar 1997 | A |
5617876 | van Duyl | Apr 1997 | A |
5629624 | Carlson et al. | May 1997 | A |
5646526 | Takeda et al. | Jul 1997 | A |
5652514 | Zhang et al. | Jul 1997 | A |
5654636 | Sweedler et al. | Aug 1997 | A |
5656937 | Cantor | Aug 1997 | A |
5657756 | Vrba et al. | Aug 1997 | A |
5657758 | Posse et al. | Aug 1997 | A |
5671740 | Tomita et al. | Sep 1997 | A |
5671742 | Dumoulin et al. | Sep 1997 | A |
5677628 | Watanabe et al. | Oct 1997 | A |
5682889 | Tomita et al. | Nov 1997 | A |
5707875 | Tamura et al. | Jan 1998 | A |
5709208 | Posse et al. | Jan 1998 | A |
5712567 | Wang | Jan 1998 | A |
5729140 | Kruger et al. | Mar 1998 | A |
5735279 | Klaveness et al. | Apr 1998 | A |
5752514 | Okamura et al. | May 1998 | A |
5755227 | Tomita et al. | May 1998 | A |
5756427 | Zhou | May 1998 | A |
5767043 | Cantor et al. | Jun 1998 | A |
5771893 | Kassai et al. | Jun 1998 | A |
5771894 | Richards et al. | Jun 1998 | A |
5793210 | Pia et al. | Aug 1998 | A |
5821453 | Epstein et al. | Oct 1998 | A |
5825185 | Liu et al. | Oct 1998 | A |
5825186 | Ehman et al. | Oct 1998 | A |
5827501 | Jørgensen et al. | Oct 1998 | A |
5835995 | Macovski et al. | Nov 1998 | A |
5842986 | Avrin et al. | Dec 1998 | A |
5844407 | Hubbell | Dec 1998 | A |
5867024 | Zhang | Feb 1999 | A |
5869964 | Kuhara et al. | Feb 1999 | A |
5879299 | Posse et al. | Mar 1999 | A |
5885215 | Dossel et al. | Mar 1999 | A |
5894221 | Watanabe et al. | Apr 1999 | A |
5899858 | Muthupillai et al. | May 1999 | A |
5903149 | Gonen et al. | May 1999 | A |
5917323 | Du et al. | Jun 1999 | A |
5933001 | Hubbell | Aug 1999 | A |
5936405 | Prammer et al. | Aug 1999 | A |
5959453 | Taicher et al. | Sep 1999 | A |
5977768 | Sezginer et al. | Nov 1999 | A |
5982174 | Wagreich et al. | Nov 1999 | A |
5994891 | Hubbell | Nov 1999 | A |
5998997 | Ramanathan et al. | Dec 1999 | A |
6002254 | Kassai et al. | Dec 1999 | A |
6005380 | Hubbell | Dec 1999 | A |
6005390 | Watanabe et al. | Dec 1999 | A |
6008642 | Bulsara et al. | Dec 1999 | A |
6008644 | Leunbach et al. | Dec 1999 | A |
6011981 | Alvarez et al. | Jan 2000 | A |
6016057 | Ma | Jan 2000 | A |
6023161 | Dantsker et al. | Feb 2000 | A |
6025718 | Hushek | Feb 2000 | A |
6028428 | Cunningham et al. | Feb 2000 | A |
6031373 | Szeles et al. | Feb 2000 | A |
6034528 | Heid | Mar 2000 | A |
6046591 | King et al. | Apr 2000 | A |
6054855 | Anderson | Apr 2000 | A |
6066948 | Seppa | May 2000 | A |
6066949 | Alley et al. | May 2000 | A |
6073040 | Kiyuna | Jun 2000 | A |
6078872 | Carson et al. | Jun 2000 | A |
6081119 | Carson et al. | Jun 2000 | A |
6088611 | Lauterbur et al. | Jul 2000 | A |
6088613 | Unger | Jul 2000 | A |
6091243 | Xiang et al. | Jul 2000 | A |
6111408 | Blades et al. | Aug 2000 | A |
6111411 | Saranathan et al. | Aug 2000 | A |
6118284 | Ghoshal et al. | Sep 2000 | A |
6121774 | Sun et al. | Sep 2000 | A |
6123920 | Gunther et al. | Sep 2000 | A |
6129668 | Haynor et al. | Oct 2000 | A |
6133736 | Pervushin et al. | Oct 2000 | A |
6144874 | Du | Nov 2000 | A |
6147491 | Shen | Nov 2000 | A |
6147492 | Zhang et al. | Nov 2000 | A |
6150809 | Tiernan et al. | Nov 2000 | A |
6154030 | Wurl | Nov 2000 | A |
6159444 | Schlenga et al. | Dec 2000 | A |
6166540 | Wollin | Dec 2000 | A |
6181131 | Bruland et al. | Jan 2001 | B1 |
6181135 | Shen | Jan 2001 | B1 |
6187032 | Ohyu et al. | Feb 2001 | B1 |
6208884 | Kumar et al. | Mar 2001 | B1 |
6211674 | Cline et al. | Apr 2001 | B1 |
6216540 | Nelson et al. | Apr 2001 | B1 |
6225800 | Zhang et al. | May 2001 | B1 |
6229308 | Freedman | May 2001 | B1 |
6239599 | Zhou et al. | May 2001 | B1 |
6242912 | Prammer et al. | Jun 2001 | B1 |
6246897 | Foo et al. | Jun 2001 | B1 |
6255820 | Steckner | Jul 2001 | B1 |
6263230 | Haynor et al. | Jul 2001 | B1 |
6275037 | Harvey et al. | Aug 2001 | B1 |
6275039 | Young et al. | Aug 2001 | B1 |
6275909 | Arimilli et al. | Aug 2001 | B1 |
6278893 | Ardenkjør-Larson et al. | Aug 2001 | B1 |
6294914 | Fiat | Sep 2001 | B1 |
6295931 | Cutler et al. | Oct 2001 | B1 |
6298259 | Kucharczyk et al. | Oct 2001 | B1 |
6300760 | Schubert et al. | Oct 2001 | B1 |
6308399 | Zhou | Oct 2001 | B1 |
6311086 | Ardenkjaer-Larsen et al. | Oct 2001 | B1 |
6329819 | Manduca et al. | Dec 2001 | B1 |
6332088 | Zhang et al. | Dec 2001 | B1 |
6333629 | Pykett et al. | Dec 2001 | B1 |
6339626 | Bernstein et al. | Jan 2002 | B1 |
6348792 | Beard et al. | Feb 2002 | B1 |
6359437 | Barbara et al. | Mar 2002 | B1 |
6362617 | Hubbell | Mar 2002 | B1 |
6366093 | Hartman | Apr 2002 | B1 |
6370414 | Robinson | Apr 2002 | B1 |
6374131 | Tomita et al. | Apr 2002 | B1 |
6377044 | Burl et al. | Apr 2002 | B1 |
6377045 | Van Den Brink et al. | Apr 2002 | B1 |
6380742 | Stringer et al. | Apr 2002 | B1 |
6381486 | Mistretta et al. | Apr 2002 | B1 |
6393313 | Foo | May 2002 | B1 |
6396267 | Riek et al. | May 2002 | B1 |
6396271 | Burl et al. | May 2002 | B1 |
6400153 | Heid | Jun 2002 | B1 |
6404197 | Anderson et al. | Jun 2002 | B1 |
6404199 | Fujita et al. | Jun 2002 | B1 |
6408201 | Foo et al. | Jun 2002 | B1 |
6418335 | Avrin et al. | Jul 2002 | B2 |
6420873 | Guthrie | Jul 2002 | B1 |
6433543 | Shahinpoor et al. | Aug 2002 | B1 |
6452391 | Bernstein et al. | Sep 2002 | B1 |
6452393 | Allen et al. | Sep 2002 | B1 |
6453188 | Ardenkjaer-Larsen et al. | Sep 2002 | B1 |
6456071 | Hennig | Sep 2002 | B1 |
6461586 | Unger | Oct 2002 | B1 |
6462544 | McKinnon | Oct 2002 | B1 |
6466814 | Ardenkjaer-Larsen et al. | Oct 2002 | B1 |
6469505 | Maier et al. | Oct 2002 | B1 |
6470220 | Kraus, Jr. et al. | Oct 2002 | B1 |
6472870 | Bendall et al. | Oct 2002 | B1 |
6472872 | Jack, Jr. et al. | Oct 2002 | B1 |
6477398 | Mills | Nov 2002 | B1 |
6483306 | Hahn | Nov 2002 | B2 |
6483308 | Ma et al. | Nov 2002 | B1 |
6486671 | King | Nov 2002 | B1 |
6487435 | Mistretta et al. | Nov 2002 | B2 |
6493569 | Foo et al. | Dec 2002 | B2 |
6496713 | Avrin et al. | Dec 2002 | B2 |
6509853 | Gupta | Jan 2003 | B2 |
6515478 | Wicklow et al. | Feb 2003 | B1 |
6522908 | Miyashita et al. | Feb 2003 | B1 |
6528997 | Zhong et al. | Mar 2003 | B2 |
6531868 | Prammer | Mar 2003 | B2 |
6538442 | Boskamp | Mar 2003 | B2 |
6538445 | James et al. | Mar 2003 | B2 |
6544170 | Kajihara et al. | Apr 2003 | B1 |
6549799 | Bock et al. | Apr 2003 | B2 |
6556856 | Mistretta et al. | Apr 2003 | B1 |
6564081 | Frigo et al. | May 2003 | B1 |
6570383 | McKinnon et al. | May 2003 | B1 |
6574495 | Golman et al. | Jun 2003 | B1 |
6574496 | Golman et al. | Jun 2003 | B1 |
6574852 | Zhou | Jun 2003 | B2 |
6583622 | Hills | Jun 2003 | B1 |
6583624 | Muthupillai et al. | Jun 2003 | B1 |
6593740 | Van Den Brink et al. | Jul 2003 | B1 |
6608581 | Semenov | Aug 2003 | B1 |
6614047 | Tzalenchuk et al. | Sep 2003 | B2 |
6617167 | Otvos et al. | Sep 2003 | B2 |
6617850 | Welch et al. | Sep 2003 | B2 |
6618605 | Wolff et al. | Sep 2003 | B1 |
6630828 | Mistretta et al. | Oct 2003 | B1 |
6636040 | Eydelman | Oct 2003 | B1 |
6646065 | Schrotz et al. | Nov 2003 | B2 |
6650116 | Garwood et al. | Nov 2003 | B2 |
6653832 | Wind et al. | Nov 2003 | B2 |
6653833 | Baumgartl et al. | Nov 2003 | B2 |
6670811 | Wind et al. | Dec 2003 | B2 |
6674282 | Pines et al. | Jan 2004 | B2 |
6681131 | Kandori et al. | Jan 2004 | B2 |
6681132 | Katz et al. | Jan 2004 | B1 |
6683451 | Moore et al. | Jan 2004 | B1 |
6690162 | Schopohl et al. | Feb 2004 | B1 |
6690167 | Reiderman et al. | Feb 2004 | B2 |
6697660 | Robinson | Feb 2004 | B1 |
6700372 | Blumich et al. | Mar 2004 | B2 |
6703835 | Patch et al. | Mar 2004 | B2 |
6707299 | Shah et al. | Mar 2004 | B2 |
6713195 | Wang et al. | Mar 2004 | B2 |
6720074 | Zhang et al. | Apr 2004 | B2 |
6724188 | Butters et al. | Apr 2004 | B2 |
6727697 | Fiat | Apr 2004 | B2 |
6734673 | Agrikola | May 2004 | B2 |
6741879 | Chang | May 2004 | B2 |
6747451 | Alzner | Jun 2004 | B2 |
6750650 | Kiefer et al. | Jun 2004 | B2 |
6756237 | Xiao et al. | Jun 2004 | B2 |
6768302 | Vester | Jul 2004 | B2 |
6771071 | Wright et al. | Aug 2004 | B1 |
6791109 | Tzalenchuk et al. | Sep 2004 | B2 |
6791321 | Willig-Onwuachi et al. | Sep 2004 | B2 |
6794867 | Block et al. | Sep 2004 | B1 |
6803761 | Prammer et al. | Oct 2004 | B2 |
6806713 | Wong | Oct 2004 | B2 |
6812484 | Tzalenchuk et al. | Nov 2004 | B2 |
6822255 | Tzalenchuk et al. | Nov 2004 | B2 |
6822444 | Lai | Nov 2004 | B2 |
6825655 | Minchole et al. | Nov 2004 | B2 |
6833700 | Lee et al. | Dec 2004 | B2 |
6836115 | Wind et al. | Dec 2004 | B2 |
6838875 | Freedman | Jan 2005 | B2 |
6838964 | Knight et al. | Jan 2005 | B1 |
6841995 | Weitekamp | Jan 2005 | B2 |
6841997 | Feiweier | Jan 2005 | B2 |
6845262 | Albert et al. | Jan 2005 | B2 |
6847209 | Shenoy et al. | Jan 2005 | B2 |
6853187 | Fainchtein | Feb 2005 | B2 |
6853189 | Pipe | Feb 2005 | B1 |
6853190 | Nittka et al. | Feb 2005 | B2 |
6865494 | Duensing et al. | Mar 2005 | B2 |
6873153 | Frydman | Mar 2005 | B2 |
6876199 | Hardy et al. | Apr 2005 | B2 |
6884739 | Ahn et al. | Apr 2005 | B2 |
6885192 | Clarke et al. | Apr 2005 | B2 |
6888350 | Deimling | May 2005 | B2 |
6891371 | Frigo et al. | May 2005 | B1 |
6891372 | Steinhoff et al. | May 2005 | B2 |
6891373 | Deimling | May 2005 | B2 |
6897654 | Barbic | May 2005 | B2 |
6903548 | Foo | Jun 2005 | B2 |
6914428 | Dixon et al. | Jul 2005 | B2 |
6915152 | Zhu | Jul 2005 | B2 |
6919579 | Amin et al. | Jul 2005 | B2 |
6930479 | Xiao et al. | Aug 2005 | B2 |
6937014 | Sun et al. | Aug 2005 | B2 |
6946838 | Corver et al. | Sep 2005 | B2 |
6946839 | Porter | Sep 2005 | B2 |
6949490 | Zhou | Sep 2005 | B2 |
6954067 | Mistretta | Oct 2005 | B2 |
6958609 | Raftery et al. | Oct 2005 | B2 |
6971391 | Wang et al. | Dec 2005 | B1 |
6972374 | Adrian et al. | Dec 2005 | B2 |
6987282 | Amin et al. | Jan 2006 | B2 |
6992484 | Frank | Jan 2006 | B2 |
6997863 | Handy et al. | Feb 2006 | B2 |
7002341 | Baudenbacher et al. | Feb 2006 | B2 |
7015693 | Corver et al. | Mar 2006 | B2 |
7023207 | Gaddipati et al. | Apr 2006 | B1 |
7026694 | Ahn et al. | Apr 2006 | B2 |
7034532 | Shenoy | Apr 2006 | B1 |
7038450 | Romalis et al. | May 2006 | B2 |
7042216 | Barbic | May 2006 | B2 |
7042218 | Sellers | May 2006 | B2 |
7053410 | Kurashina et al. | May 2006 | B2 |
7053610 | Clarke et al. | May 2006 | B2 |
7057387 | Duensing et al. | Jun 2006 | B2 |
7061237 | Pines et al. | Jun 2006 | B2 |
7064545 | Zaharchuk et al. | Jun 2006 | B2 |
7078130 | Antonelli | Jul 2006 | B2 |
7078897 | Yablonskiy et al. | Jul 2006 | B2 |
7081749 | Macovski | Jul 2006 | B2 |
7091412 | Wang et al. | Aug 2006 | B2 |
7092748 | Valdes Sosa et al. | Aug 2006 | B2 |
7106057 | Matthews et al. | Sep 2006 | B2 |
7109711 | Kiefer | Sep 2006 | B2 |
7115706 | Hollingsworth et al. | Oct 2006 | B2 |
7116102 | Clarke et al. | Oct 2006 | B2 |
7117102 | Filikov | Oct 2006 | B2 |
7119540 | Shenoy et al. | Oct 2006 | B1 |
7123952 | Nakai et al. | Oct 2006 | B2 |
7126333 | Beard et al. | Oct 2006 | B2 |
7127294 | Wang et al. | Oct 2006 | B1 |
7129881 | Franz | Oct 2006 | B2 |
7130675 | Ewing et al. | Oct 2006 | B2 |
7141971 | Duensing et al. | Nov 2006 | B2 |
7144376 | Nakai et al. | Dec 2006 | B2 |
7145330 | Xiao | Dec 2006 | B2 |
7145333 | Romalis et al. | Dec 2006 | B2 |
7145334 | Assmann et al. | Dec 2006 | B2 |
7148685 | Block et al. | Dec 2006 | B2 |
7162302 | Wang et al. | Jan 2007 | B2 |
7176684 | Patch et al. | Feb 2007 | B2 |
7180418 | Willms et al. | Feb 2007 | B1 |
7187169 | Clarke et al. | Mar 2007 | B2 |
7193415 | Barbic et al. | Mar 2007 | B2 |
7197352 | Gott et al. | Mar 2007 | B2 |
7197353 | King et al. | Mar 2007 | B2 |
7199581 | Corver et al. | Apr 2007 | B2 |
7202665 | Reeder | Apr 2007 | B1 |
7202667 | Barbic | Apr 2007 | B2 |
7205763 | Porter | Apr 2007 | B2 |
7205764 | Anderson et al. | Apr 2007 | B1 |
7218104 | Clarke et al. | May 2007 | B2 |
7225674 | Clark | Jun 2007 | B2 |
7227356 | Hariharan et al. | Jun 2007 | B1 |
7235972 | Shah et al. | Jun 2007 | B2 |
7242190 | Shenoy | Jul 2007 | B1 |
7245124 | Shu et al. | Jul 2007 | B2 |
7248044 | Kobayashi et al. | Jul 2007 | B2 |
7250762 | King et al. | Jul 2007 | B2 |
7251519 | Axelsson et al. | Jul 2007 | B2 |
7262597 | Woods et al. | Aug 2007 | B2 |
7268548 | Sellers | Sep 2007 | B2 |
7279893 | Marinelli et al. | Oct 2007 | B1 |
7280861 | Thomas et al. | Oct 2007 | B2 |
7280863 | Shachar | Oct 2007 | B2 |
7283862 | Slavin et al. | Oct 2007 | B1 |
7332908 | Nayak et al. | Feb 2008 | B2 |
7336073 | Patch et al. | Feb 2008 | B2 |
7339375 | Shenoy | Mar 2008 | B1 |
7343193 | Block et al. | Mar 2008 | B2 |
7352180 | Manneschi | Apr 2008 | B2 |
7358727 | Angelos | Apr 2008 | B1 |
7363070 | Ogata et al. | Apr 2008 | B2 |
7365534 | Tralshawala et al. | Apr 2008 | B2 |
7365663 | Rylov et al. | Apr 2008 | B2 |
7366560 | Taicher et al. | Apr 2008 | B2 |
7369093 | Oppenlander et al. | May 2008 | B2 |
7375519 | Zur | May 2008 | B2 |
7375522 | Reeder | May 2008 | B2 |
7378844 | Watkins et al. | May 2008 | B2 |
7382129 | Mills | Jun 2008 | B2 |
7385395 | Pines et al. | Jun 2008 | B2 |
7385396 | Zhu | Jun 2008 | B2 |
7388375 | Haase | Jun 2008 | B2 |
7391213 | Watkins et al. | Jun 2008 | B2 |
7394251 | Lin | Jul 2008 | B2 |
7394252 | Lin | Jul 2008 | B1 |
7395107 | Ishiyama et al. | Jul 2008 | B2 |
7395108 | Roopchansingh et al. | Jul 2008 | B2 |
7397242 | Samsonov et al. | Jul 2008 | B2 |
7408346 | Szyperski et al. | Aug 2008 | B2 |
7408347 | Mistretta et al. | Aug 2008 | B2 |
7420369 | Van Den Brink et al. | Sep 2008 | B2 |
7420687 | Pfaff | Sep 2008 | B2 |
7423426 | Reiderman | Sep 2008 | B2 |
7429862 | Kholmovski et al. | Sep 2008 | B2 |
7439194 | Ahn et al. | Oct 2008 | B2 |
7443719 | Kirichenko et al. | Oct 2008 | B2 |
7446526 | Cunningham et al. | Nov 2008 | B2 |
7466132 | Clarke et al. | Dec 2008 | B2 |
7474095 | Levitt et al. | Jan 2009 | B2 |
7474097 | Bydder et al. | Jan 2009 | B2 |
7477053 | Pinsky et al. | Jan 2009 | B2 |
7479782 | Van Den Brink | Jan 2009 | B2 |
7482805 | Feiweier | Jan 2009 | B2 |
7482806 | Stemmer et al. | Jan 2009 | B2 |
7482807 | Gleich et al. | Jan 2009 | B2 |
7485366 | Ma et al. | Feb 2009 | B2 |
7486075 | Brau et al. | Feb 2009 | B2 |
7492153 | Brau et al. | Feb 2009 | B2 |
7495437 | Griswold et al. | Feb 2009 | B2 |
7495439 | Wiggins | Feb 2009 | B2 |
7499894 | Marom et al. | Mar 2009 | B2 |
7508213 | Koste | Mar 2009 | B2 |
7511489 | Fautz et al. | Mar 2009 | B2 |
7519412 | Mistretta | Apr 2009 | B2 |
7521708 | Agassi | Apr 2009 | B1 |
7521928 | Romalis et al. | Apr 2009 | B2 |
7525314 | Heiland | Apr 2009 | B1 |
7533068 | Maassen van den Brink et al. | May 2009 | B2 |
7535228 | Tiernan et al. | May 2009 | B2 |
7538548 | Avram et al. | May 2009 | B2 |
7541806 | Appelt et al. | Jun 2009 | B2 |
7547400 | Carpenter et al. | Jun 2009 | B1 |
7550970 | Servin et al. | Jun 2009 | B2 |
7550972 | Maier et al. | Jun 2009 | B1 |
7560289 | Hong et al. | Jul 2009 | B2 |
7561909 | Pai et al. | Jul 2009 | B1 |
7570054 | Lin | Aug 2009 | B1 |
7573264 | Xu et al. | Aug 2009 | B2 |
7573267 | Mallozzi et al. | Aug 2009 | B1 |
7573268 | Volegov et al. | Aug 2009 | B2 |
7583992 | Mistretta et al. | Sep 2009 | B2 |
7586306 | Szyperski et al. | Sep 2009 | B2 |
7587231 | Zhang | Sep 2009 | B2 |
7592808 | King | Sep 2009 | B1 |
7592809 | King et al. | Sep 2009 | B1 |
7598897 | Kirichenko | Oct 2009 | B2 |
7602179 | van der Kouwe et al. | Oct 2009 | B2 |
7602184 | Du | Oct 2009 | B2 |
7602186 | Hoogeveen | Oct 2009 | B2 |
7603158 | Nachman et al. | Oct 2009 | B2 |
7609058 | Laub et al. | Oct 2009 | B2 |
7609060 | Hetherington et al. | Oct 2009 | B2 |
7622924 | Hwang | Nov 2009 | B2 |
7624088 | Johnson et al. | Nov 2009 | B2 |
7631507 | Stautner | Dec 2009 | B2 |
7635977 | Pipe | Dec 2009 | B2 |
7639007 | Hutton et al. | Dec 2009 | B2 |
7647098 | Prichep | Jan 2010 | B2 |
7649353 | Feiweier et al. | Jan 2010 | B2 |
7659124 | Pusiol | Feb 2010 | B2 |
7659718 | Lustig et al. | Feb 2010 | B1 |
7667457 | Linz et al. | Feb 2010 | B2 |
7671587 | Penanen et al. | Mar 2010 | B2 |
7671590 | Hariharan et al. | Mar 2010 | B2 |
7671593 | Goldhaber et al. | Mar 2010 | B2 |
7683614 | Posse | Mar 2010 | B2 |
7683615 | Song | Mar 2010 | B2 |
7688068 | Beatty | Mar 2010 | B2 |
7688069 | Kraus et al. | Mar 2010 | B2 |
7688070 | Weyers et al. | Mar 2010 | B2 |
7689262 | Kruger et al. | Mar 2010 | B2 |
7692425 | Brau et al. | Apr 2010 | B2 |
7693569 | Brittain et al. | Apr 2010 | B1 |
7696751 | Molyneaux et al. | Apr 2010 | B2 |
7701209 | Green | Apr 2010 | B1 |
7706855 | Priatna et al. | Apr 2010 | B1 |
7719269 | Petersson et al. | May 2010 | B2 |
7728592 | Ma et al. | Jun 2010 | B2 |
7728748 | Kirichenko | Jun 2010 | B1 |
7728958 | Pfaff | Jun 2010 | B2 |
7741844 | Hancu et al. | Jun 2010 | B2 |
7747304 | Gleich | Jun 2010 | B2 |
7750633 | Pines et al. | Jul 2010 | B2 |
7755356 | Shenoy | Jul 2010 | B1 |
7769424 | Sato | Aug 2010 | B2 |
7772842 | Gao et al. | Aug 2010 | B2 |
7773230 | Pfaff | Aug 2010 | B2 |
7777485 | Dumoulin et al. | Aug 2010 | B2 |
7791339 | Wong et al. | Sep 2010 | B2 |
7795868 | Larson et al. | Sep 2010 | B2 |
7795869 | Bydder | Sep 2010 | B1 |
7800367 | Bhardwaj et al. | Sep 2010 | B2 |
7807474 | Jesmanowicz | Oct 2010 | B2 |
7816916 | Fasano et al. | Oct 2010 | B2 |
7821262 | Kannengiesser et al. | Oct 2010 | B2 |
7830144 | Duerk et al. | Nov 2010 | B2 |
7834622 | Reiderman et al. | Nov 2010 | B2 |
7841986 | He et al. | Nov 2010 | B2 |
7844656 | Macready et al. | Nov 2010 | B2 |
7857767 | Ferren et al. | Dec 2010 | B2 |
7863892 | Morley et al. | Jan 2011 | B2 |
7869854 | Shachar et al. | Jan 2011 | B2 |
7873402 | Shachar | Jan 2011 | B2 |
7902820 | Vervaeke et al. | Mar 2011 | B2 |
7906345 | Wang et al. | Mar 2011 | B2 |
7906962 | Han et al. | Mar 2011 | B2 |
7912656 | Berns et al. | Mar 2011 | B2 |
7917189 | Mistretta | Mar 2011 | B2 |
7932719 | Liimatainen et al. | Apr 2011 | B2 |
7952351 | King et al. | May 2011 | B2 |
7952354 | Petersson et al. | May 2011 | B2 |
7953174 | Asbeck et al. | May 2011 | B2 |
7974679 | Zhou | Jul 2011 | B2 |
7977943 | Marinelli et al. | Jul 2011 | B2 |
7986991 | Prichep | Jul 2011 | B2 |
7998060 | Ferren et al. | Aug 2011 | B2 |
7999541 | Chisholm et al. | Aug 2011 | B2 |
8000767 | Eden et al. | Aug 2011 | B2 |
8000784 | Ferren et al. | Aug 2011 | B2 |
8008914 | Penanen et al. | Aug 2011 | B2 |
8008942 | van den Brink et al. | Aug 2011 | B2 |
8012945 | Hallahan et al. | Sep 2011 | B2 |
8019413 | Ferren et al. | Sep 2011 | B2 |
8022703 | Huang et al. | Sep 2011 | B1 |
8024036 | Ferren et al. | Sep 2011 | B2 |
8027714 | Shachar | Sep 2011 | B2 |
8030920 | Vu et al. | Oct 2011 | B2 |
8030923 | Yu et al. | Oct 2011 | B2 |
8030926 | Avdievich et al. | Oct 2011 | B2 |
8032209 | He et al. | Oct 2011 | B2 |
8040521 | Pfaff | Oct 2011 | B2 |
8046046 | Chan et al. | Oct 2011 | B2 |
8054073 | Tuchman | Nov 2011 | B2 |
8058872 | Hyde et al. | Nov 2011 | B2 |
8060179 | Flynn | Nov 2011 | B1 |
8060180 | Pai | Nov 2011 | B2 |
8063636 | Hyde et al. | Nov 2011 | B2 |
8064982 | Hu et al. | Nov 2011 | B2 |
8072212 | Park | Dec 2011 | B2 |
8072219 | Saito et al. | Dec 2011 | B2 |
8076938 | Brau et al. | Dec 2011 | B2 |
8085041 | Aksit et al. | Dec 2011 | B2 |
8089278 | Du | Jan 2012 | B1 |
8093056 | Ganesan | Jan 2012 | B2 |
8093899 | Barmet et al. | Jan 2012 | B2 |
8106655 | Hyde et al. | Jan 2012 | B2 |
8111068 | Duerk et al. | Feb 2012 | B2 |
8118754 | Flynn et al. | Feb 2012 | B1 |
8128908 | Santra et al. | Mar 2012 | B2 |
8130002 | Tateishi et al. | Mar 2012 | B2 |
8143072 | Lukaszew et al. | Mar 2012 | B2 |
8145295 | Boyden et al. | Mar 2012 | B2 |
8148979 | Du | Apr 2012 | B1 |
8148982 | Witschey et al. | Apr 2012 | B2 |
8154285 | Hyde et al. | Apr 2012 | B1 |
8163896 | Bentwich | Apr 2012 | B1 |
8164333 | Rugar et al. | Apr 2012 | B2 |
8165657 | Krueger | Apr 2012 | B2 |
8168570 | Barron et al. | May 2012 | B2 |
8169231 | Berkley | May 2012 | B2 |
8170316 | Barbic et al. | May 2012 | B2 |
8179133 | Kornev et al. | May 2012 | B1 |
8179135 | Hahn et al. | May 2012 | B2 |
8188735 | Derakhshan et al. | May 2012 | B2 |
8188737 | Saha | May 2012 | B2 |
8195274 | Wong | Jun 2012 | B2 |
8212554 | Brazdeikis et al. | Jul 2012 | B2 |
8212866 | Lemmer et al. | Jul 2012 | B2 |
8222899 | Horng et al. | Jul 2012 | B2 |
8228060 | Busse | Jul 2012 | B2 |
8237441 | Martinez-Moller et al. | Aug 2012 | B2 |
8242778 | Subramanian et al. | Aug 2012 | B2 |
8244192 | Prasidh et al. | Aug 2012 | B2 |
8244328 | Biber et al. | Aug 2012 | B2 |
8248069 | Buracas | Aug 2012 | B2 |
8274283 | Liu et al. | Sep 2012 | B2 |
8278925 | Sun et al. | Oct 2012 | B2 |
8283943 | van den Brink et al. | Oct 2012 | B2 |
8285351 | Johnson et al. | Oct 2012 | B2 |
8305078 | Savukov et al. | Nov 2012 | B2 |
8310233 | Trzasko et al. | Nov 2012 | B2 |
8318093 | Wang et al. | Nov 2012 | B2 |
8319495 | Zhu | Nov 2012 | B1 |
8332010 | Edelman | Dec 2012 | B2 |
8334690 | Kitching et al. | Dec 2012 | B2 |
8350568 | Hwang et al. | Jan 2013 | B2 |
8350804 | Moll | Jan 2013 | B1 |
8362769 | Hughes et al. | Jan 2013 | B2 |
8368380 | Berkcan et al. | Feb 2013 | B2 |
8372654 | Cook et al. | Feb 2013 | B2 |
8373415 | Reeder et al. | Feb 2013 | B2 |
8386013 | Du et al. | Feb 2013 | B2 |
8386554 | Macready et al. | Feb 2013 | B2 |
8390286 | Matlashov et al. | Mar 2013 | B2 |
8405823 | Pfaff | Mar 2013 | B2 |
8421457 | Jacobson et al. | Apr 2013 | B2 |
8427145 | Mitchell et al. | Apr 2013 | B2 |
8427147 | Block et al. | Apr 2013 | B2 |
8427160 | Fishbein | Apr 2013 | B2 |
8433392 | Riederer | Apr 2013 | B2 |
8436612 | Deimling | May 2013 | B2 |
8436613 | Feiweier | May 2013 | B2 |
8446149 | Heberlein | May 2013 | B2 |
8456163 | Zhao | Jun 2013 | B2 |
8456164 | Subbarao | Jun 2013 | B2 |
8471558 | Chisholm et al. | Jun 2013 | B2 |
8471559 | Taherian et al. | Jun 2013 | B2 |
8483798 | Petersson et al. | Jul 2013 | B2 |
8487623 | Penanen et al. | Jul 2013 | B2 |
8502536 | Block et al. | Aug 2013 | B2 |
8502538 | Dannels et al. | Aug 2013 | B2 |
8508229 | Ehman et al. | Aug 2013 | B2 |
8512219 | Ferren et al. | Aug 2013 | B2 |
8519705 | Savukov et al. | Aug 2013 | B2 |
8527031 | Yu et al. | Sep 2013 | B2 |
8536862 | Kimura et al. | Sep 2013 | B2 |
8536867 | Biber | Sep 2013 | B2 |
8547090 | Lukin et al. | Oct 2013 | B2 |
8547095 | Budker et al. | Oct 2013 | B2 |
8554294 | Kim et al. | Oct 2013 | B2 |
8560282 | Macready et al. | Oct 2013 | B2 |
8564288 | Jannin et al. | Oct 2013 | B2 |
8570035 | Wemmer et al. | Oct 2013 | B2 |
8581580 | Maida, Jr. et al. | Nov 2013 | B2 |
8581583 | Greiser | Nov 2013 | B2 |
8587309 | Jellus | Nov 2013 | B2 |
8593141 | Radparvar et al. | Nov 2013 | B1 |
8598871 | Bahn | Dec 2013 | B2 |
8604772 | Berkcan et al. | Dec 2013 | B2 |
8610435 | Sambandamurthy et al. | Dec 2013 | B2 |
8618799 | Radparvar et al. | Dec 2013 | B1 |
8624594 | Fujiwara et al. | Jan 2014 | B2 |
8653818 | Adalsteinsson et al. | Feb 2014 | B2 |
8660642 | Ferren et al. | Feb 2014 | B2 |
8686724 | Mitchell et al. | Apr 2014 | B2 |
8686725 | Iannotti et al. | Apr 2014 | B2 |
8686751 | van den Brink et al. | Apr 2014 | B2 |
8694092 | Ferren et al. | Apr 2014 | B2 |
8697034 | Kovacs et al. | Apr 2014 | B2 |
8698496 | Sorensen et al. | Apr 2014 | B2 |
8698498 | Penanen et al. | Apr 2014 | B2 |
8704518 | Alsop et al. | Apr 2014 | B2 |
8710843 | Carlone et al. | Apr 2014 | B2 |
8723514 | Finkler et al. | May 2014 | B2 |
8729453 | Worschech et al. | May 2014 | B2 |
8736823 | Pfaff | May 2014 | B2 |
8742754 | Hasan | Jun 2014 | B2 |
8749233 | Littmann et al. | Jun 2014 | B2 |
8754644 | Trakic et al. | Jun 2014 | B2 |
8754645 | Gross et al. | Jun 2014 | B2 |
8760159 | Tuchman | Jun 2014 | B2 |
8766631 | Hofmann et al. | Jul 2014 | B2 |
8766633 | Bhattacharya et al. | Jul 2014 | B2 |
8773126 | Kuge et al. | Jul 2014 | B2 |
8779768 | Brey et al. | Jul 2014 | B2 |
8781197 | Wang et al. | Jul 2014 | B2 |
8781542 | Tsukamoto et al. | Jul 2014 | B2 |
8791700 | Witschey et al. | Jul 2014 | B2 |
8823374 | Weller et al. | Sep 2014 | B2 |
8823375 | Banerjee et al. | Sep 2014 | B2 |
8836329 | Weinberg | Sep 2014 | B2 |
8838200 | Good | Sep 2014 | B2 |
8854038 | Hernando et al. | Oct 2014 | B2 |
8854074 | Berkley | Oct 2014 | B2 |
8872515 | Sun | Oct 2014 | B2 |
8883423 | Neely | Nov 2014 | B2 |
8886283 | Chen et al. | Nov 2014 | B1 |
8890528 | Delforge et al. | Nov 2014 | B2 |
8922209 | Alford et al. | Dec 2014 | B2 |
8928317 | Sun | Jan 2015 | B2 |
8933695 | Kornev et al. | Jan 2015 | B1 |
8933697 | Chen et al. | Jan 2015 | B2 |
8947080 | Lukin et al. | Feb 2015 | B2 |
8952691 | Blumich et al. | Feb 2015 | B2 |
8970217 | Kadin | Mar 2015 | B1 |
8975893 | Greiser et al. | Mar 2015 | B2 |
8975895 | Sutton et al. | Mar 2015 | B2 |
8981778 | Lee et al. | Mar 2015 | B2 |
8988075 | Grodzki | Mar 2015 | B2 |
8999650 | Flynn et al. | Apr 2015 | B2 |
9011329 | Ferren et al. | Apr 2015 | B2 |
9013184 | Zuehlsdorff et al. | Apr 2015 | B2 |
9020576 | Nagatani | Apr 2015 | B2 |
9035650 | Popescu | May 2015 | B2 |
9046493 | Neely et al. | Jun 2015 | B2 |
9057713 | Dawson | Jun 2015 | B2 |
9069928 | van den Brink et al. | Jun 2015 | B2 |
9095270 | Flynn | Aug 2015 | B2 |
9097751 | Longhini et al. | Aug 2015 | B1 |
9101276 | Georgopoulos | Aug 2015 | B2 |
9121889 | Tuchman | Sep 2015 | B2 |
9140657 | Ledbetter et al. | Sep 2015 | B2 |
9167979 | Skidmore et al. | Oct 2015 | B2 |
9179827 | Hastings et al. | Nov 2015 | B2 |
9198563 | Ferren et al. | Dec 2015 | B2 |
9211083 | Graziani et al. | Dec 2015 | B2 |
9229080 | Lin | Jan 2016 | B2 |
9254097 | Espy et al. | Feb 2016 | B2 |
9261573 | Radparvar et al. | Feb 2016 | B1 |
9279863 | Tsukamoto et al. | Mar 2016 | B2 |
9326751 | Hastings | May 2016 | B2 |
9339562 | Chen et al. | May 2016 | B2 |
9360457 | Neely et al. | Jun 2016 | B2 |
9618591 | Radparvar et al. | Apr 2017 | B1 |
20010033163 | Sigal et al. | Oct 2001 | A1 |
20010037062 | Ehnholm | Nov 2001 | A1 |
20010038284 | Hahn | Nov 2001 | A1 |
20010054897 | Taicher et al. | Dec 2001 | A1 |
20010056232 | Lardo et al. | Dec 2001 | A1 |
20020060635 | Gupta | May 2002 | A1 |
20020062076 | Kandori et al. | May 2002 | A1 |
20020077537 | Avrin et al. | Jun 2002 | A1 |
20020087063 | Lou | Jul 2002 | A1 |
20020093335 | Miller et al. | Jul 2002 | A1 |
20020095765 | Zhou | Jul 2002 | A1 |
20020117656 | Amin et al. | Aug 2002 | A1 |
20020117738 | Amin et al. | Aug 2002 | A1 |
20020121636 | Amin et al. | Sep 2002 | A1 |
20020128689 | Connelly et al. | Sep 2002 | A1 |
20020128691 | Connelly | Sep 2002 | A1 |
20020133086 | Connelly et al. | Sep 2002 | A1 |
20020133199 | MacDonald et al. | Sep 2002 | A1 |
20020133200 | Weiner et al. | Sep 2002 | A1 |
20020133201 | Connelly et al. | Sep 2002 | A1 |
20020133202 | Connelly et al. | Sep 2002 | A1 |
20020133208 | Connelly | Sep 2002 | A1 |
20020133211 | Weiner et al. | Sep 2002 | A1 |
20020133216 | Connelly et al. | Sep 2002 | A1 |
20020138102 | Weiner et al. | Sep 2002 | A1 |
20020138107 | Weiner et al. | Sep 2002 | A1 |
20020138108 | Weiner et al. | Sep 2002 | A1 |
20020138110 | Connelly et al. | Sep 2002 | A1 |
20020138112 | Connelly et al. | Sep 2002 | A1 |
20020138113 | Connelly et al. | Sep 2002 | A1 |
20020138124 | Helfer et al. | Sep 2002 | A1 |
20020140425 | Prammer et al. | Oct 2002 | A1 |
20020143258 | Weiner et al. | Oct 2002 | A1 |
20020146580 | Wang et al. | Oct 2002 | A1 |
20020147470 | Weiner et al. | Oct 2002 | A1 |
20020149364 | Edwards | Oct 2002 | A1 |
20020173716 | Alzner | Nov 2002 | A1 |
20020175682 | Chen et al. | Nov 2002 | A1 |
20020177769 | Orbach et al. | Nov 2002 | A1 |
20020183796 | Connelly | Dec 2002 | A1 |
20020190717 | Leussler et al. | Dec 2002 | A1 |
20020193680 | Feiweier | Dec 2002 | A1 |
20020196017 | Akkurt et al. | Dec 2002 | A1 |
20020196021 | Wang | Dec 2002 | A1 |
20020198450 | Reykowski | Dec 2002 | A1 |
20020198569 | Foster et al. | Dec 2002 | A1 |
20030001569 | Chen et al. | Jan 2003 | A1 |
20030006766 | Kruspe et al. | Jan 2003 | A1 |
20030006768 | Kleinberg et al. | Jan 2003 | A1 |
20030009111 | Cory et al. | Jan 2003 | A1 |
20030011366 | Minh et al. | Jan 2003 | A1 |
20030016010 | Kandori et al. | Jan 2003 | A1 |
20030016012 | Coates et al. | Jan 2003 | A1 |
20030016013 | Kruspe et al. | Jan 2003 | A1 |
20030016017 | Reykowski et al. | Jan 2003 | A1 |
20030028095 | Tulley et al. | Feb 2003 | A1 |
20030032995 | Handy et al. | Feb 2003 | A1 |
20030052677 | Pines et al. | Mar 2003 | A1 |
20030058502 | Griffiths et al. | Mar 2003 | A1 |
20030062894 | Vester | Apr 2003 | A1 |
20030062900 | Kiefer et al. | Apr 2003 | A1 |
20030069495 | Agrikola | Apr 2003 | A1 |
20030071620 | Reiderman et al. | Apr 2003 | A1 |
20030076087 | Minchole et al. | Apr 2003 | A1 |
20030077224 | Pines et al. | Apr 2003 | A1 |
20030085702 | Freed et al. | May 2003 | A1 |
20030088172 | Kuth | May 2003 | A1 |
20030092981 | Deimling | May 2003 | A1 |
20030093004 | Sosa et al. | May 2003 | A1 |
20030097058 | Nittka et al. | May 2003 | A1 |
20030099271 | Maksimov et al. | May 2003 | A1 |
20030111659 | Tzalenchuk et al. | Jun 2003 | A1 |
20030111661 | Tzalenchuk et al. | Jun 2003 | A1 |
20030122545 | Van Den Brink et al. | Jul 2003 | A1 |
20030129405 | Zhang et al. | Jul 2003 | A1 |
20030130127 | Hentges et al. | Jul 2003 | A1 |
20030130190 | Hallahan et al. | Jul 2003 | A1 |
20030146429 | Tzalenchuk et al. | Aug 2003 | A1 |
20030146430 | Tzalenchuk et al. | Aug 2003 | A1 |
20030146750 | Vaughan | Aug 2003 | A1 |
20030149354 | Bakharev | Aug 2003 | A1 |
20030159847 | Adrian et al. | Aug 2003 | A1 |
20030160622 | Duensing et al. | Aug 2003 | A1 |
20030169032 | Minchole et al. | Sep 2003 | A1 |
20030178994 | Hurlimann et al. | Sep 2003 | A1 |
20030184293 | Boskamp et al. | Oct 2003 | A1 |
20030199395 | Zhou | Oct 2003 | A1 |
20030201772 | Sigal et al. | Oct 2003 | A1 |
20030210043 | Freedman | Nov 2003 | A1 |
20030214296 | Carlini | Nov 2003 | A1 |
20030214297 | Kruger | Nov 2003 | A1 |
20040000905 | Freedman et al. | Jan 2004 | A1 |
20040002645 | Ewing et al. | Jan 2004 | A1 |
20040002648 | Engelhard et al. | Jan 2004 | A1 |
20040017193 | Speier | Jan 2004 | A1 |
20040027123 | Heaton | Feb 2004 | A1 |
20040027125 | Clarke et al. | Feb 2004 | A1 |
20040027127 | Mills | Feb 2004 | A1 |
20040030242 | Weber | Feb 2004 | A1 |
20040055745 | Georgi et al. | Mar 2004 | A1 |
20040066194 | Slade et al. | Apr 2004 | A1 |
20040077493 | Antonelli | Apr 2004 | A1 |
20040116800 | Helfer et al. | Jun 2004 | A1 |
20040119471 | Blanz et al. | Jun 2004 | A1 |
20040140799 | Romalis et al. | Jul 2004 | A1 |
20040140803 | Deimling | Jul 2004 | A1 |
20040140808 | Vaughan | Jul 2004 | A1 |
20040152969 | Zhang et al. | Aug 2004 | A1 |
20040158144 | Keren et al. | Aug 2004 | A1 |
20040164840 | Xiao et al. | Aug 2004 | A1 |
20040193038 | Reykowski et al. | Sep 2004 | A1 |
20040193040 | Brill et al. | Sep 2004 | A1 |
20040199067 | Bock et al. | Oct 2004 | A1 |
20040199069 | Connelly et al. | Oct 2004 | A1 |
20040199071 | Lardo et al. | Oct 2004 | A1 |
20040207396 | Xiao | Oct 2004 | A1 |
20040222789 | Pinsky et al. | Nov 2004 | A1 |
20040225210 | Brosovich et al. | Nov 2004 | A1 |
20040230271 | Wang et al. | Nov 2004 | A1 |
20040239318 | Xiao et al. | Dec 2004 | A1 |
20040239319 | Tralshawala et al. | Dec 2004 | A1 |
20040249428 | Wang et al. | Dec 2004 | A1 |
20040251042 | Weiner et al. | Dec 2004 | A1 |
20040254419 | Wang et al. | Dec 2004 | A1 |
20040254443 | Gott et al. | Dec 2004 | A1 |
20040257078 | Porter | Dec 2004 | A1 |
20050001619 | Kiefer | Jan 2005 | A1 |
20050017715 | Prammer et al. | Jan 2005 | A1 |
20050017719 | Heubes | Jan 2005 | A1 |
20050020933 | Sato | Jan 2005 | A1 |
20050021019 | Hashimshony et al. | Jan 2005 | A1 |
20050024051 | Doddrell | Feb 2005 | A1 |
20050024054 | Rinneberg et al. | Feb 2005 | A1 |
20050025797 | Wang et al. | Feb 2005 | A1 |
20050033154 | deCharms | Feb 2005 | A1 |
20050033156 | Kruger et al. | Feb 2005 | A1 |
20050041746 | Rosen et al. | Feb 2005 | A1 |
20050052650 | Wu | Mar 2005 | A1 |
20050057248 | Woods et al. | Mar 2005 | A1 |
20050074600 | Ma et al. | Apr 2005 | A1 |
20050079132 | Wang et al. | Apr 2005 | A1 |
20050084031 | Rosen et al. | Apr 2005 | A1 |
20050084032 | Rosen et al. | Apr 2005 | A1 |
20050084033 | Rosen et al. | Apr 2005 | A1 |
20050090732 | Ivkov et al. | Apr 2005 | A1 |
20050096589 | Shachar | May 2005 | A1 |
20050100076 | Gazdzinski | May 2005 | A1 |
20050100102 | Gazdzinski | May 2005 | A1 |
20050100930 | Wang et al. | May 2005 | A1 |
20050104587 | Akkurt | May 2005 | A1 |
20050107681 | Griffiths | May 2005 | A1 |
20050107684 | Weyers et al. | May 2005 | A1 |
20050113669 | Helfer et al. | May 2005 | A1 |
20050113676 | Weiner et al. | May 2005 | A1 |
20050113873 | Weiner et al. | May 2005 | A1 |
20050113874 | Connelly et al. | May 2005 | A1 |
20050113876 | Weiner et al. | May 2005 | A1 |
20050134262 | Clarke et al. | Jun 2005 | A1 |
20050137092 | Mester et al. | Jun 2005 | A1 |
20050140369 | Feiweier et al. | Jun 2005 | A1 |
20050149002 | Wang et al. | Jul 2005 | A1 |
20050149169 | Wang et al. | Jul 2005 | A1 |
20050156593 | Assmann et al. | Jul 2005 | A1 |
20050159661 | Connelly et al. | Jul 2005 | A1 |
20050165295 | Li et al. | Jul 2005 | A1 |
20050165471 | Wang et al. | Jul 2005 | A1 |
20050171421 | Eden et al. | Aug 2005 | A1 |
20050174201 | Luong et al. | Aug 2005 | A1 |
20050182319 | Glossop | Aug 2005 | A1 |
20050182482 | Wang et al. | Aug 2005 | A1 |
20050187458 | Kannengiesser et al. | Aug 2005 | A1 |
20050202570 | Pusiol | Sep 2005 | A1 |
20050206376 | Matthews et al. | Sep 2005 | A1 |
20050206377 | Romalis et al. | Sep 2005 | A1 |
20050209430 | Hollingsworth et al. | Sep 2005 | A1 |
20050216075 | Wang et al. | Sep 2005 | A1 |
20050225326 | He et al. | Oct 2005 | A1 |
20050234329 | Kraus, Jr. et al. | Oct 2005 | A1 |
20050237057 | Porter | Oct 2005 | A1 |
20050237059 | Reykowski | Oct 2005 | A1 |
20050240100 | Wang et al. | Oct 2005 | A1 |
20050241394 | Clark | Nov 2005 | A1 |
20050261574 | Li et al. | Nov 2005 | A1 |
20050261763 | Wang et al. | Nov 2005 | A1 |
20050270031 | Oppelt et al. | Dec 2005 | A1 |
20050272158 | Galford et al. | Dec 2005 | A1 |
20050278020 | Wang et al. | Dec 2005 | A1 |
20050283167 | Gray | Dec 2005 | A1 |
20050283168 | Gray | Dec 2005 | A1 |
20050283213 | Gray | Dec 2005 | A1 |
20050283214 | Gray | Dec 2005 | A1 |
20050288750 | Gray | Dec 2005 | A1 |
20050288751 | Gray | Dec 2005 | A1 |
20050288752 | Gray | Dec 2005 | A1 |
20050288753 | Gray | Dec 2005 | A1 |
20050288754 | Gray | Dec 2005 | A1 |
20050288755 | Gray | Dec 2005 | A1 |
20050288756 | Gray | Dec 2005 | A1 |
20050288757 | Gray | Dec 2005 | A1 |
20060001423 | Barbic | Jan 2006 | A1 |
20060012369 | Neufeld et al. | Jan 2006 | A1 |
20060020371 | Ham et al. | Jan 2006 | A1 |
20060020403 | Pusiol | Jan 2006 | A1 |
20060033491 | Blanz et al. | Feb 2006 | A1 |
20060033501 | Vaughan | Feb 2006 | A1 |
20060038564 | Findeklee | Feb 2006 | A1 |
20060052250 | Schrieffer | Mar 2006 | A1 |
20060061362 | Reykowski | Mar 2006 | A1 |
20060091881 | Clarke et al. | May 2006 | A1 |
20060095220 | Vrba et al. | May 2006 | A1 |
20060102871 | Wang et al. | May 2006 | A1 |
20060117397 | Rutkowski et al. | Jun 2006 | A1 |
20060132127 | Fullerton | Jun 2006 | A1 |
20060145694 | Oppenlander et al. | Jul 2006 | A1 |
20060148104 | Marini et al. | Jul 2006 | A1 |
20060164088 | Hawkes | Jul 2006 | A1 |
20060170410 | Bjorn | Aug 2006 | A1 |
20060173284 | Ackerman et al. | Aug 2006 | A1 |
20060176054 | Clarke et al. | Aug 2006 | A1 |
20060186882 | Walsh | Aug 2006 | A1 |
20060192554 | Blanz et al. | Aug 2006 | A1 |
20060192559 | Ardenkjaer-Larsen et al. | Aug 2006 | A1 |
20060220647 | Doty | Oct 2006 | A1 |
20060225165 | Maassen van den Brink et al. | Oct 2006 | A1 |
20060234648 | Tuccillo | Oct 2006 | A1 |
20060241384 | Fisher et al. | Oct 2006 | A1 |
20060241392 | Feinstein et al. | Oct 2006 | A1 |
20060246143 | Ege | Nov 2006 | A1 |
20060249705 | Wang et al. | Nov 2006 | A1 |
20060251303 | He et al. | Nov 2006 | A1 |
20060255799 | Reiderman | Nov 2006 | A1 |
20060261810 | Fautz et al. | Nov 2006 | A1 |
20060264738 | Hashimshony et al. | Nov 2006 | A1 |
20060272812 | Yu et al. | Dec 2006 | A1 |
20060273787 | Blanz | Dec 2006 | A1 |
20060279282 | Van Den Brink | Dec 2006 | A1 |
20060284812 | Griswold et al. | Dec 2006 | A1 |
20070007964 | Vaughan | Jan 2007 | A1 |
20070010702 | Wang et al. | Jan 2007 | A1 |
20070013376 | Heid et al. | Jan 2007 | A1 |
20070016003 | Piron et al. | Jan 2007 | A1 |
20070016006 | Shachar | Jan 2007 | A1 |
20070018643 | Clarke et al. | Jan 2007 | A1 |
20070020701 | Menon et al. | Jan 2007 | A1 |
20070027532 | Wang et al. | Feb 2007 | A1 |
20070038067 | Kandori et al. | Feb 2007 | A1 |
20070046287 | Vervaeke et al. | Mar 2007 | A1 |
20070080341 | Macready et al. | Apr 2007 | A1 |
20070085534 | Seki et al. | Apr 2007 | A1 |
20070086121 | Nagase et al. | Apr 2007 | A1 |
20070100251 | Prichep | May 2007 | A1 |
20070106150 | Greiser et al. | May 2007 | A1 |
20070114994 | Kobayashi et al. | May 2007 | A1 |
20070132529 | Luong et al. | Jun 2007 | A1 |
20070132581 | Molyneaux et al. | Jun 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070164737 | Pusiol | Jul 2007 | A1 |
20070166730 | Menon et al. | Jul 2007 | A1 |
20070167723 | Park et al. | Jul 2007 | A1 |
20070174227 | Johnson et al. | Jul 2007 | A1 |
20070182408 | Blanz et al. | Aug 2007 | A1 |
20070191705 | Deshpande et al. | Aug 2007 | A1 |
20070194225 | Zorn | Aug 2007 | A1 |
20070197891 | Shachar et al. | Aug 2007 | A1 |
20070205767 | Xu et al. | Sep 2007 | A1 |
20070222433 | Tiernan et al. | Sep 2007 | A1 |
20070222443 | Blanz | Sep 2007 | A1 |
20070222444 | Reiderman | Sep 2007 | A1 |
20070222447 | Van Der Brink et al. | Sep 2007 | A1 |
20070222448 | Fullerton | Sep 2007 | A1 |
20070225634 | Ferren et al. | Sep 2007 | A1 |
20070229080 | Weiss et al. | Oct 2007 | A1 |
20070236219 | Deimling et al. | Oct 2007 | A1 |
20070238973 | Krueger | Oct 2007 | A1 |
20070241750 | Akkurt | Oct 2007 | A1 |
20070241751 | Kholmovski et al. | Oct 2007 | A1 |
20070244520 | Ferren et al. | Oct 2007 | A1 |
20070247160 | Vaughan | Oct 2007 | A1 |
20070252595 | Volegov et al. | Nov 2007 | A1 |
20070270703 | He et al. | Nov 2007 | A1 |
20070273374 | Haase | Nov 2007 | A1 |
20070276218 | Yellen | Nov 2007 | A1 |
20070279061 | Erickson et al. | Dec 2007 | A1 |
20070282378 | Huang et al. | Dec 2007 | A1 |
20070290688 | Vaughan | Dec 2007 | A1 |
20080001600 | deCharms | Jan 2008 | A1 |
20080027313 | Shachar | Jan 2008 | A1 |
20080033569 | Ferren et al. | Feb 2008 | A1 |
20080054904 | Neufeld et al. | Mar 2008 | A1 |
20080074113 | Clarke et al. | Mar 2008 | A1 |
20080082270 | Heaton et al. | Apr 2008 | A1 |
20080088305 | Olson et al. | Apr 2008 | A1 |
20080091118 | Georgopoulos | Apr 2008 | A1 |
20080091193 | Kauphusman et al. | Apr 2008 | A1 |
20080094064 | Eberler et al. | Apr 2008 | A1 |
20080100175 | Clark | May 2008 | A1 |
20080103440 | Ferren et al. | May 2008 | A1 |
20080104966 | Stautner | May 2008 | A1 |
20080106261 | Romalis et al. | May 2008 | A1 |
20080116892 | Laub et al. | May 2008 | A1 |
20080119156 | Hotto | May 2008 | A1 |
20080129289 | Stemmer et al. | Jun 2008 | A1 |
20080129298 | Vaughan et al. | Jun 2008 | A1 |
20080139919 | Kannengiesser et al. | Jun 2008 | A1 |
20080144900 | Li et al. | Jun 2008 | A1 |
20080150525 | Song | Jun 2008 | A1 |
20080157769 | Renz et al. | Jul 2008 | A1 |
20080174309 | Pusiol et al. | Jul 2008 | A1 |
20080174313 | Ganesan | Jul 2008 | A1 |
20080174314 | Holwell et al. | Jul 2008 | A1 |
20080204013 | Badry et al. | Aug 2008 | A1 |
20080231281 | Fain et al. | Sep 2008 | A1 |
20080234937 | Fang et al. | Sep 2008 | A1 |
20080255006 | Wang et al. | Oct 2008 | A1 |
20080278167 | Vaughan, Jr. | Nov 2008 | A1 |
20080284433 | Kraus, Jr. et al. | Nov 2008 | A1 |
20080290869 | Hutton et al. | Nov 2008 | A1 |
20080309339 | Chisholm et al. | Dec 2008 | A1 |
20080309340 | Cho et al. | Dec 2008 | A1 |
20090002717 | Pfaff | Jan 2009 | A1 |
20090004748 | Ganesan | Jan 2009 | A1 |
20090009414 | Reykowski | Jan 2009 | A1 |
20090015256 | Bottomley et al. | Jan 2009 | A1 |
20090024050 | Jung et al. | Jan 2009 | A1 |
20090029392 | Josephson et al. | Jan 2009 | A1 |
20090072824 | Romero | Mar 2009 | A1 |
20090072828 | Penanen et al. | Mar 2009 | A1 |
20090078931 | Berkley | Mar 2009 | A1 |
20090079427 | Deimling | Mar 2009 | A1 |
20090085565 | Fullerton | Apr 2009 | A1 |
20090087064 | Barbic et al. | Apr 2009 | A1 |
20090093962 | Akkurt | Apr 2009 | A1 |
20090121712 | Han et al. | May 2009 | A1 |
20090128144 | Freedman et al. | May 2009 | A1 |
20090128272 | Hills | May 2009 | A1 |
20090131737 | Ferren et al. | May 2009 | A1 |
20090131738 | Ferren et al. | May 2009 | A1 |
20090134873 | Cho et al. | May 2009 | A1 |
20090136104 | Hajian et al. | May 2009 | A1 |
20090149736 | Skidmore et al. | Jun 2009 | A1 |
20090160439 | Fishbein | Jun 2009 | A1 |
20090167342 | van den Brink et al. | Jul 2009 | A1 |
20090174407 | Han et al. | Jul 2009 | A1 |
20090177075 | Derakhshan et al. | Jul 2009 | A1 |
20090179636 | Chen | Jul 2009 | A1 |
20090179642 | Decharms | Jul 2009 | A1 |
20090184282 | Carpenter et al. | Jul 2009 | A1 |
20090187096 | Tiernan et al. | Jul 2009 | A1 |
20090189604 | Romero | Jul 2009 | A1 |
20090219019 | Taherian et al. | Sep 2009 | A1 |
20090221900 | Ikushima et al. | Sep 2009 | A1 |
20090227044 | Dosev et al. | Sep 2009 | A1 |
20090232510 | Gupta et al. | Sep 2009 | A1 |
20090246142 | Bhatia et al. | Oct 2009 | A1 |
20090248014 | Shachar et al. | Oct 2009 | A1 |
20090261826 | Pines et al. | Oct 2009 | A1 |
20090266887 | Molyneaux et al. | Oct 2009 | A1 |
20090278538 | Chen et al. | Nov 2009 | A1 |
20090288820 | Barron et al. | Nov 2009 | A1 |
20090289629 | Tuchman | Nov 2009 | A1 |
20090295389 | Pruessmann et al. | Dec 2009 | A1 |
20090302841 | Avdievich et al. | Dec 2009 | A1 |
20090302844 | Saito et al. | Dec 2009 | A1 |
20090302845 | Biber | Dec 2009 | A1 |
20090309594 | Feiweier et al. | Dec 2009 | A1 |
20090311970 | Tuccillo | Dec 2009 | A1 |
20090315802 | Johansen et al. | Dec 2009 | A1 |
20100006439 | Ham et al. | Jan 2010 | A1 |
20100052683 | Huber | Mar 2010 | A1 |
20100066360 | Fasano et al. | Mar 2010 | A1 |
20100066367 | Ma et al. | Mar 2010 | A1 |
20100066368 | Gao et al. | Mar 2010 | A1 |
20100073000 | Ludwig et al. | Mar 2010 | A1 |
20100079908 | Heidmann | Apr 2010 | A1 |
20100085050 | Dong et al. | Apr 2010 | A1 |
20100088033 | Chen et al. | Apr 2010 | A1 |
20100091292 | Pfaff | Apr 2010 | A1 |
20100094155 | Prichep | Apr 2010 | A1 |
20100097056 | Lam et al. | Apr 2010 | A1 |
20100109638 | Berns et al. | May 2010 | A1 |
20100109669 | Penanen et al. | May 2010 | A1 |
20100117652 | Cork et al. | May 2010 | A1 |
20100118600 | Nagase et al. | May 2010 | A1 |
20100121180 | Biber et al. | May 2010 | A1 |
20100148773 | Chen et al. | Jun 2010 | A1 |
20100148776 | Subramanian et al. | Jun 2010 | A1 |
20100148778 | Biber | Jun 2010 | A1 |
20100156416 | Martinez-Moller et al. | Jun 2010 | A1 |
20100160767 | Deimling | Jun 2010 | A1 |
20100164489 | Lukaszew et al. | Jul 2010 | A1 |
20100179619 | Gray | Jul 2010 | A1 |
20100182004 | Prammer | Jul 2010 | A1 |
20100207622 | Finkler et al. | Aug 2010 | A1 |
20100219819 | Kimura et al. | Sep 2010 | A1 |
20100219820 | Skidmore et al. | Sep 2010 | A1 |
20100219827 | Matlashov et al. | Sep 2010 | A1 |
20100225313 | Blanz | Sep 2010 | A1 |
20100225317 | Biber | Sep 2010 | A1 |
20100231483 | Bazih et al. | Sep 2010 | A1 |
20100239142 | Dannels et al. | Sep 2010 | A1 |
20100239151 | Dannels et al. | Sep 2010 | A1 |
20100249572 | Weiss | Sep 2010 | A1 |
20100253089 | Huang et al. | Oct 2010 | A1 |
20100253338 | Eryaman et al. | Oct 2010 | A1 |
20100253339 | Gross | Oct 2010 | A1 |
20100253340 | Corum et al. | Oct 2010 | A1 |
20100253348 | Wiggins | Oct 2010 | A1 |
20100253350 | Huish et al. | Oct 2010 | A1 |
20100253351 | Huish et al. | Oct 2010 | A1 |
20100253353 | Cork et al. | Oct 2010 | A1 |
20100260677 | Bhatia et al. | Oct 2010 | A1 |
20100264916 | Pusiol | Oct 2010 | A1 |
20100264921 | Horng et al. | Oct 2010 | A1 |
20100271019 | Anand et al. | Oct 2010 | A1 |
20100271023 | Deimling | Oct 2010 | A1 |
20100277167 | Romero | Nov 2010 | A1 |
20100283459 | Kruspe et al. | Nov 2010 | A1 |
20100283460 | Kruspe et al. | Nov 2010 | A1 |
20100283461 | Kruspe et al. | Nov 2010 | A1 |
20100295692 | Bjorn | Nov 2010 | A1 |
20100301855 | Hyde et al. | Dec 2010 | A1 |
20100301856 | Hyde et al. | Dec 2010 | A1 |
20100301857 | Hyde et al. | Dec 2010 | A1 |
20100303731 | Hyde et al. | Dec 2010 | A1 |
20100303733 | Hyde et al. | Dec 2010 | A1 |
20100308813 | Lukin et al. | Dec 2010 | A1 |
20100308814 | Wu | Dec 2010 | A1 |
20100315079 | Lukin et al. | Dec 2010 | A1 |
20100331665 | Ladebeck | Dec 2010 | A1 |
20110001478 | Wemmer et al. | Jan 2011 | A1 |
20110010412 | Macready et al. | Jan 2011 | A1 |
20110012596 | Menon et al. | Jan 2011 | A1 |
20110037468 | Bottomley et al. | Feb 2011 | A1 |
20110043653 | Ikeno et al. | Feb 2011 | A1 |
20110044524 | Wang et al. | Feb 2011 | A1 |
20110047201 | Macready et al. | Feb 2011 | A1 |
20110054236 | Yang et al. | Mar 2011 | A1 |
20110054345 | Nagatani | Mar 2011 | A1 |
20110057653 | Barmatz et al. | Mar 2011 | A1 |
20110062957 | Fu et al. | Mar 2011 | A1 |
20110068789 | Hwang et al. | Mar 2011 | A1 |
20110068853 | Worschech et al. | Mar 2011 | A1 |
20110074403 | Horng et al. | Mar 2011 | A1 |
20110082383 | Cory et al. | Apr 2011 | A1 |
20110109308 | Pusiol et al. | May 2011 | A1 |
20110109310 | Hornung | May 2011 | A1 |
20110109313 | Subramanian et al. | May 2011 | A1 |
20110115486 | Frohlich et al. | May 2011 | A1 |
20110121833 | Sambandamurthy et al. | May 2011 | A1 |
20110144479 | Hastings et al. | Jun 2011 | A1 |
20110150779 | Han et al. | Jun 2011 | A1 |
20110156706 | Stubbs et al. | Jun 2011 | A1 |
20110166438 | Emerson et al. | Jul 2011 | A1 |
20110175604 | Polzer et al. | Jul 2011 | A1 |
20110175605 | Kim et al. | Jul 2011 | A1 |
20110184681 | Augustine et al. | Jul 2011 | A1 |
20110190619 | Good | Aug 2011 | A1 |
20110204891 | Drake et al. | Aug 2011 | A1 |
20110210728 | Somasundaram et al. | Sep 2011 | A1 |
20110210738 | Penanen et al. | Sep 2011 | A1 |
20110215807 | Misic et al. | Sep 2011 | A1 |
20110234219 | Boehi et al. | Sep 2011 | A1 |
20110234220 | Mitchell et al. | Sep 2011 | A1 |
20110248714 | Salomir et al. | Oct 2011 | A1 |
20110275880 | Ferren et al. | Nov 2011 | A1 |
20110279115 | Tuchman | Nov 2011 | A1 |
20110298489 | van den Brink et al. | Dec 2011 | A1 |
20110301039 | Johnson et al. | Dec 2011 | A1 |
20110301448 | deCharms | Dec 2011 | A1 |
20120001656 | Hu et al. | Jan 2012 | A1 |
20120008381 | Nagase et al. | Jan 2012 | A1 |
20120019246 | Kannengiesser et al. | Jan 2012 | A1 |
20120025832 | Schmidig | Feb 2012 | A1 |
20120032678 | Vaughan, Jr. et al. | Feb 2012 | A1 |
20120041297 | McGary | Feb 2012 | A1 |
20120049844 | Leveridge et al. | Mar 2012 | A1 |
20120053666 | Ferren et al. | Mar 2012 | A1 |
20120062232 | Matschl et al. | Mar 2012 | A1 |
20120068701 | Chisholm et al. | Mar 2012 | A1 |
20120068704 | Popescu | Mar 2012 | A1 |
20120074941 | Grodzki | Mar 2012 | A1 |
20120092011 | Kickhefel et al. | Apr 2012 | A1 |
20120098540 | Biber et al. | Apr 2012 | A1 |
20120105061 | Drake et al. | May 2012 | A1 |
20120109241 | Rauscher | May 2012 | A1 |
20120119739 | Gleich | May 2012 | A1 |
20120126809 | Hopper et al. | May 2012 | A1 |
20120133464 | Nagel et al. | May 2012 | A1 |
20120133922 | Pfaff | May 2012 | A1 |
20120143127 | Shachar | Jun 2012 | A1 |
20120157319 | Tsukamoto et al. | Jun 2012 | A1 |
20120165912 | Gray | Jun 2012 | A1 |
20120169340 | Leussler et al. | Jul 2012 | A1 |
20120172704 | Piron et al. | Jul 2012 | A1 |
20120174684 | Pusiol | Jul 2012 | A1 |
20120176130 | Ledbetter et al. | Jul 2012 | A1 |
20120181020 | Barron et al. | Jul 2012 | A1 |
20120182013 | Biber et al. | Jul 2012 | A1 |
20120187950 | Biber et al. | Jul 2012 | A1 |
20120220853 | Ikushima et al. | Aug 2012 | A1 |
20120223709 | Schillak et al. | Sep 2012 | A1 |
20120223711 | Weinberg | Sep 2012 | A1 |
20120235677 | Blanz et al. | Sep 2012 | A1 |
20120235683 | Weiland | Sep 2012 | A1 |
20120252678 | Kim et al. | Oct 2012 | A1 |
20120256630 | Leussler et al. | Oct 2012 | A1 |
20120262174 | Voigt et al. | Oct 2012 | A1 |
20120268115 | Pusiol et al. | Oct 2012 | A1 |
20120268172 | Quinsat et al. | Oct 2012 | A1 |
20120271153 | Assmann et al. | Oct 2012 | A1 |
20120271154 | Assmann et al. | Oct 2012 | A1 |
20120286777 | Frost et al. | Nov 2012 | A1 |
20120306493 | Voigt et al. | Dec 2012 | A1 |
20120306494 | Yang et al. | Dec 2012 | A1 |
20120306496 | Popescu | Dec 2012 | A1 |
20130007087 | van den Brink et al. | Jan 2013 | A1 |
20130008726 | Eberler et al. | Jan 2013 | A1 |
20130009640 | Fautz et al. | Jan 2013 | A1 |
20130027034 | Elgort et al. | Jan 2013 | A1 |
20130038324 | Wu et al. | Feb 2013 | A1 |
20130059293 | Menon et al. | Mar 2013 | A1 |
20130069648 | Grodzki | Mar 2013 | A1 |
20130076356 | Jellus et al. | Mar 2013 | A1 |
20130076357 | Grodzki et al. | Mar 2013 | A1 |
20130082702 | Blumhagen et al. | Apr 2013 | A1 |
20130082703 | Grodzki | Apr 2013 | A1 |
20130082704 | Grodzki | Apr 2013 | A1 |
20130082707 | Biber et al. | Apr 2013 | A1 |
20130082712 | Stocker | Apr 2013 | A1 |
20130088223 | Konno et al. | Apr 2013 | A1 |
20130088229 | Van Den Brink | Apr 2013 | A1 |
20130096825 | Mohanty | Apr 2013 | A1 |
20130113482 | Speier | May 2013 | A1 |
20130119983 | Zenge | May 2013 | A1 |
20130127463 | Matschl et al. | May 2013 | A1 |
20130137969 | Jones | May 2013 | A1 |
20130147475 | Yang et al. | Jun 2013 | A1 |
20130154643 | Kalechofsky | Jun 2013 | A1 |
20130162254 | Hierl et al. | Jun 2013 | A1 |
20130165768 | Biber | Jun 2013 | A1 |
20130176140 | Tyshko | Jul 2013 | A1 |
20130179083 | Gruber et al. | Jul 2013 | A1 |
20130187647 | Walsh et al. | Jul 2013 | A1 |
20130200890 | Hursan | Aug 2013 | A1 |
20130200891 | Kruspe et al. | Aug 2013 | A1 |
20130200896 | Maciejewski | Aug 2013 | A1 |
20130201316 | Binder et al. | Aug 2013 | A1 |
20130221965 | Nistler et al. | Aug 2013 | A1 |
20130234702 | Blanz | Sep 2013 | A1 |
20130234704 | Hurlimann et al. | Sep 2013 | A1 |
20130234705 | Mandal et al. | Sep 2013 | A1 |
20130234706 | Mandal et al. | Sep 2013 | A1 |
20130234709 | Hierl et al. | Sep 2013 | A1 |
20130234711 | Dietz et al. | Sep 2013 | A1 |
20130234712 | Dietz et al. | Sep 2013 | A1 |
20130237803 | Rapoport | Sep 2013 | A1 |
20130241549 | Kiruluta | Sep 2013 | A1 |
20130242430 | Aoyama et al. | Sep 2013 | A1 |
20130249550 | Feiweier et al. | Sep 2013 | A1 |
20130251227 | Wang et al. | Sep 2013 | A1 |
20130253308 | Kalechofsky | Sep 2013 | A1 |
20130257428 | Weinberg | Oct 2013 | A1 |
20130265050 | Grodzki et al. | Oct 2013 | A1 |
20130265055 | Mitchell et al. | Oct 2013 | A1 |
20130271136 | Weinberg et al. | Oct 2013 | A1 |
20130271142 | Penanen et al. | Oct 2013 | A1 |
20130275086 | Grodzki et al. | Oct 2013 | A1 |
20130278265 | Kim et al. | Oct 2013 | A1 |
20130278283 | Berkley | Oct 2013 | A1 |
20130281823 | Stemmer | Oct 2013 | A1 |
20130281824 | Stemmer | Oct 2013 | A1 |
20130281827 | Stemmer | Oct 2013 | A1 |
20130281828 | Stemmer | Oct 2013 | A1 |
20130289913 | Jahns et al. | Oct 2013 | A1 |
20130293230 | Schneider et al. | Nov 2013 | A1 |
20130300411 | Wiggins | Nov 2013 | A1 |
20130300418 | Eberler et al. | Nov 2013 | A1 |
20140000630 | Ford | Jan 2014 | A1 |
20140008143 | Eberler | Jan 2014 | A1 |
20140009159 | Vaes et al. | Jan 2014 | A1 |
20140015528 | Landschuetz et al. | Jan 2014 | A1 |
20140028312 | Popescu | Jan 2014 | A1 |
20140035579 | Paul | Feb 2014 | A1 |
20140049259 | Poon et al. | Feb 2014 | A1 |
20140055136 | Leussler et al. | Feb 2014 | A1 |
20140062481 | Greiser et al. | Mar 2014 | A1 |
20140070810 | Robert et al. | Mar 2014 | A1 |
20140073903 | Weber et al. | Mar 2014 | A1 |
20140077810 | Grodzki | Mar 2014 | A1 |
20140084915 | Walsh et al. | Mar 2014 | A1 |
20140084920 | Marzendorfer et al. | Mar 2014 | A1 |
20140084923 | Grodzki et al. | Mar 2014 | A1 |
20140084924 | Grodzki | Mar 2014 | A1 |
20140084927 | Walsh et al. | Mar 2014 | A1 |
20140091796 | Grodzki et al. | Apr 2014 | A1 |
20140113828 | Gilbert et al. | Apr 2014 | A1 |
20140133716 | Zenge | May 2014 | A1 |
20140155734 | Schmidt | Jun 2014 | A1 |
20140161730 | Sitharaman et al. | Jun 2014 | A1 |
20140167761 | Seki et al. | Jun 2014 | A1 |
20140218028 | Snyder et al. | Aug 2014 | A1 |
20140218029 | Kalechofsky | Aug 2014 | A1 |
20140218867 | Kim et al. | Aug 2014 | A1 |
20140221815 | Aklan et al. | Aug 2014 | A1 |
20140225614 | Prado | Aug 2014 | A1 |
20140225616 | Maciejewski et al. | Aug 2014 | A1 |
20140229705 | van den Brink et al. | Aug 2014 | A1 |
20140232391 | Kadayam Viswanathan et al. | Aug 2014 | A1 |
20140232400 | Kim et al. | Aug 2014 | A1 |
20140235996 | Kim et al. | Aug 2014 | A1 |
20140236514 | Icove et al. | Aug 2014 | A1 |
20140247094 | Englund et al. | Sep 2014 | A1 |
20140249033 | Orozco et al. | Sep 2014 | A1 |
20140253111 | Orozco et al. | Sep 2014 | A1 |
20140253116 | Freedman et al. | Sep 2014 | A1 |
20140266197 | Kalechofsky | Sep 2014 | A1 |
20140285190 | Allen et al. | Sep 2014 | A1 |
20140285191 | Kalechofsky | Sep 2014 | A1 |
20140285192 | Kalechofsky | Sep 2014 | A1 |
20140285198 | Halpern | Sep 2014 | A1 |
20140296700 | Gulani et al. | Oct 2014 | A1 |
20140296702 | Griswold et al. | Oct 2014 | A1 |
20140300357 | Bachschmidt et al. | Oct 2014 | A1 |
20140300358 | Rapoport | Oct 2014 | A1 |
20140320128 | Paul et al. | Oct 2014 | A1 |
20140320130 | Nistler | Oct 2014 | A1 |
20140322137 | Flynn | Oct 2014 | A1 |
20140333303 | Paul et al. | Nov 2014 | A1 |
20140343397 | Kim et al. | Nov 2014 | A1 |
20140343882 | Taulu et al. | Nov 2014 | A1 |
20140354278 | Subbarao | Dec 2014 | A1 |
20140361774 | Jensen | Dec 2014 | A1 |
20140368203 | Samson et al. | Dec 2014 | A1 |
20140375313 | Salit et al. | Dec 2014 | A1 |
20140375314 | Buckner et al. | Dec 2014 | A1 |
20140378815 | Huang et al. | Dec 2014 | A1 |
20140378818 | Drake et al. | Dec 2014 | A1 |
20150008917 | Kentgens et al. | Jan 2015 | A1 |
20150015257 | Fautz | Jan 2015 | A1 |
20150015258 | Fautz et al. | Jan 2015 | A1 |
20150022207 | Meyer et al. | Jan 2015 | A1 |
20150022208 | Biber | Jan 2015 | A1 |
20150025359 | Fenchel et al. | Jan 2015 | A1 |
20150025362 | Biber et al. | Jan 2015 | A1 |
20150035529 | Hopper et al. | Feb 2015 | A1 |
20150035532 | Kalechofsky | Feb 2015 | A1 |
20150042334 | Kannengiesser et al. | Feb 2015 | A1 |
20150042392 | Dunnam | Feb 2015 | A1 |
20150048828 | Ha et al. | Feb 2015 | A1 |
20150054503 | Chen et al. | Feb 2015 | A1 |
20150054506 | Eberler et al. | Feb 2015 | A1 |
20150061664 | Reiderman et al. | Mar 2015 | A1 |
20150061665 | Reiderman et al. | Mar 2015 | A1 |
20150061670 | Fordham et al. | Mar 2015 | A1 |
20150061673 | Li et al. | Mar 2015 | A1 |
20150061681 | Renz et al. | Mar 2015 | A1 |
20150066413 | Bhagat et al. | Mar 2015 | A1 |
20150073264 | Graziani et al. | Mar 2015 | A1 |
20150077102 | Mandal et al. | Mar 2015 | A1 |
20150077109 | Grodzki | Mar 2015 | A1 |
20150077115 | Fautz et al. | Mar 2015 | A1 |
20150081225 | Keady et al. | Mar 2015 | A1 |
20150084630 | Rapoport | Mar 2015 | A1 |
20150084632 | Wilhelm et al. | Mar 2015 | A1 |
20150084636 | Popescu | Mar 2015 | A1 |
20150087051 | Rapoport | Mar 2015 | A1 |
20150087958 | Kartmann et al. | Mar 2015 | A1 |
20150091561 | Dai et al. | Apr 2015 | A1 |
20150097562 | Grodzki et al. | Apr 2015 | A1 |
20150099876 | Chan et al. | Apr 2015 | A1 |
20150099963 | Navarro de Lara et al. | Apr 2015 | A1 |
20150102810 | Grodzki et al. | Apr 2015 | A1 |
20150104371 | Peters et al. | Apr 2015 | A1 |
20150108981 | Grodzki et al. | Apr 2015 | A1 |
20150112167 | Conrad et al. | Apr 2015 | A1 |
20150112168 | Conrad et al. | Apr 2015 | A1 |
20150123660 | Vaughan, Jr. et al. | May 2015 | A1 |
20150128696 | Foreman et al. | May 2015 | A1 |
20150130465 | Wiggins et al. | May 2015 | A1 |
20150137815 | Lakshmanan et al. | May 2015 | A1 |
20150141064 | Bjorn | May 2015 | A1 |
20150145513 | Li et al. | May 2015 | A1 |
20150146956 | Gall et al. | May 2015 | A1 |
20150168524 | Nittka | Jun 2015 | A1 |
20150173678 | Jones | Jun 2015 | A1 |
20150182417 | Nagatani | Jul 2015 | A1 |
20150185298 | Crozier et al. | Jul 2015 | A1 |
20150190055 | Park et al. | Jul 2015 | A1 |
20150204959 | Grodzki | Jul 2015 | A1 |
20150208946 | Popescu | Jul 2015 | A1 |
20150212171 | Hebrank et al. | Jul 2015 | A1 |
20150219730 | Tsukamoto et al. | Aug 2015 | A1 |
20150219732 | Diamond et al. | Aug 2015 | A1 |
20150234024 | Grodzki et al. | Aug 2015 | A1 |
20150238125 | Acosta et al. | Aug 2015 | A1 |
20150238636 | Homyk et al. | Aug 2015 | A1 |
20150241541 | Blanz et al. | Aug 2015 | A1 |
20150244482 | Biber | Aug 2015 | A1 |
20150253398 | Ferrand et al. | Sep 2015 | A1 |
20150253405 | Grodzki et al. | Sep 2015 | A1 |
20150253408 | Grodzki et al. | Sep 2015 | A1 |
20150257700 | Fu | Sep 2015 | A1 |
20150260812 | Drake et al. | Sep 2015 | A1 |
20150285881 | Ott | Oct 2015 | A1 |
20150292316 | Bulu et al. | Oct 2015 | A1 |
20150293190 | Paul et al. | Oct 2015 | A1 |
20150293201 | Assmann et al. | Oct 2015 | A1 |
20150295320 | Lee et al. | Oct 2015 | A1 |
20150305636 | Dawson | Oct 2015 | A1 |
20150312670 | Candidus et al. | Oct 2015 | A1 |
20150315563 | Orlova et al. | Nov 2015 | A1 |
20150320342 | Biber et al. | Nov 2015 | A1 |
20150323622 | Wang | Nov 2015 | A1 |
20150327813 | Fu | Nov 2015 | A1 |
20150332164 | Maassen van den Brink et al. | Nov 2015 | A1 |
20150335243 | Assmann | Nov 2015 | A1 |
20150335285 | Poon et al. | Nov 2015 | A1 |
20150338478 | Schillak et al. | Nov 2015 | A1 |
20150342496 | Greiser et al. | Dec 2015 | A1 |
20150346153 | Boyd et al. | Dec 2015 | A1 |
20150355302 | Fischer et al. | Dec 2015 | A1 |
20150377987 | Menon et al. | Dec 2015 | A1 |
20150377990 | Driemel et al. | Dec 2015 | A1 |
20150380158 | Brady et al. | Dec 2015 | A1 |
20160011284 | Popescu | Jan 2016 | A1 |
20160011290 | Iannello | Jan 2016 | A1 |
20160012011 | Llinas et al. | Jan 2016 | A1 |
20160015352 | Brown et al. | Jan 2016 | A1 |
20160018267 | Timofeev et al. | Jan 2016 | A1 |
20160018479 | Cambou et al. | Jan 2016 | A1 |
20160018480 | Cambou et al. | Jan 2016 | A1 |
20160018481 | Cambou et al. | Jan 2016 | A1 |
20160018482 | Yehoshua et al. | Jan 2016 | A1 |
20160018483 | Oren-Pines et al. | Jan 2016 | A1 |
20160018491 | Driscoll et al. | Jan 2016 | A1 |
20160018492 | Driscoll et al. | Jan 2016 | A1 |
20160018493 | Reiderman | Jan 2016 | A1 |
20160018494 | Driscoll et al. | Jan 2016 | A1 |
20160018495 | Driscoll et al. | Jan 2016 | A1 |
20160018555 | Jachmann et al. | Jan 2016 | A1 |
20160021219 | Brown et al. | Jan 2016 | A1 |
20160022142 | Bradshaw | Jan 2016 | A1 |
20160022146 | Piron et al. | Jan 2016 | A1 |
20160025821 | Widmer et al. | Jan 2016 | A1 |
20160025825 | Taicher | Jan 2016 | A1 |
20160025826 | Taicher | Jan 2016 | A1 |
20160025827 | Taicher | Jan 2016 | A1 |
20160027342 | Ben-Haim | Jan 2016 | A1 |
20160029998 | Brister et al. | Feb 2016 | A1 |
20160033671 | Chen | Feb 2016 | A1 |
20160038049 | Geva | Feb 2016 | A1 |
20160054412 | Ganssle et al. | Feb 2016 | A1 |
20160058322 | Brister et al. | Mar 2016 | A1 |
20160061911 | Lippitz et al. | Mar 2016 | A1 |
20160061921 | Katscher et al. | Mar 2016 | A1 |
20160061986 | Anand et al. | Mar 2016 | A1 |
20160069973 | Fenchel et al. | Mar 2016 | A1 |
20160076924 | Pusiol et al. | Mar 2016 | A1 |
20160077026 | Pusiol et al. | Mar 2016 | A1 |
20160077167 | Heidmann | Mar 2016 | A1 |
20160077182 | Wang et al. | Mar 2016 | A1 |
20160077183 | Jachmann et al. | Mar 2016 | A1 |
20160084929 | Dale et al. | Mar 2016 | A1 |
20160084971 | Cates, Jr. et al. | Mar 2016 | A1 |
20160089055 | Rapoport | Mar 2016 | A1 |
20160093420 | Urzhumov | Mar 2016 | A1 |
20160111192 | Suzara | Apr 2016 | A1 |
20160116554 | Sakellariou et al. | Apr 2016 | A1 |
20160116558 | Grodzki et al. | Apr 2016 | A1 |
20160123971 | Taicher | May 2016 | A1 |
20160124058 | Rapoport | May 2016 | A1 |
20160124059 | Notaros et al. | May 2016 | A1 |
20160124061 | Grodzki | May 2016 | A1 |
20160124062 | Taicher | May 2016 | A1 |
20160124109 | Yarman et al. | May 2016 | A1 |
20160129131 | Vitari et al. | May 2016 | A1 |
20160131728 | Biber et al. | May 2016 | A1 |
20160136308 | Flynn | May 2016 | A1 |
20160139227 | Grodzki et al. | May 2016 | A1 |
20160146908 | Kohler et al. | May 2016 | A1 |
20160146913 | Renz et al. | May 2016 | A1 |
20160157742 | Huang et al. | Jun 2016 | A1 |
20160157828 | Sumi et al. | Jun 2016 | A1 |
20160158155 | Murakami et al. | Jun 2016 | A1 |
20160161429 | Englund et al. | Jun 2016 | A1 |
20160161578 | Weissler et al. | Jun 2016 | A1 |
20160161582 | Neji et al. | Jun 2016 | A1 |
20160170070 | Jachmann et al. | Jun 2016 | A1 |
20160209484 | Bauer et al. | Jul 2016 | A1 |
20160216341 | Boesch et al. | Jul 2016 | A1 |
20160216343 | Driemel | Jul 2016 | A1 |
20160222283 | Cannan et al. | Aug 2016 | A1 |
20160238679 | Zhurbenko | Aug 2016 | A1 |
20160245882 | Popescu | Aug 2016 | A1 |
20160259021 | Hoelscher et al. | Sep 2016 | A1 |
20160259022 | Beck | Sep 2016 | A1 |
20160259024 | Bachschmidt et al. | Sep 2016 | A1 |
20160266272 | Jachmann et al. | Sep 2016 | A1 |
20160274202 | Stemmer | Sep 2016 | A1 |
20160274205 | Stemmer | Sep 2016 | A1 |
20160282427 | Heidmann | Sep 2016 | A1 |
20160282433 | Kannengiesser et al. | Sep 2016 | A1 |
20160291191 | Fukushima et al. | Oct 2016 | A1 |
20160292854 | Beck | Oct 2016 | A1 |
20160305239 | Hopper et al. | Oct 2016 | A1 |
20160307301 | Zhou et al. | Oct 2016 | A1 |
20160313430 | Nickel | Oct 2016 | A1 |
20160320519 | Blanz et al. | Nov 2016 | A1 |
20160324438 | Halpern et al. | Nov 2016 | A1 |
20160327624 | O'Brien et al. | Nov 2016 | A1 |
20160334346 | Cao Minh et al. | Nov 2016 | A1 |
20160334476 | Doty | Nov 2016 | A1 |
20160341710 | Jensen | Nov 2016 | A1 |
20160349343 | Zeller | Dec 2016 | A1 |
20160356863 | Boesch et al. | Dec 2016 | A1 |
20160363641 | Finnerty et al. | Dec 2016 | A1 |
20160367167 | Candidus et al. | Dec 2016 | A1 |
20160380487 | Widmer et al. | Dec 2016 | A1 |
20160380488 | Widmer et al. | Dec 2016 | A1 |
20170003413 | Jachmann et al. | Jan 2017 | A1 |
20170005523 | Widmer et al. | Jan 2017 | A1 |
20170010378 | Reiderman et al. | Jan 2017 | A1 |
20170011255 | Kaditz et al. | Jan 2017 | A1 |
20170020419 | Acosta et al. | Jan 2017 | A1 |
20170040945 | Kan et al. | Feb 2017 | A1 |
20170074960 | Bhat et al. | Mar 2017 | A1 |
20170082705 | Hou et al. | Mar 2017 | A1 |
20170082711 | Kalechofsky | Mar 2017 | A1 |
20170123098 | Wang et al. | May 2017 | A1 |
20170141729 | Kan et al. | May 2017 | A1 |
20170146615 | Wolf et al. | May 2017 | A1 |
20170146624 | Paul et al. | May 2017 | A1 |
20170160214 | Jensen | Jun 2017 | A1 |
20170168125 | Weinberg et al. | Jun 2017 | A1 |
20170176548 | Wu et al. | Jun 2017 | A1 |
20170184755 | Coman | Jun 2017 | A1 |
20170196492 | Conrad et al. | Jul 2017 | A1 |
20170205487 | Zeller | Jul 2017 | A1 |
20170212105 | Homyk et al. | Jul 2017 | A1 |
20170212199 | Itriago Leon et al. | Jul 2017 | A1 |
20170218748 | Ganssle et al. | Aug 2017 | A1 |
20170219670 | Geppert et al. | Aug 2017 | A1 |
20170234943 | Thielens et al. | Aug 2017 | A1 |
20170254919 | Coman et al. | Sep 2017 | A1 |
20170285122 | Kaditz et al. | Oct 2017 | A1 |
20170285123 | Kaditz et al. | Oct 2017 | A1 |
20170285214 | Kischkat et al. | Oct 2017 | A1 |
20170299670 | Tramm et al. | Oct 2017 | A1 |
20170307701 | Leussler et al. | Oct 2017 | A1 |
20170315200 | Kiefer et al. | Nov 2017 | A1 |
20170315204 | Schneider et al. | Nov 2017 | A1 |
20170316795 | Heidmann | Nov 2017 | A1 |
20170322272 | Kalechofsky | Nov 2017 | A1 |
20170325710 | Ryan et al. | Nov 2017 | A1 |
20170343695 | Stetson et al. | Nov 2017 | A1 |
20170370979 | Braje et al. | Dec 2017 | A1 |
20180003787 | Cloos et al. | Jan 2018 | A1 |
20180003852 | Jachmann et al. | Jan 2018 | A1 |
20180017645 | Weinberg | Jan 2018 | A1 |
20180017646 | Feiweier et al. | Jan 2018 | A1 |
20180017700 | Shin et al. | Jan 2018 | A1 |
20180038922 | Lu et al. | Feb 2018 | A1 |
20180038926 | Goodman et al. | Feb 2018 | A1 |
20180074221 | Reiderman et al. | Mar 2018 | A1 |
20180081005 | Yang et al. | Mar 2018 | A1 |
20180081008 | Yang et al. | Mar 2018 | A1 |
20180116519 | Piron et al. | May 2018 | A1 |
20180120471 | Chen et al. | May 2018 | A1 |
20180136291 | Pham et al. | May 2018 | A1 |
20180140218 | Heberlein et al. | May 2018 | A1 |
20180149765 | Hurlimann et al. | May 2018 | A1 |
20180184973 | Nayak | Jul 2018 | A1 |
20180196111 | Boesch et al. | Jul 2018 | A1 |
20180196163 | Desmond | Jul 2018 | A1 |
20180202952 | Lutz et al. | Jul 2018 | A1 |
20180203080 | Acosta et al. | Jul 2018 | A1 |
20180217214 | Li et al. | Aug 2018 | A1 |
20180228917 | Vitari et al. | Aug 2018 | A1 |
20180238985 | Grodzki | Aug 2018 | A1 |
20180246178 | Wang et al. | Aug 2018 | A1 |
Entry |
---|
“Signal-to-noise ratio in MRI”, T.W. Redpath, British Journal of Radiology, vol. 71, pp. 704-707 (1998). |
K K. Likharev and V. K. Semenov, “RSFQ Logic/Memory Family: A New Josephson-Junction Technology for Sub-Terahertz-Clock-Frequency Digital Systems”, IEEE Transactions on Applied Superconductivity, vol. 1, No. 1, Mar. 1991 (pp. 3-28). |
L. Darasse and J.C. Ginefri, “Perspectives with cryogenic RF probes in biomedical MRI”, Biochimie, vol. 85, p. 915 (2003). |
“Calculated SNR of MRI detected with SQUIDs and Faraday detectors”, W. Myers, et al., Journal of Magnetic Resonance, vol. 186, p. 182 (2007). |
Comparison of linear and circular polarization for magnetic resonance imaging G. H. Glover, C. E. Hayesa N. J. Pelc, W. A. Edelstein, O. M. Mueller, H. R. Hart, C. J. Hardy, M. O'Donnell and W. D. Barber, http://www.sciencedirect.com/science/article/pii/002223648590349X, Journal of Magnetic Resonance (1969), vol. 64, Issue 2, Sep. 1985, pp. 255-270. |
Ultimate intrinsic signal-to-noise ratio in MRI, Ogan Ocali, Ergin Atalar, Magnetic Resonance in Medicine, vol. 39, Issue 3, pp. 462-473, Mar. 1998. |
G. Kaiser, S. Linzen, H. Schneidewind, U. Hubner and P. Seidel, “First experimental investigations on a thin film Hall magnetometer with a high temperature superconducting pick-up antenna”, Cryogenics 38 (1998) 625-629. |
Number | Date | Country | |
---|---|---|---|
61324130 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13086793 | Apr 2011 | US |
Child | 14636713 | US |