System and method for on the fly protocol conversion in obtaining policy enforcement information

Information

  • Patent Grant
  • 9554276
  • Patent Number
    9,554,276
  • Date Filed
    Friday, October 28, 2011
    13 years ago
  • Date Issued
    Tuesday, January 24, 2017
    7 years ago
Abstract
A system, machine readable medium and method for utilizing protocol conversions in policy changing enforcement is disclosed. A message, in a first protocol, is received from a network gateway device including identifying information unique to a client attempting to access a resource from a server. The message is processed using one or more portions of the client identifying information as a unique key identifier. A policy access request is generated, in a second protocol, and includes at least the unique key identifier. The policy access request is sent to a policy server, wherein the policy server is configured to provide policy enforcement information of the client associated with the policy access request. The policy enforcement information is received and one or more policies from the policy enforcement information are enforced to network traffic between the client and the server.
Description
FIELD

This technology generally relates to network communication security, and more particularly, to a system and method for on-the-fly protocol conversion in obtaining policy charging enforcement information.


BACKGROUND

In existing systems, client devices, such as mobile devices, will attempt to access a service or resource from one or more servers via a cellular based network. During initiation of the connection, the client device will start a data context with a gateway node in which the gateway node will send an Authorization, Authentication and Accounting (AAA) message to a policy server in a cellular network based protocol. In the case that a virtual policy enforcement proxy device is positioned between the gateway node and the server, and the policy enforcement device must retrieve policy information of the client device from a policy server in which messages sent between the proxy device and policy server may be in a protocol different than the protocol of the AAA message. This can be costly and burdensome using current technologies.


What is needed is a network traffic management device which is able to utilize unique information of the user in generating a policy access request to a policy server, wherein the network traffic management device is able to apply policy enforcement functions from the policy server to the network traffic between the client device and the server(s).


SUMMARY

In an aspect, a method for utilizing protocol conversions in policy changing enforcement is disclosed. The method comprises receiving, at a network traffic management device, a message from a network gateway device including identifying information unique to a client attempting to make a request to access a resource from a server, the message being in a first protocol. The method comprises processing the message at the network traffic management device and using one or more portions of the client identifying information as a unique key identifier. The method comprises generating a policy access request to obtain policy enforcement information for the client, wherein the policy access request includes at least the unique key identifier and is in a second protocol different from the first protocol. The method comprises sending the policy access request to a policy server, wherein the policy server is configured to provide policy enforcement information of the client associated with the policy access request. The method comprises retrieving policy enforcement information for the client from the policy server. The method comprises enforcing one or more policies from the policy enforcement information to network traffic between the client and the server.


In an aspect, a non-transitory machine readable medium having stored thereon instructions for protocol conversions in policy changing enforcement is disclosed. The medium comprises machine executable code which when executed by at least one machine, causes the machine to receive a message from a network gateway device including identifying information unique to a client attempting to make a request to access a resource from a server, the message being in a first protocol. The machine is configured to processes the message using one or more portions of the client identifying information as a unique key identifier. The machine is configured to generate a policy access request to obtain policy enforcement information for the client, wherein the policy access request includes at least the unique key identifier and is in a second protocol different from the first protocol. The machine is configured to send the policy access request to a policy server, wherein the policy server is configured to provide policy enforcement information of the client associated with the policy access request. The machine is configured to retrieve policy enforcement information for the client from the policy server. The machine is configured to enforce one or more policies from the policy enforcement information to network traffic between the client and the server.


In an aspect, a network traffic management device for protocol conversions in policy changing enforcement is disclosed. The network traffic management device comprises a network interface that receives a request from the client device over a network, whereby the request is to access a resource from a server. The network traffic management device comprises a memory having stored thereon instructions for protocol conversions in policy changing enforcement. The network traffic management device comprises a processor coupled to the memory and the network interface. The processor is configured to execute instructions which causes the processor to receive a message from a network gateway device including identifying information unique to a client attempting to make a request to access a resource from a server, the message being in a first protocol. The processor is configured to processes the message using one or more portions of the client identifying information as a unique key identifier. The processor is configured to generate a policy access request to obtain policy enforcement information for the client, wherein the policy access request includes at least the unique key identifier and is in a second protocol different from the first protocol. The processor is configured to send the policy access request to a policy server, wherein the policy server is configured to provide policy enforcement information of the client associated with the policy access request. The processor is configured to retrieve policy enforcement information for the client from the policy server. The processor is configured to enforce one or more policies from the policy enforcement information to network traffic between the client and the server.


In one or more of the above claimed aspects, the policy enforcement information along with the associated unique key information of the user is stored in memory. In one or more of the above claimed aspects, the client communicates with the gateway device via a cellular network and the first protocol is a RADIUS protocol or a DIAMETER protocol.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram of an example system environment that includes a network traffic management device;



FIG. 2 is a block diagram of the network traffic management device shown in FIG. 1; and



FIG. 3 is an example flow chart diagram depicting portions of processes in accordance with the present disclosure.





While these examples are susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail preferred examples with the understanding that the present disclosure is to be considered as an exemplification and is not intended to limit the broad aspect to the embodiments illustrated.


DETAILED DESCRIPTION

In general, a system, machine readable medium and method for utilizing protocol conversions in policy changing enforcement is disclosed. A client request is received at a gateway node, such as a Gateway GPRS Support Node (GGSN), to establish a data context. The GGSN performs AAA functions and transmits the AAA message in a protocol such a RADIUS, DIAMETER and the like. The AAA message will contain unique identification information of the client. The received AAA message is processed by an access module 210 of a network traffic management device and one or more of the unique client identification information is used by the access module 210 as a unique key identifier associated with the client identifying information. A policy access request is generated by the access module 210 to obtain policy enforcement information for the user, wherein the policy access request includes at least the unique key identifier and is in another protocol, such as TCP. The policy access request, such as an LDAP search request, is sent from the network traffic management device to a policy server, wherein the policy server utilizes the unique key identifier in the policy access request to look up policy enforcement information of the client. The policy enforcement information for the client is sent from the policy server to the network traffic management device, wherein the network traffic management device is able to use the received client policy information to enforced traffic between the client and the server.



FIG. 1 is a diagram of an example system environment that includes a network traffic management device in accordance with an aspect of the present disclosure. The example system environment 100 includes one or more Web and/or non Web application servers 102 (referred generally as “servers”), one or more policy servers 102′, one or more client devices 106 and one or more network traffic management devices 110, although the environment 100 could include other numbers and types of devices in other arrangements. The network traffic management device 110 is coupled to the servers 102, 102′ via local area network (LAN) 104 and client devices 106 via a wide area network 108. Generally, client device requests are sent over the network 108 which are received or intercepted by the network traffic management device 110.


Client devices 106 comprise network computing devices capable of connecting to other network computing devices, such as network traffic management devices 110 and/or servers 102. Such connections are performed over wired and/or wireless networks, such as network 108, to send and receive data, such as for Web-based requests, receiving server responses to requests and/or performing other tasks. In a particular aspect, the client device 106 is a mobile phone, smartphone and/or tablet device which is connected to a cellular network within network 108 which allows communications with the servers 102 via the network traffic management device 110. Other non-limiting and non-exhausting examples of client devices 106 include personal computers (e.g., desktops, laptops), smart televisions, video game devices, and the like. In an example, client devices 106 can run one or more Web browsers that provide an interface for operators, such as human users, to interact with for making requests for resources to different web server-based applications and/or Web pages via the network 108, although other server resources may be requested by client devices. One or more Web-based applications may run on one or more of the servers 102 that provide the requested data back as one or more server responses to the client device 106 via the network traffic management device 110.


The servers 102 comprise one or more server network devices or machines capable of operating one or more Web-based and/or non Web-based applications that may be accessed by other network devices (e.g. client devices, network traffic management devices) in the environment 100. The servers 102 can provide web objects and other data representing requested resources, such as particular Web page(s), image(s) of physical objects, JavaScript and any other objects, that are responsive to the client devices' requests. It should be noted that the servers 102 may perform other tasks and provide other types of resources. One or more of the policy servers 102′ provide policy enforcement information for the particular user making the request. It should be noted that while only two servers 102 are shown in the environment 100 depicted in FIG. 1, other numbers and types of servers may be utilized in the environment 100. It is also contemplated that one or more of the servers 102, 102′ may comprise a cluster of servers managed by one or more network traffic management devices 110. In one or more aspects, the servers 102, 102′ may be configured implement to execute any version of Microsoft® IIS server, and/or Apache® server, although other types of servers may be used. Further, additional servers may be coupled to the network 108 and many different types of applications may be available on servers 102, 102′.


Network 108 comprises a publicly accessible network, such as the Internet, which is connected to client devices 106. However, it is contemplated that the network 108 may comprise other types of private and public networks that include other devices. Communications, such as requests from clients 106 and responses from servers 102, take place over the network 108 according to standard network protocols, such as the HTTP, UDP and/or TCP/IP protocols in this example. However, the principles discussed herein are not limited to this example and can include other protocols. Further, it should be appreciated that network 108 may include local area networks (LANs), wide area networks (WANs), direct connections and any combination thereof, as well as other types and numbers of network types. On an interconnected set of LANs or other networks, including those based on differing architectures and protocols, routers, switches, hubs, gateways, bridges, cell towers and other intermediate network devices may act as links within and between LANs and other networks to enable messages and other data to be sent from and to network devices. Also, communication links within and between LANs and other networks typically include twisted wire pair (e.g., Ethernet), coaxial cable, analog telephone lines, full or fractional dedicated digital lines including T1, T2, T3, and T4, Integrated Services Digital Networks (ISDNs), Digital Subscriber Lines (DSLs), wireless links including satellite links and other communications links known to those skilled in the relevant arts.


The network 108 may include a GPRS cellular network, such as a GSM (e.g. 2G, 3G, 4G) or WCDMA network which contains Gateway GPRS Support Nodes (GGSN) and the like. The GGSN perform AAA functions when data context connections are set up between a particular client and the GGSN. The GGSN, once verifying the client, transmits a message toward the servers 102 which contains information uniquely identifying the requesting client. In an aspect, the message transmitted from the GGSN is in RADIUS, DIAMETER or another like protocol. In essence, the network 108 includes any communication medium by which data may travel between client devices 106, servers 102, network traffic management devices 110, and the like.


LAN 104 comprises a private local area network that allows communications between the one or more network traffic management devices 110 and one or more servers 102, 102′ in the secured network. It is contemplated, however, that the LAN 104 may comprise other types of private and public networks with other devices. Networks, including local area networks, besides being understood by those skilled in the relevant arts, have already been generally described above in connection with network 108 and thus will not be described further.


As per the network protocols, requests from the requesting client devices 106 may be sent and received as one or more streams of data packets over network 108 using protocols such as TCP/IP, RADIUS, DIAMETER and the like. Such protocols can be utilized by the client devices 106, network traffic management device 110 and the access and web servers 102, to establish connections, send and receive data for existing connections, perform AAA transactions (e.g. GGSN) and policy enforcement functions and the like. It is to be understood that the one or more servers 102 may be hardware and/or software, and/or may represent a system with multiple servers that may include internal or external networks.


As shown in the example environment 100 depicted in FIG. 1, the network traffic management device 110 is interposed between client devices 106 with which it communicates with client devices 106 via network 108 and servers 102, 102′ (in a secured or non-secured network) via LAN 104. The network traffic management device 110 may manage the network communications by performing several network traffic related functions involving the communications. As will be discussed in more detail below, the network traffic management device 110 is able utilize client identifying information from an AAA message sent from a GGSN as a unique key identifier that is used in a policy access request that is in another protocol from the protocol which the AAA message was received in. Some other functions include, but are not limited to, load balancing, access control, and validating HTTP requests using JavaScript code that are sent back to requesting client devices 106.


Although examples of the server 102, the network traffic management device 110, and the client devices 106 are described and illustrated herein, each of the computers of the system 100 could be implemented on any suitable computer system or computing device. It is to be understood that the example devices and systems of the system 100 are for exemplary purposes, as many variations of the specific hardware and software used to implement the system 100 are possible, as will be appreciated by those skilled in the relevant art(s). In addition, two or more computing systems or devices may be substituted for any one of the devices in the system 100. Accordingly, principles and advantages of distributed processing, such as redundancy, replication, and the like, also can be implemented, as desired, to increase the robustness and performance of the devices of the system 100.



FIG. 2 is a block diagram of the network traffic management device shown in FIG. 1 in accordance with an aspect of the present disclosure. As shown in FIG. 2, an example network traffic management device 110 includes one or more device processors 200, one or more device I/O interfaces 202, one or more network interfaces 204, and one or more device memories 206 which are coupled together by bus 208. In an aspect, the network traffic management device 110 includes one or more access modules 210 that can be within or outside the device memory 206. It should be noted that the network traffic management device 110 can be configured to include other types and/or numbers of components and is thus not limited to the configuration shown in FIG. 2.


Device processor 200 of the network traffic management device 110 comprises one or more microprocessors configured to execute non-transitory computer/machine readable and executable instructions stored in the device memory 206. Such instructions, when executed by one or more processors 200 of the network traffic management device 110 cause the access module 110 to implement general functions and specific functions related to the process described below. It is understood that the processor 200 may comprise other types and/or combinations of processors, such as digital signal processors, micro-controllers, application specific integrated circuits (“ASICs”), programmable logic devices (“PLDs”), field programmable logic devices (“FPLDs”), field programmable gate arrays (“FPGAs”), and the like.


Device I/O interfaces 202 comprise one or more user input and output device interface mechanisms. The interface may include a computer keyboard, mouse, touchscreen, display device, and the corresponding physical ports and underlying supporting hardware and software to enable the network traffic management device 110 to communicate with other network devices in the environment 100. Such communications may include accepting user data input and providing user output, although other types and numbers of user input and output devices may be used. Additionally or alternatively, as will be described in connection with network interface 204 below, the network traffic management device 110 may communicate with the outside environment for certain types of operations (e.g., configuration) via one or more network management ports.


Network interface 204 comprises one or more mechanisms that enable the network traffic management device 110 to engage in network communications over the LAN 104 and the network 108 using one or more of a number of protocols, such as TCP/IP, HTTP, UDP, RADIUS, DIAMETER, DNS and the like. However, it is contemplated that the network interface 204 may be constructed for use with other communication protocols and types of networks. Network interface 204 is sometimes referred to as a transceiver, transceiving device, or network interface card (NIC), which transmits and receives network data packets to one or more networks, such as the LAN 104 and the network 108. In an example, where the network traffic management device 110 includes more than one device processor 200 (or a processor 200 has more than one core), each processor 200 (and/or core) may use the same single network interface 204 or a plurality of network interfaces 204. Further, the network interface 204 may include one or more physical ports, such as Ethernet ports, to couple the network traffic management device 110 with other network devices, such as servers 102, 102′. Moreover, the interface 204 may include certain physical ports dedicated to receiving and/or transmitting certain types of network data, such as device management related data for configuring the network traffic management device 110 or client request/server response related data.


Bus 208 may comprise one or more internal device component communication buses, links, bridges and supporting components, such as bus controllers and/or arbiters. The bus 208 enables the various components of the network traffic management device 110, such as the processor 200, device I/O interfaces 202, network interface 204, and memory 206 to communicate data. However, it is contemplated that the bus 208 may enable one or more components of the network traffic management device 110 to communicate with components in other devices as well. Example buses include HyperTransport, PCI, PCI Express, InfiniBand, USB, Firewire, Serial ATA (SATA), SCSI, IDE and AGP buses. However, it is contemplated that other types and numbers of buses may be used, whereby the particular types and arrangement of buses will depend on the particular configuration of the network traffic management device 110.


Device memory 206 comprises non-transitory computer readable media, namely computer readable or processor readable storage media, which are examples of machine-readable storage media. Computer readable storage/machine-readable storage media may include volatile, nonvolatile, removable, and non-removable media implemented in any method or technology for storage of information. Such storage media includes computer readable/machine-executable instructions, data structures, program modules, or other data, which may be obtained and/or executed by one or more processors, such as device processor 200 to perform general and specific functions. In particular, such instructions cause the processor 200 to perform actions, including perform one or more portions of the process discussed below. Examples of computer readable storage media include RAM, BIOS, ROM, EEPROM, flash/firmware memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the information, which can be accessed by the network traffic management device 110.


The access module 210 is configured to retrieve and apply policy enforcement functions for a particular user when the protocols between the received GGSN's AAA message and a policy access request are different from one another. As stated above, an AAA message is received at the network traffic management device from a cellular base GGSN, wherein the AAA message contains unique client identifying information. The received AAA message is in a first protocol, such as RADIUS, DIAMETER or the like. The access module 210 extracts one or more of the client identifying information as a unique key identifier, whereby the unique key identifier is used in a policy access request for the client. The policy access request is generated to obtain policy enforcement information for the user, wherein the policy access request is in a second protocol, such as TCP. The policy access request is sent from the network traffic management device to a policy server, wherein the policy server utilizes the unique key identifier to look up policy enforcement information of the client. The policy enforcement information for the client is received from the policy server and enforced at network traffic between the client and the server.



FIG. 3 illustrates an example flow chart in accordance with the process described in accordance with the present disclosure. In the example, a client device 106 sends a client request via the network 108 to access a network resource from one or more servers 102. In an aspect, the client device 106 is a mobile device (e.g. phone, tablet) that is capable of sending and receiving data at least partially over a GPRS cellular network, such as a GSM (e.g. 2G, 3G, 4G) or WCDMA within network 108.


When setting up a connection, the client device sends a request to a GGSN, or other network gateway device which performs AAA functions, to start a data context. During activation process (or shortly thereafter), the GGSN forwards an AAA message to the network traffic management device 110 using a cellular based protocol, such as RADIUS, DIAMETER and the like. As stated above, the AAA message includes information unique to that particular client, such as the client's IP address, Access Point Name (APN), MS-ISDN, the client device's phone number and the like


The access module 210 of the network traffic management device 110 receives the AAA message from the gateway device (Block 300). The access module 210 processes the received message and extracts one or more portions of the client's unique information from the GGSN's message as a unique key address for the client (Block 302). In an aspect, the unique key address may include the client device's MS-ISDN, the source IP-address of the device 106, the APN and/or the like.


As shown in FIG. 3, the access module 210 inquires whether the identified unique key value had previously been processed and thus stored in one or more databases (Block 304). If the access module 210 determines whether policy information for the client is stored in the device 110. The determination can be made by identifying whether the unique key value is stored in one or more databases. If the policy information (or unique key value) not stored in the one or more databases, the access module 210 will then, on the fly, generate a policy access request and insert one or more unique key values, associated with the extracted unique client identifying information and insert it into the policy access request (Block 306).


The policy access request is sent as data packets in the TCP/IP protocol, which is different than the protocol in which the AAA message was received, from the network traffic management device 110 to one or more policy servers 102′ and/or databases which contain policy enforcement parameters for user accessible services (Block 306). In an aspect, the policy access request may be a LDAP search request which is sent from the network traffic management device 110 to one or more LDAP configured policy servers 102′ (LDAP server).


The policy server 102′ receives the policy search request and uses the unique key value to look up policy enforcement information of the particular client in a memory. The policy server 102 responds asynchronously to the policy search request and provides with a policy search result which includes policy enforcement information of that particular client with respect to the received AAA message. This policy enforcement information is received at the network traffic management device 110 (Block 308). In an aspect, the policy search result also includes the unique search key previously sent by the access module 210 to ensure that the access module 210 is able to correctly identify the client to which the policy information is to be enforced. Upon the access module 210 receiving in the policy search result, the access module 210 stores the policy information along with the unique key value in the memory 206 (Block 310). By having the policy enforcement information for the user, the network traffic management device 110 is able to enforce policy functions on any services requests from the client to the server(s) 102 (Block 312).


In the above example aspect involving the client request being in the DIAMETER protocol, the policy server 102′ asynchronously sends the policy access response (with accompanying policy enforcement information) back to the network traffic management device 110 along with a Capabilities Exchange Answer (CEA), whereby the CEA corresponds to the CER.


Referring back to Block 304, if the access module 210 determines that the client's unique key value is already stored in the memory 206, the access module 210 will use the unique key value to retrieve the policy enforcement information for the client from memory 206 (Block 314). The access module 210 will then be able to enforce the policy parameters retrieved from the memory 206 and apply the policy parameters to transactions between the client and the appropriate servers 102 (Block 312).


Having thus described the basic concepts, it will be rather apparent to those skilled in the art that the foregoing detailed disclosure is intended to be presented by way of example only, and is not limiting. Various alterations, improvements, and modifications will occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested hereby, and are within the spirit and scope of the examples. Additionally, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed processes to any order except as may be specified in the claims. Accordingly, the invention is limited only by the following claims and equivalents thereto.

Claims
  • 1. A method for utilizing protocol conversions in policy changing enforcement, the method comprising: receiving, by a network traffic management device, a message in a first protocol from a network gateway device comprising identifying information unique to a client device attempting to make a request to access a resource from a server, wherein the first protocol is an authentication, authorization, and accounting protocol;processing, by the network traffic management device, the received message, to extract one or more portions of the client device identifying information comprising one or more of a mobile station international subscriber directory number (MSIDN) of the client device, a source IP address of the client device, or an access point name (APN) of the client device for use as a unique key identifier;determining, by the network traffic management device, when the extracted unique key identifier is present within one or more databases; andgenerating, by the network traffic management device, a policy access request to obtain policy enforcement information for the client device when the extracted unique key identifier is absent within the one or more databases, wherein the generated policy access request includes at least the unique key identifier and is in a second protocol different from the first protocol, and wherein the second protocol is a TCP/IP protocol.
  • 2. The method of claim 1, further comprising: storing, by the network traffic management device, the policy enforcement information and associated unique key information of the client device in a memory.
  • 3. The method of claim 1, wherein the client device communicates with the gateway device via a cellular network and the first protocol is a RADIUS protocol.
  • 4. The method of claim 1, wherein the client device communicates with the gateway device via a cellular network and the first protocol is a DIAMETER protocol.
  • 5. The method of claim 1, wherein the policy request is a LDAP search request.
  • 6. A non-transitory computer readable medium having stored thereon instructions for protocol conversions in policy changing enforcement, comprising computer executable code which when executed by at least one processor, causes the processor to perform steps to: receive a message in a first protocol from a network gateway device comprising identifying information unique to a client device attempting to make a request to access a resource from a server, wherein the first protocol is an authentication, authorization, and accounting protocol;process the received message to extract one or more portions of the client device identifying information comprising one or more of a mobile station international subscriber directory number (MSIDN) of the client device, a source IP address of the client device, or an access point name (APN) of the client device for use as a unique key identifier;determine when the extracted unique key identifier is present within one or more databases; andgenerate a policy access request to obtain policy enforcement information for the client device when the extracted unique key identifier is absent within the one or more databases, wherein the generated policy access request includes at least the unique key identifier and is in a second protocol different from the first protocol, and wherein the second protocol is a TCP/IP protocol.
  • 7. The medium of claim 6, further comprises: store the policy enforcement information and associated unique key information of the client device in a memory.
  • 8. The medium of claim 6, wherein the client device communicates with the gateway device via a cellular network and the first protocol is a RADIUS protocol.
  • 9. The medium of claim 6, wherein the client device communicates with the gateway device via a cellular network and the first protocol is a DIAMETER protocol.
  • 10. The medium of claim 6, wherein the policy access request is a LDAP search request.
  • 11. A network traffic management device comprising: a network interface coupled to a client device via a network, the network interface receiving a request from the client device requesting access to the server, wherein the network traffic management device is interposed between and separate from the client device and the server;one or more processors;memory, wherein the memory is coupled to the one or more processors which are configured to execute programmed instructions stored in the memory which cause the processor to:receive a message in a first protocol from a network gateway device comprising identifying information unique to a client device attempting to make a request to access a resource from a server, wherein the first protocol is an authentication, authorization, and accounting protocol;process the received message to extract one or more portions of the client device identifying information comprising one or more of a mobile station international subscriber directory number (MSIDN) of the client device, a source IP address of the client device, or an access point name (APN) of the client device for use as a unique key identifier;determine when the extracted unique key identifier is present within one or more databases; andgenerate a policy access request to obtain policy enforcement information for the client device when the extracted unique key identifier is absent within the one or more databases, wherein the generated policy access request includes at least the unique key identifier and is in a second protocol different from the first protocol, and wherein the second protocol is a TCP/IP protocol.
  • 12. The network traffic management device of claim 11, wherein the processor is further configured to execute programmed instructions stored in the memory further comprising: storing the policy enforcement information and associated unique key information of the client device in the memory.
  • 13. The network traffic management device of claim 11, wherein the client device communicates with the gateway device via a cellular network and the first protocol is a RADIUS protocol.
  • 14. The network traffic management device of claim 11, wherein the client device communicates with the gateway device via a cellular network and the first protocol is a DIAMETER protocol.
  • 15. The network traffic management device of claim 11, wherein the policy access request is a LDAP search request.
  • 16. The method as set forth in claim 1 further comprising: sending, by the network traffic management device, the policy access request to a policy server, wherein the policy server is configured to provide policy enforcement information of the client device associated with the policy access request;retrieving, by the network traffic management device, policy enforcement information for the client device from the policy server; andenforcing, by the network traffic management device, one or more policies from the policy enforcement information to network traffic between the client device and the server.
  • 17. The medium as set forth in claim 6 further comprising: sending the policy access request to a policy server, wherein the policy server is configured to provide policy enforcement information of the client device associated with the policy access request;retrieving the policy enforcement information for the client device from the policy server; andenforcing one or more policies from the policy enforcement information to network traffic between the client device and the server.
  • 18. The device as set forth in claim 11 wherein the processor is further configured to execute programmed instructions stored in the memory further comprising: send the policy access request to a policy server, wherein the policy server is configured to provide policy enforcement information of the client device associated with the policy access request;retrieve policy enforcement information for the client device from the policy server; andenforce one or more policies from the policy enforcement information to network traffic between the client device and the server.
STATEMENT OF RELATED APPLICATION

The present application claims the benefit of priority based on U.S. Provisional Patent Application Ser. No. 61/408,557, filed on Oct. 29, 2010, in the name of inventors Nat Thirasuttakorn, Jason Haworth, Brandon Burns and Ian Smith, entitled “On The Fly Protocol Conversion In Policy Charging Enforcement Function System and Method”, all commonly owned herewith.

US Referenced Citations (364)
Number Name Date Kind
3950735 Patel Apr 1976 A
4644532 George et al. Feb 1987 A
4897781 Chang et al. Jan 1990 A
4965772 Daniel et al. Oct 1990 A
5023826 Patel Jun 1991 A
5053953 Patel Oct 1991 A
5167024 Smith et al. Nov 1992 A
5299312 Rocco, Jr. Mar 1994 A
5327529 Fults et al. Jul 1994 A
5367635 Bauer et al. Nov 1994 A
5371852 Attanasio et al. Dec 1994 A
5406502 Haramaty et al. Apr 1995 A
5475857 Dally Dec 1995 A
5517617 Sathaye et al. May 1996 A
5519694 Brewer et al. May 1996 A
5519778 Leighton et al. May 1996 A
5521591 Arora et al. May 1996 A
5528701 Aref Jun 1996 A
5581764 Fitzgerald et al. Dec 1996 A
5596742 Agarwal et al. Jan 1997 A
5606665 Yang et al. Feb 1997 A
5611049 Pitts Mar 1997 A
5663018 Cummings et al. Sep 1997 A
5752023 Choucri et al. May 1998 A
5761484 Agarwal et al. Jun 1998 A
5768423 Aref et al. Jun 1998 A
5774660 Brendel et al. Jun 1998 A
5790554 Pitcher et al. Aug 1998 A
5802052 Venkataraman Sep 1998 A
5812550 Sohn et al. Sep 1998 A
5825772 Dobbins et al. Oct 1998 A
5832283 Chou et al. Nov 1998 A
5875296 Shi et al. Feb 1999 A
5892914 Pitts Apr 1999 A
5892932 Kim Apr 1999 A
5919247 Van Hoff et al. Jul 1999 A
5936939 Des Jardins et al. Aug 1999 A
5941988 Bhagwat et al. Aug 1999 A
5946690 Pitts Aug 1999 A
5949885 Leighton Sep 1999 A
5951694 Choquier et al. Sep 1999 A
5959990 Frantz et al. Sep 1999 A
5974460 Maddalozzo, Jr. et al. Oct 1999 A
5983281 Ogle et al. Nov 1999 A
5988847 McLaughlin et al. Nov 1999 A
6006260 Barrick, Jr. et al. Dec 1999 A
6006264 Colby et al. Dec 1999 A
6026452 Pitts Feb 2000 A
6028857 Poor Feb 2000 A
6051169 Brown et al. Apr 2000 A
6078956 Bryant et al. Jun 2000 A
6085234 Pitts et al. Jul 2000 A
6092196 Reiche Jul 2000 A
6108703 Leighton et al. Aug 2000 A
6111876 Frantz et al. Aug 2000 A
6128279 O'Neil et al. Oct 2000 A
6128657 Okanoya et al. Oct 2000 A
6160874 Dickerman et al. Dec 2000 A
6170022 Linville et al. Jan 2001 B1
6178423 Douceur et al. Jan 2001 B1
6182139 Brendel Jan 2001 B1
6192051 Lipman et al. Feb 2001 B1
6233612 Fruchtman et al. May 2001 B1
6246684 Chapman et al. Jun 2001 B1
6253226 Chidambaran et al. Jun 2001 B1
6253230 Couland et al. Jun 2001 B1
6263368 Martin Jul 2001 B1
6289012 Harrington et al. Sep 2001 B1
6298380 Coile et al. Oct 2001 B1
6327622 Jindal et al. Dec 2001 B1
6343324 Hubis et al. Jan 2002 B1
6347339 Morris et al. Feb 2002 B1
6360270 Cherkasova et al. Mar 2002 B1
6374300 Masters Apr 2002 B2
6396833 Zhang et al. May 2002 B1
6430562 Kardos et al. Aug 2002 B1
6434081 Johnson et al. Aug 2002 B1
6480476 Willars Nov 2002 B1
6484261 Wiegel Nov 2002 B1
6490624 Sampson et al. Dec 2002 B1
6510135 Almulhem et al. Jan 2003 B1
6510458 Berstis et al. Jan 2003 B1
6519643 Foulkes et al. Feb 2003 B1
6601084 Bhaskaran et al. Jul 2003 B1
6636503 Shiran et al. Oct 2003 B1
6636894 Short et al. Oct 2003 B1
6650640 Muller et al. Nov 2003 B1
6650641 Albert et al. Nov 2003 B1
6654701 Hatley Nov 2003 B2
6661802 Homberg et al. Dec 2003 B1
6683873 Kwok et al. Jan 2004 B1
6691165 Bruck et al. Feb 2004 B1
6694517 James et al. Feb 2004 B1
6708187 Shanumgam et al. Mar 2004 B1
6718380 Mohaban et al. Apr 2004 B1
6742045 Albert et al. May 2004 B1
6751663 Farrell et al. Jun 2004 B1
6754228 Ludwig Jun 2004 B1
6760775 Anerousis et al. Jul 2004 B1
6772219 Shobatake Aug 2004 B1
6779039 Bommareddy et al. Aug 2004 B1
6781986 Sabaa et al. Aug 2004 B1
6798777 Ferguson et al. Sep 2004 B1
6804542 Haartsen Oct 2004 B1
6816901 Sitaraman et al. Nov 2004 B1
6816977 Brakmo et al. Nov 2004 B2
6829238 Tokuyo et al. Dec 2004 B2
6868082 Allen, Jr. et al. Mar 2005 B1
6876629 Beshai et al. Apr 2005 B2
6876654 Hegde Apr 2005 B1
6888836 Cherkasova May 2005 B1
6928082 Liu et al. Aug 2005 B2
6950434 Viswanath et al. Sep 2005 B1
6954780 Susai et al. Oct 2005 B2
6957272 Tallegas et al. Oct 2005 B2
6975592 Seddigh et al. Dec 2005 B1
6986040 Kramer et al. Jan 2006 B1
6987763 Rochberger et al. Jan 2006 B2
7007092 Peiffer Feb 2006 B2
7058633 Gnagy et al. Jun 2006 B1
7113993 Cappiello et al. Sep 2006 B1
7133944 Song et al. Nov 2006 B2
7139792 Mishra et al. Nov 2006 B1
7185359 Schmidt et al. Feb 2007 B2
7228422 Morioka et al. Jun 2007 B2
7287082 O'Toole, Jr. Oct 2007 B1
7295827 Liu et al. Nov 2007 B2
7308703 Wright et al. Dec 2007 B2
7308709 Brezak et al. Dec 2007 B1
7310339 Powers et al. Dec 2007 B1
7319696 Inoue et al. Jan 2008 B2
7321926 Zhang et al. Jan 2008 B1
7333999 Njemanze Feb 2008 B1
7343413 Gilde et al. Mar 2008 B2
7349391 Ben-Dor et al. Mar 2008 B2
7383570 Pinkas et al. Jun 2008 B2
7398552 Pardee et al. Jul 2008 B2
7433962 Janssen et al. Oct 2008 B2
7437478 Yokota et al. Oct 2008 B2
7454480 Labio et al. Nov 2008 B2
7490162 Masters Feb 2009 B1
7500243 Huetsch et al. Mar 2009 B2
7500269 Huotari Mar 2009 B2
7505795 Lim et al. Mar 2009 B1
7522581 Acharya et al. Apr 2009 B2
7526541 Roese et al. Apr 2009 B2
7558197 Sindhu et al. Jul 2009 B1
7580971 Gollapudi et al. Aug 2009 B1
7590732 Rune Sep 2009 B2
7624424 Morita et al. Nov 2009 B2
7644137 Bozak et al. Jan 2010 B2
7668166 Rekhter et al. Feb 2010 B1
7689710 Tang et al. Mar 2010 B2
7724657 Rao et al. May 2010 B2
7725093 Sengupta et al. May 2010 B2
7778187 Chaturvedi et al. Aug 2010 B2
7801978 Susai et al. Sep 2010 B1
7808913 Ansari et al. Oct 2010 B2
7831662 Clark et al. Nov 2010 B2
7908314 Yamaguchi et al. Mar 2011 B2
7925908 Kim Apr 2011 B2
7930365 Dixit et al. Apr 2011 B2
7933946 Livshits et al. Apr 2011 B2
7945908 Waldspurger et al. May 2011 B1
7984141 Gupta et al. Jul 2011 B2
8103781 Wu et al. Jan 2012 B1
8130650 Allen, Jr. et al. Mar 2012 B2
8189567 Kavanagh et al. May 2012 B2
8199757 Pani et al. Jun 2012 B2
8205246 Shatzkamer et al. Jun 2012 B2
8239954 Wobber et al. Aug 2012 B2
8274895 Rahman et al. Sep 2012 B2
8321908 Gai Nov 2012 B2
8351333 Rao et al. Jan 2013 B2
8380854 Szabo Feb 2013 B2
8417817 Jacobs Apr 2013 B1
8447871 Szabo May 2013 B1
8447970 Klein et al. May 2013 B2
8464265 Worley Jun 2013 B2
8468267 Yigang et al. Jun 2013 B2
8539224 Henderson et al. Sep 2013 B2
8566474 Kanode et al. Oct 2013 B2
8578050 Craig et al. Nov 2013 B2
8606921 Vasquez et al. Dec 2013 B2
8615022 Harrison et al. Dec 2013 B2
8646067 Agarwal et al. Feb 2014 B2
8665868 Kay Mar 2014 B2
8701179 Penno et al. Apr 2014 B1
8725836 Lowery et al. May 2014 B2
8726338 Narayanaswamy et al. May 2014 B2
8737304 Karuturi et al. May 2014 B2
8745266 Agarwal et al. Jun 2014 B2
8788665 Gilde et al. Jul 2014 B2
8804504 Chen Aug 2014 B1
8819109 Krishnamurthy et al. Aug 2014 B1
8819419 Carlson et al. Aug 2014 B2
8830874 Cho et al. Sep 2014 B2
8873753 Parker Oct 2014 B2
8875274 Montemurro et al. Oct 2014 B2
8886981 Baumann et al. Nov 2014 B1
8908545 Chen et al. Dec 2014 B1
8954080 Janakiraman et al. Feb 2015 B2
9037166 de Wit et al. May 2015 B2
9077554 Szabo Jul 2015 B1
9083760 Hughes et al. Jul 2015 B1
20010009554 Katseff et al. Jul 2001 A1
20010023442 Masters Sep 2001 A1
20020010783 Primak et al. Jan 2002 A1
20020032777 Kawata et al. Mar 2002 A1
20020049842 Huetsch et al. Apr 2002 A1
20020059428 Susai et al. May 2002 A1
20020083067 Tamayo et al. Jun 2002 A1
20020112061 Shih et al. Aug 2002 A1
20020138615 Schmeling Sep 2002 A1
20020161913 Gonzalez et al. Oct 2002 A1
20020194342 Lu et al. Dec 2002 A1
20020198993 Cudd et al. Dec 2002 A1
20030037070 Marston Feb 2003 A1
20030046291 Fascenda Mar 2003 A1
20030065951 Igeta et al. Apr 2003 A1
20030069918 Lu et al. Apr 2003 A1
20030069974 Lu et al. Apr 2003 A1
20030070069 Belapurkar et al. Apr 2003 A1
20030086415 Bernhard et al. May 2003 A1
20030105983 Brakmo et al. Jun 2003 A1
20030108052 Inoue et al. Jun 2003 A1
20030128708 Inoue et al. Jul 2003 A1
20030145062 Sharma Jul 2003 A1
20030145233 Poletto et al. Jul 2003 A1
20030163576 Janssen et al. Aug 2003 A1
20030225485 Fritz et al. Dec 2003 A1
20040003287 Zissimopoulos et al. Jan 2004 A1
20040072569 Omae et al. Apr 2004 A1
20040103283 Hornak May 2004 A1
20040111523 Hall et al. Jun 2004 A1
20040111621 Himberger et al. Jun 2004 A1
20040117493 Bazot et al. Jun 2004 A1
20040151186 Akama Aug 2004 A1
20040192312 Li et al. Sep 2004 A1
20040264472 Oliver et al. Dec 2004 A1
20040264481 Darling et al. Dec 2004 A1
20040267920 Hydrie et al. Dec 2004 A1
20040267948 Oliver et al. Dec 2004 A1
20040268358 Darling et al. Dec 2004 A1
20050004887 Igakura et al. Jan 2005 A1
20050021736 Carusi et al. Jan 2005 A1
20050027869 Johnson Feb 2005 A1
20050044213 Kobayashi et al. Feb 2005 A1
20050052440 Kim et al. Mar 2005 A1
20050055435 Gbadegesin et al. Mar 2005 A1
20050078604 Yim Apr 2005 A1
20050122942 Rhee Jun 2005 A1
20050122977 Lieberman Jun 2005 A1
20050154837 Keohane et al. Jul 2005 A1
20050187866 Lee Aug 2005 A1
20050188220 Nilsson et al. Aug 2005 A1
20050198310 Kim et al. Sep 2005 A1
20050262238 Reeves et al. Nov 2005 A1
20060031520 Bedekar et al. Feb 2006 A1
20060059267 Cugi et al. Mar 2006 A1
20060077902 Kannan et al. Apr 2006 A1
20060112176 Liu et al. May 2006 A1
20060112272 Morioka et al. May 2006 A1
20060129684 Datta Jun 2006 A1
20060135198 Lee Jun 2006 A1
20060156416 Huotari Jul 2006 A1
20060161577 Kulkarni et al. Jul 2006 A1
20060171365 Borella Aug 2006 A1
20060209853 Hidaka et al. Sep 2006 A1
20060230148 Forecast et al. Oct 2006 A1
20060233106 Achlioptas et al. Oct 2006 A1
20060242300 Yumoto et al. Oct 2006 A1
20070006293 Balakrishnan et al. Jan 2007 A1
20070016662 Desai et al. Jan 2007 A1
20070058670 Konduru et al. Mar 2007 A1
20070064661 Sood et al. Mar 2007 A1
20070083646 Miller et al. Apr 2007 A1
20070088822 Coile et al. Apr 2007 A1
20070106796 Kudo et al. May 2007 A1
20070107048 Halls et al. May 2007 A1
20070118879 Yeun May 2007 A1
20070174491 Still et al. Jul 2007 A1
20070220598 Salowey et al. Sep 2007 A1
20070233809 Brownell et al. Oct 2007 A1
20070297410 Yoon et al. Dec 2007 A1
20070297551 Choi Dec 2007 A1
20080025297 Kashyap Jan 2008 A1
20080034136 Ulenas Feb 2008 A1
20080072303 Syed Mar 2008 A1
20080120370 Chan et al. May 2008 A1
20080133518 Kapoor et al. Jun 2008 A1
20080134311 Medvinsky et al. Jun 2008 A1
20080148340 Powell Jun 2008 A1
20080159145 Muthukrishnan et al. Jul 2008 A1
20080178278 Grinstein et al. Jul 2008 A1
20080201599 Ferraiolo et al. Aug 2008 A1
20080205613 Lopez Aug 2008 A1
20080222646 Sigal et al. Sep 2008 A1
20080225710 Raja et al. Sep 2008 A1
20080229415 Kapoor et al. Sep 2008 A1
20080253395 Pandya Oct 2008 A1
20080256224 Kaji et al. Oct 2008 A1
20080288661 Galles Nov 2008 A1
20080301760 Lim Dec 2008 A1
20090028337 Balabine et al. Jan 2009 A1
20090049230 Pandya Feb 2009 A1
20090070617 Arimilli et al. Mar 2009 A1
20090077619 Boyce Mar 2009 A1
20090094610 Sukirya Apr 2009 A1
20090119504 van Os et al. May 2009 A1
20090125496 Wexler et al. May 2009 A1
20090125532 Wexler et al. May 2009 A1
20090125625 Shim et al. May 2009 A1
20090138749 Moll et al. May 2009 A1
20090141891 Boyen et al. Jun 2009 A1
20090157678 Turk Jun 2009 A1
20090196282 Fellman et al. Aug 2009 A1
20090228956 He Sep 2009 A1
20090287935 Aull et al. Nov 2009 A1
20090296624 Ryu et al. Dec 2009 A1
20090300407 Kamath et al. Dec 2009 A1
20100011434 Kay Jan 2010 A1
20100017846 Huang Jan 2010 A1
20100023582 Pedersen et al. Jan 2010 A1
20100071048 Novak et al. Mar 2010 A1
20100115236 Bataineh et al. May 2010 A1
20100122091 Huang et al. May 2010 A1
20100150154 Viger et al. Jun 2010 A1
20100150169 Brown Jun 2010 A1
20100154031 Montemurro et al. Jun 2010 A1
20100165877 Shukla et al. Jul 2010 A1
20100189052 Kavanagh et al. Jul 2010 A1
20100242092 Harris et al. Sep 2010 A1
20100251330 Kroeselberg Sep 2010 A1
20100279733 Karsten et al. Nov 2010 A1
20100322250 Shetty et al. Dec 2010 A1
20100325277 Muthiah et al. Dec 2010 A1
20110040889 Garrett et al. Feb 2011 A1
20110047620 Mahaffey et al. Feb 2011 A1
20110066718 Susai et al. Mar 2011 A1
20110153822 Rajan et al. Jun 2011 A1
20110154443 Thakur Jun 2011 A1
20110173295 Bakke et al. Jul 2011 A1
20110184733 Yu et al. Jul 2011 A1
20110246800 Accpadi et al. Oct 2011 A1
20110273984 Hsu et al. Nov 2011 A1
20110282997 Prince et al. Nov 2011 A1
20110321122 Mwangi Dec 2011 A1
20120016994 Nakamura et al. Jan 2012 A1
20120039341 Latif et al. Feb 2012 A1
20120041965 Vasquez et al. Feb 2012 A1
20120063314 Pignataro et al. Mar 2012 A1
20120066489 Ozaki et al. Mar 2012 A1
20120191847 Nas et al. Jul 2012 A1
20120311153 Morgan Dec 2012 A1
20130029726 Berionne et al. Jan 2013 A1
20130091002 Christie et al. Apr 2013 A1
20130198322 Oran et al. Aug 2013 A1
20130336122 Baruah et al. Dec 2013 A1
20140025823 Szabo et al. Jan 2014 A1
20140040478 Hsu et al. Feb 2014 A1
20140095661 Knowles et al. Apr 2014 A1
20140269484 Dankberg et al. Sep 2014 A1
20140317404 Carlson et al. Oct 2014 A1
Foreign Referenced Citations (12)
Number Date Country
0744850 Nov 1996 EP
WO 9114326 Sep 1991 WO
WO 9505712 Feb 1995 WO
WO 9709805 Mar 1997 WO
WO 9745800 Dec 1997 WO
WO 9905829 Feb 1999 WO
WO 9906913 Feb 1999 WO
WO 9910858 Mar 1999 WO
WO 9939373 Aug 1999 WO
WO 9964967 Dec 1999 WO
WO 0004422 Jan 2000 WO
WO 0004458 Jan 2000 WO
Non-Patent Literature Citations (21)
Entry
Mac Vittie, L., “Message-Based Load Balancing: Using F5 solutions to address the challenges of scaling Diameter, Radius, and message-oriented protocols”, F5 Technical Brief, 2005, pp. 1-9, F5 Networks Inc., Seattle, Washington.
“A Process for Selective Routing of Servlet Content to Transcoding Modules,” Research Disclosure 422124, Jun. 1999, pp. 889-890, IBM Corporation.
F5 Networks, Inc., “BIG-IP Controller with Exclusive OneConnect Content Switching Feature Provides a Breakthrough System for Maximizing Server and Network Performance,” Press Release, May 8, 2001, 2 pages, Las Vegas, Nevada.
Crescendo Networks, “Application Layer Processing (ALP),” 2003-2009, pp. 168-186, Chapter 9, CN-5000E/5500E, Foxit Software Company.
Fielding et al., “Hypertext Transfer Protocol—HTTP/1.1,” Network Working Group, RFC: 2068, Jan. 1997, pp. 1-162.
Fielding et al., “Hypertext Transfer Protocol—HTTP/1.1,” Network Working Group, RFC: 2616, Jun. 1999, pp. 1-176, The Internet Society.
Floyd et al., “Random Early Detection Gateways for Congestion Avoidance,” Aug. 1993, pp. 1-22, IEEE/ACM Transactions on Networking, California.
Hochmuth, Phil, “F5, CacheFlow pump up content-delivery lines,” Network World Fusion, May 4, 2001, 1 page, Las Vegas, Nevada.
Schaefer, Ken, “IIS and Kerberos Part 5—Protocol Transition, Constrained Delegation, S4U2S and S4U2P,” Jul. 18, 2007, 21 pages, http://www.adopenstatic.com/cs/blogs/ken/archive/2007/07/19/8460.aspx.
“Servlet/Applet/HTML Authentication Process With Single Sign-On,” Research Disclosure 429128, Jan. 2000, pp. 163-164, IBM Corporation.
“Traffic Surges; Surge Queue; Netscaler Defense,” 2005, PowerPoint Presentation, slides 1-12, Citrix Systems, Inc.
Williams et al., “The Ultimate Windows Server 2003 System Administrator's Guide: Forwarding Authentication,” 2003, 2 pages, Figure 10.7, Addison-Wesley Professional, Boston, Massachusetts.
“Windows Server 2003 Kerberos Extensions,” Microsoft TechNet, 2003 (Updated Jul. 31, 2004), http://technet.microsoft.com/en-us/library/cc738207, Microsoft Corporation.
PCT International Search Report and PCT/ISA/210 mailed May 30, 2012.
Abad, C., et al., “An Analysis on the Schemes for Detecting and Preventing ARP Cache Poisoning Attacks”, IEEE, Computer Society, 27th International Conference on Distributed Computing Systems Workshops (ICDCSW'07), 2007, pp. 1-8.
OWASP, “Testing for Cross site scripting”, OWASP Testing Guide v2, Table of Contents, Feb. 24, 2011, pp. 1-5, (www.owasp.org/index.php/Testing—for—Cross—site—scripting).
International Search Report and the Written Opinion, for International Patent Application No. PCT/US2013/026615, Date of Mailing: Jul. 4, 2013.
F5 Networks Inc., “Configuration Guide for Local Traffic Management,” F5 Networks Inc., Jan. 2006, version 9.2.2, 406 pgs.
International Search Report and the Written Opinion, for International Patent Application No. PCT/US2011/058469, Date of Mailing: Oct. 3, 2015.
International Search Report and the Written Opinion, for International Patent Application No. PCT/US2011/058469, Date of Mailing: Mar. 10, 2015.
Extended European Search Report for Corresponding European Patent Application No. 13/284,806.
Related Publications (1)
Number Date Country
20120240184 A1 Sep 2012 US
Provisional Applications (1)
Number Date Country
61408557 Oct 2010 US