Offshore mooring of vessels is necessary for a variety of reasons. A common reason is that harbors or ports do not provide sufficient draft for large vessels. Another reason is that the length/beam of such vessels cannot be accommodated in the harbor.
It is frequently necessary to load large cargo vessels by a “lightering” sequence, where one or more smaller vessels bring cargo to the large vessel and sequentially are offloaded to the large vessel. It can be appreciated that sea and weather conditions can impact the ability to carry out this loading procedure.
A representative cargo vessel loading situation will be described, for purposes of this patent application. It is to be understood, however, that the later-described invention may be applied to any of a number of different vessel loading or mooring situations.
By way of example: a large ocean-going vessel, referred to as the “mother ship,” must be loaded with a heavy material, such as iron ore. Prior art practice was for the mother vessel to anchor with its own chain and anchor, with a single point anchor arrangement, at a location offshore a shore facility. At times, the mother ship would moor to some fixed structure such as a dock, piling or the like. From whatever single point mooring, the mother ship would be “weathervane” or swing around to a position or heading determined by a combination of the various environmental forces acting upon the vessel. It can be appreciated that the vessel would then move, including heading, pitch and roll, in response to the environmental forces. As is commonly known, the environmental forces on such a vessel include wind, waves, and current. An intermediate vessel, often called a transfer vessel or trans-shipper, can then be moored to the side of the mother ship.
The iron ore or other bulk material being shipped is brought to the mother ship from a nearby shore facility by first loading the ore from the shore facility to a relatively small vessel, such as a barge. The barge then moors to the trans-shipper, the cargo is moved from the barge to the trans-shipper by a crane and scoop or the like, and a conveyor system mounted on the trans-shipper moves the ore from the trans-shipper to the mother ship. A number of barge loads are generally required to load the mother ship.
The above-described sequence is by way of example only. In other situations, the trans-shipper is loaded at the shore facility, and moves to the mother ship for the loading process, eliminating use of the barges. In still other settings, the trans-shipper is moored via a single point mooring, and the cargo vessel is moored to the trans-shipper.
The environmental forces mentioned above (wind, wave, and current) can cause problems with this loading procedure. Under the typical single-point mooring arrangement, all of the vessels, particularly the trans-shipper and the barge, are exposed to the environmental forces. As such forces increase, the effect on the mother ship, and particularly on the (typically) smaller trans-shippers and barges, can render off-loading difficult and hazardous, and in bad enough weather conditions loading may be necessarily stopped. Movement of the mother ship to various headings, and heave, pitch and roll of the mother ship, are examples of undesirable vessel movement.
It would be advantageous to have a system and means to determine the optimum position, principally heading, at which to maintain the mother ship and/or trans-shipper to optimize safe and efficient loading. Such optimization of mother ship and/or trans-shipper position would minimize mother ship movement (both as to heading and heave/roll/pitch), and would create the optimum “lee” area adjacent the mother ship, to shelter the (typically) smaller vessels from the prevailing environmental forces, and to enable safe vessel loading in a much broader range of weather conditions. Optimization of mooring position also results in reduced motions, particularly roll, thereby reducing relative ship-to-ship motions.
The present invention is a system and method for loading of large cargo vessels or “mother ships,” where the mother ship is positioned with respect to environmental conditions of wind, waves, and current, to minimize undesired mother ship and trans-shipper movement and to form an optimal sheltered area on the calm side of the mothership, which may be referred to as the “lee” side. It is understood that the term “lee side” used herein is intended to define the calmer side of a cargo vessel, next to which a trans-shipper would be moored, and while the lee side is generally the downwind side (as that term is commonly used), herein the lee side accounts for waves and current, as well. In particular, mother ship motion, particularly but not limited to roll, can be advantageously reduced by mooring optimization.
In order to enable optimal positioning of the mother ship and trans-shipper, and to minimize the exposure of the trans-shipper to beam waves, a plurality of mooring stations, preferably mooring buoys, are positioned within a defined offshore mooring field. When a mother ship moves into the mooring field in preparation for being loaded, data regarding the vessels (mother ship, trans-shipper, barges), along with current environmental conditions and other variables, are considered when determining which buoys to moor to, and the length/tension of the mooring lines used. One alternative is to determine the mooring buoys, mooring line lengths, etc., without computer assistance, namely by the experience and knowledge of the vessel's personnel, and possibly iterating between mooring points, line lengths and tensions, etc. It is understood that a two-point mooring is to be achieved, with one mooring line attached to the bow and another to the stern of the transhipper, and each of the mooring lines attached to different buoys. To the knowledge of applicant and inventors, use of a two-point mooring system in connection with mooring of motherships in lightering operations is not known in the prior art.
Preferably, in a computer-based embodiment of the system and method of the present invention, such data (as to the vessels and environmental forces) is acquired from instrumentation on the buoys and on the vessels, and is entered into a computer-based program which analyzes such forces for mooring designs, by way of example only a currently available computer program named OrcaFlex. OrcaFlex generates a static and dynamic analysis of ships, buoys, mooring lines and the like. The computer-based program is used to determine which of the plurality of buoys the mother ship should moor to, and the length and tension of the mooring lines, to minimize vessel movement and yield the optimum loading conditions on the lee side of the cargo vessel. As noted above, preferably, the mother ship is moored via two mooring lines, one from bow and stern, each tied off to different mooring buoys. The trans-shipper then moors to the mother ship on the lee side, and the barge moors to the trans-shipper. Material transfer from the barge to the trans-shipper, and from the trans-shipper to the mother ship, is then done. It is understood that the invention encompasses other arrangements, such as the trans-shipper bringing cargo directly to the mother ship (eliminating use of barges); and mooring of the trans-shipper within the offshore mooring field, with the mother ship moored to the trans-shipper.
With reference to the drawings, one presently preferred embodiment of the present invention can be described.
The scope of the present invention extends to the concept of utilizing a large vessel or mother ship which is to be loaded by one or more smaller vessels, to minimize motion of the mother ship and other vessels, and create a relatively calm or lee loading area for the smaller vessels to moor within, to enable cargo loading in rougher weather conditions. Fundamentally, this is accomplished by having the bulk of the cargo vessel block the sum total of environmental forces, namely wind, waves and current. The present invention further encompasses a computer-based system to determine, in a dynamic analysis, which of a number of possible mooring buoys placed within the loading area are best used for a two-point mooring (fore and aft) of the cargo vessel; and the lengths, tensions and other configurations of the mooring lines from the mother ship to the buoys. Further, the system may comprise use of a commercially available, computer based system, including but not limited to the OrcaFlex system, marketed by Orcina Ltd., Daltongate, Cumbria, LA12 7AJ, United Kingdom.
An Exemplary Design of the System and Method
Provision is made for mooring of four sets of vessels (mother ship, denoted as “ore carrier,” trans-shipper, and barge) within mooring field 20. The sets are denoted 1 through 4.
This embodiment provides four sets of bow and stern buoys, as shown in
The mooring control system of the present invention, and its method of use, can be more fully described, taking one of the sets of mother ship/trans-shipper/barges as an example, for example set 1 (upper right hand corner of
Additional and similar information regarding barge 30, namely a ship motion monitoring system 32 (monitoring roll, pitch, and heave) can also be in place, monitoring such movement of barge 30. This information is input to digital transmitter/receiver 22 and ultimately to central transmitter/receiver 70.
A local control system and data storage unit 300, comprising a digital processor, namely a computer or CPU, may be positioned on trans-shipper 20 or other suitable location. A local display 16 may be positioned on mother ship 10 for use by that vessel's crew, to apprise them of various information regarding the vessels and the environmental conditions.
Control system 300 and/or master control system 80, taking input from various sources as described, processes same to determine appropriate corrections to be made to line management system 12, namely corrections as to line length and tension, as to both bow and stern lines. Such corrections can control the heading of mother ship 10, and consequently trans-shipper 20 and barge 30.
In addition, corrections can include changing which buoys within mooring field 200 the mother ship 10 is moored to. For example, changes in environmental conditions and/or the conditions of the vessels (e.g. as mother ship 10 is loaded) can result in situations that require more correction than can be made via changes in mooring line tension and length. In such cases, the system of the present invention can identify alternate mooring buoys, as noted in
Note that in
Additionally, the present invention preferably comprises mooring buoys comprising a form of remotely operable release mechanism, by which the mooring line can be disconnected from the buoy and taken up by the vessel.
In addition, environmental conditions are monitored and form input to the corrective actions by the line management system.
As earlier noted, the present invention encompasses mooring of the mother ship to more than two buoys at one time. Such mooring, which may be referred to as a “3-buoy configuration,” may result in improved vessel stabilization and formation of a larger lee area adjacent the mother ship.
Use of the Mooring System of the Present Invention
An exemplary use of the mooring system of the present invention may now be described.
One embodiment of the method of the present invention comprises providing an offshore mooring field, proximal an onshore cargo loading facility; providing a plurality of mooring points within the mooring field; positioning a mother ship within the mooring field and mooring the mother ship within the mooring field by mooring lines from the bow and stern of the mother ship to two or more mooring points; positioning a trans-shipper alongside the mother ship; transferring cargo from the trans-shipper to the mother ship; and adjusting the position of the mother ship by adjusting the length and tension of the mooring lines, so as to minimize movement of the mother ship and maximize size of the lee area adjacent the mother ship. The steps of the method of the present invention may further be described to include:
It is understood that in a preferred embodiment, the data gathering and processing described above is done in whole or part by remote means, by radio frequency, satellite transmission or the like; and the processing is preferably done by computer routines carried out by one or more digital processors (computers or CPUs), positioned on the vessels and/or on the shore. Such CPUs are illustrated schematically in
While the preceding description contains many specificities, it is to be understood that same are presented only to describe some of the presently preferred embodiments of the invention, and not by way of limitation. Changes can be made to various aspects of the invention, without departing from the scope thereof. For example, any number of mooring buoys can be provided in the mooring field; the areal extent of the mooring buoy placement can be changed to suit particular mooring fields; various numbers and types of vessels may be moored within the mooring field, including mother ships, trans-shippers, and other vessels, etc.; and various computer-based systems can be used to carry out the dynamic analysis inherent in implementing the invention.
Therefore, the scope of the invention is to be determined not by the illustrative examples set forth above, but by the appended claims and their legal equivalents.
This patent application claims priority to U.S. provisional patent application Ser. No. 61/591,522, filed Jan. 27, 2012, for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/022943 | 1/24/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/112715 | 8/1/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3950805 | Murphy | Apr 1976 | A |
3968954 | Casco | Jul 1976 | A |
4762456 | Nelson | Aug 1988 | A |
5154561 | Lee | Oct 1992 | A |
5501625 | Belinsky | Mar 1996 | A |
5941746 | Isnard | Aug 1999 | A |
6050767 | Gay | Apr 2000 | A |
6524050 | Arntzen | Feb 2003 | B1 |
6558215 | Boatman | May 2003 | B1 |
6931314 | Holland | Aug 2005 | B2 |
6932326 | Krabbendam | Aug 2005 | B1 |
6983712 | Cottrell | Jan 2006 | B2 |
7080673 | Pollack | Jul 2006 | B2 |
7100438 | LeMieux | Sep 2006 | B2 |
7673577 | Poldervaart | Mar 2010 | B2 |
20020197135 | Arntzen | Dec 2002 | A1 |
20030061980 | Cottrell | Apr 2003 | A1 |
20150017849 | Knezek | Jan 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20150017849 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
61591522 | Jan 2012 | US |