This disclosure is directed to multi-nozzle extruders used in three-dimensional object printers and, more particularly, to the formation of different structures with such extruders.
Three-dimensional printing, also known as additive manufacturing, is a process of making a three-dimensional solid object from a digital model of virtually any shape. Many three-dimensional printing technologies use an additive process in which an additive manufacturing device forms successive layers of the part on top of previously deposited layers. Some of these technologies use extruders that soften or melt extrusion material, such as ABS plastic, into thermoplastic material and then emit the thermoplastic material in a predetermined pattern. The printer typically operates the extruder to form successive layers of the thermoplastic material that form a three-dimensional printed object with a variety of shapes and structures. After each layer of the three-dimensional printed object is formed, the thermoplastic material cools and hardens to bond the layer to an underlying layer of the three-dimensional printed object. This additive manufacturing method is distinguishable from traditional object-forming techniques, which mostly rely on the removal of material from a work piece by a subtractive process, such as cutting or drilling.
Many existing three-dimensional printers use a single extruder that extrudes material through a single nozzle. The printhead moves in a predetermined path to emit the build material onto selected locations of a support member or previously deposited layers of the three-dimensional printed object based on model data for the three-dimensional printed object. However, using a printhead with only a single nozzle to emit the build material often requires considerable time to form a three-dimensional printed object. Additionally, a printhead with a larger nozzle diameter can form three-dimensional printed objects more quickly but loses the ability to emit build material in finer shapes for higher detailed objects while nozzles with narrower diameters can form finer detailed structures but require more time to build three-dimensional objects.
To address the limitations of single nozzle extruders, multi-nozzle extruders have been developed. In these multi-nozzle extruders, the nozzles are formed in a common faceplate and the materials extruded through the nozzles can come from one or more manifolds. In extruders having a single manifold, all of the nozzles extrude the same material, but the fluid path from the manifold to each nozzle can include a valve that is operated to open and close the nozzles selectively. This ability enables the shape of a swath of thermoplastic material extruded from the nozzles to be varied by changing the number of nozzles extruding material and which ones are extruding material. In extruders having different manifolds, each nozzle can extrude a different material with the fluid path from one of the manifolds to its corresponding nozzle including a valve that can be operated to open and close the nozzle selectively. This ability enables the composition of the material in a swath to vary as well as the shape of the swath of thermoplastic material extruded from the nozzles to be varied. Again, these variations are achieved by changing the number of nozzles extruding material and selecting which nozzles extrude material. These multi-nozzle extruders enable different materials to be extruded from different nozzles and can be used to form an object without having to coordinate the movement of different extruder bodies. These different materials can enhance the ability of the additive manufacturing system to produce objects with different colors, physical properties, and configurations. Additionally, by changing the number of nozzles extruding material, the size of the swaths produced can be altered to provide narrow swaths in areas where precise feature formation is required, such as object edges, and to provide broader swaths to quickly form areas of an object, such as its interior regions.
In these multi-nozzle extruders having their nozzles in a common faceplate, the movement of the faceplate with reference to the build platform as well as the orientation of the faceplate with respect to the XY axes of the platform are critical to the formation of a swath. As used in this document, a “swath” refers to the extrusion of thermoplastic material from any opened nozzle in a multi-nozzle extruder as an aggregate as long as at least one nozzle remains open and thermoplastic material is extruded from any opened nozzle. That is, even if multiple nozzles are opened, but not all of the emitted extrusions contact one another, the discrete extrusions still constitute a swath. A contiguous swath is one in which all of the extrusions from multiple nozzles are in contiguous contact across the swath in a cross-process direction.
At some orientations of the extruder, some of the nozzles align with one another in a way that may prevent a contiguous swath of extruded material from being formed. As shown in
When the faceplate remains oriented as shown on the 0°-180° axis and 90°-270° axis, but moved in one of the directions rotated 72° from one of these axis, as shown in the far right illustration, the nine nozzles become three rows of three nozzles that are aligned with one another and the swath is only three nozzles wide with gaps between the extruded lines forming the swath. Thus, the widest swaths are produced when the faceplate of
A new multi-nozzle extruder includes a controller configured to operate an actuator to rotate the extruder about its center axis, which is perpendicular to the build platform, so the extruder can form exterior features without significantly reducing the speed of extruder movement. The apparatus includes a platform configured to support an object during manufacturing, an extruder having a plurality of nozzles and a plurality of valves, the valves being configured to open and close the nozzles independently of one another, at least one actuator operatively connected to the extruder, the at least one actuator being configured to move the extruder in an XY plane parallel with the platform and to rotate the extruder about an axis perpendicular to the XY plane, and a controller operatively connected to the extruder and the at least one actuator. The controller is configured to operate the at least one actuator to move the extruder in the XY plane and to rotate the extruder while the extruder is being moved in the XY plane.
Another embodiment of the apparatus operates an actuator to rotate a multi-nozzle extruder about its center axis, which is perpendicular to the build platform, so the extruder can form exterior features without significantly reducing the speed of extruder movement. The method includes a platform configured to support an object during manufacturing, an extruder having a plurality of nozzles and a plurality of valves, the valves being configured to open and close the nozzles independently of one another, at least one actuator operatively connected to the extruder, the at least one actuator being configured to move the extruder in an XY plane parallel with the platform and to rotate the extruder about an axis perpendicular to the XY plane up to a predetermined angle, and a controller operatively connected to the extruder and the at least one actuator. The controller is configured to operate the at least one actuator to move the extruder in the XY plane and to rotate the extruder while the extruder is being moved in the XY plane.
The foregoing aspects and other features of systems that form objects with thermoplastic material extruded from extruders while the extruder is being rotated are explained in the following description, taken in connection with the accompanying drawings.
For a general understanding of the environment for the device disclosed herein as well as the details for the device, reference is made to the drawings. In the drawings, like reference numerals designate like elements.
As used herein, the term “extrusion material” refers to a material that is softened or melted to form thermoplastic material to be emitted by an extruder in an additive manufacturing system. The extrusion materials include, but are not strictly limited to, both “build materials” that form permanent portions of the three-dimensional printed object and “support materials” that form temporary structures to support portions of the build material during a printing process and are then optionally removed after completion of the printing process. Examples of build materials include, but are not limited to, acrylonitrile butadiene styrene (ABS) plastic, polylactic acid (PLA), aliphatic or semi-aromatic polyamides (Nylon), plastics that include suspended carbon fiber or other aggregate materials, electrically conductive polymers, and any other form of material that can be thermally treated to produce thermoplastic material suitable for emission through an extruder. Examples of support materials include, but are not limited to, high-impact polystyrene (HIPS), polyvinyl alcohol (PVA), and other materials capable of extrusion after being thermally treated. In some extrusion printers, the extrusion material is supplied as continuous elongated length of material commonly known as a “filament.” This filament is provided in a solid form by one or more rollers pulling the extrusion material filament from a spool or other supply and feeding the filament into a heater that is fluidly connected to a manifold within the extruder. Although the illustrated examples use extrusion material that is supplied as filament to the heaters, other extrusion material supplies can be used, such as particulate or spherical ball extrusion materials. The heater softens or melts the extrusion material filament to form a thermoplastic material that flows into the manifold. When a valve positioned between a nozzle and the manifold is opened, a portion of the thermoplastic material flows from the manifold through the nozzle and is emitted as a stream of thermoplastic material. As used herein, the term “melt” as applied to extrusion material refers to any elevation of temperature for the extrusion material that softens or changes the phase of the extrusion material to enable extrusion of the resulting thermoplastic material through one or more nozzles in an extruder during operation of a three-dimensional object printer. As used in this document, the term “thermoplastic material” means extrusion material that has been melted. As those of skill in the art recognize, certain amorphous extrusion materials do not transition to a pure liquid state during operation of the printer.
As used herein, the terms “extruder” refers to a component of a printer that melts extrusion material in a single fluid chamber and provides the melted extrusion material to a manifold connected to one or more nozzles. Some extruders include a valve assembly that can be electronically operated to enable thermoplastic material to flow through nozzles selectively. The valve assembly enables the one or more nozzles to be connected to the manifold independently to extrude the thermoplastic material. As used herein, the term “nozzle” refers to an orifice in a faceplate of an extruder that is fluidly connected to the manifold in an extruder and through which thermoplastic material is emitted towards a material receiving surface. During operation, the nozzle can extrude a substantially continuous linear swath of the thermoplastic material along the process path of the extruder. A controller operates the valves in the valve assembly to control which nozzles connected to the valve assembly extrude thermoplastic material. The diameter of the nozzle affects the width of the line of extruded thermoplastic material. Different extruder embodiments include nozzles having a range of orifice sizes with wider orifices producing lines having widths that are greater than the widths of lines produced by narrower orifices.
As used herein, the term “manifold” refers to a cavity formed within a housing of an extruder that holds a supply of thermoplastic material for delivery to one or more nozzles in the extruder during a three-dimensional object printing operation. As used herein, the term “swath” refers to any pattern of the extrusion material that the extruder forms on a material receiving surface during a three-dimensional object printing operation. Common swaths include straight-line linear arrangements of extrusion material and curved swaths. In some configurations, the extruder extrudes the thermoplastic material in a continuous manner to form the swath with a contiguous mass of the extrusion material in both process and cross-process directions, while in other configurations the extruder operates in an intermittent manner to form smaller groups of thermoplastic material that are arranged along a linear or curved path. The three-dimensional object printer forms various structures using combinations of different swaths of the extrusion material. Additionally, a controller in the three-dimensional object printer uses object image data and extruder path data that correspond to different swaths of extrusion material prior to operating the extruder to form each swath of extrusion material. As described below, the controller optionally adjusts the operation of the valve assembly and the rotation of the extruder to form multiple swaths of thermoplastic material through one or more nozzles during a three-dimensional printing operation.
As used herein, the term “process direction” refers to a direction of a straight line motion path between an extruder and a material receiving surface that receives thermoplastic material extruded from one or more nozzles in the extruder. The material receiving surface is either a support member that holds a three-dimensional printed object or a surface of the partially formed three-dimensional object during an additive manufacturing process. In the illustrative embodiments described herein, one or more actuators move the extruder about the support member, but alternative system embodiments move the support member to produce the relative motion in the process direction while the extruder remains stationary. Some systems use a combination of both systems for different axes of motion.
As used herein, the term “cross process direction” refers to an axis that is perpendicular to the process direction and parallel to the extruder faceplate and the material receiving surface. The process direction and cross-process direction refer to the relative path of movement of the extruder and the surface that receives the thermoplastic material. In some configurations, the extruder includes an array of nozzles that can extend in the process direction, the cross-process direction, or both. Adjacent nozzles within the extruder are separated by a predetermined distance in the cross-process direction. In some configurations, the system rotates the extruder to adjust the cross-process direction distance that separates different nozzles in the extruder to adjust the corresponding cross-process direction distance that separates the lines of thermoplastic material that are extruded from the nozzles in the extruder as the lines form a swath.
During operation of the additive manufacturing system, an extruder moves in the process direction along both straight and curved paths relative to a surface that receives thermoplastic material during the three-dimensional object printing process. Additionally, an actuator in the system optionally rotates the extruder about the Z axis to adjust the effective cross-process distance that separates nozzles in the extruder so the extruder forms two or more lines of thermoplastic material with predetermined distances between each line of the thermoplastic material. The extruder moves both along the outer perimeter to form outer walls of a two-dimensional region in a layer of the printed object and within the perimeter to fill all or a portion of the two-dimensional region with the thermoplastic material.
In the embodiment of
The system 100 of
In the embodiment of
To maintain a fluid pressure of the thermoplastic material within the manifolds 216 within a predetermined range, avoid damage to the extrusion material, and control the extrusion rate through the nozzles, a slip clutch 244 is operatively connected to the drive shaft of each actuator 240 that feeds filament from a supply 110 to a heater. As used in this document, the term “slip clutch” refers to a device applies frictional force to an object to move the object up to a predetermined set point. When the range about the predetermined set point for the frictional force is exceeded, the device slips so it no longer applies the frictional force to the object. The slip clutch enables the force exerted on the filament 220 by the roller 224 to remain within the constraints on the strength of the filament no matter how frequently, how fast, or how long the actuator 240 is driven. This constant force can be maintained by either driving the actuator 240 at a speed that is higher than the fastest expected rotational speed of the filament drive roller 224 or by putting an encoder wheel 248 on the roller 224 and sensing the rate of rotation with a sensor 252. The signal generated by the sensor 252 indicates the angular rotation of the roller 224 and the controller 128 receives this signal to identify the speed of the roller 224. The controller 128 is further configured to adjust the signal provided to the actuator 240 to control the speed of the actuator. When the controller is configured to control the speed of the actuator 240, the controller 128 operates the actuator 240 so its average speed is slightly faster than the rotation of the roller 224. This operation ensures that the torque on the drive roller 224 is always a function of the slip clutch torque.
The controller 128 has a set point stored in memory connected to the controller that identifies the slightly higher speed of the actuator output shaft over the rotational speed of the roller 224. As used in this document, the term “set point” means a parameter value that a controller uses to operate components to keep the parameter corresponding to the set point within a predetermined range about the set point. For example, the controller 128 changes a signal that operates the actuator 240 to rotate the output shaft at a speed identified by the output signal in a predetermined range about the set point. In addition to the commanded speed for the actuator, the number of valves opened or closed in the valve assembly 204 and the torque set point for the clutch also affect the filament drive system 212 operation. The resulting rotational speed of the roller 224 is identified by the signal generated by the sensor 252. A proportional-integral-derivative (PID) controller within controller 128 identifies an error from this signal with reference to the differential set point stored in memory and adjusts the signal output by the controller to operate the actuator 240. Alternatively, the controller 128 can alter the torque level for the slip clutch or the controller 128 can both alter the torque level and adjust the signal with which the controller operates the actuator.
The slip clutch 244 can be a fixed or adjustable torque friction disc clutch, a magnetic particle clutch, a magnetic hysteresis clutch, a ferro-fluid clutch, an air pressure clutch, or permanent magnetic clutch. The clutch types that operate magnetically can have their torque set points adjusted by applying a voltage to the clutches. This feature enables the torque set point on the clutch to be changed with reference to print conditions. The term “print conditions” refers to parameters of the currently ongoing manufacturing operation that affect the amount of thermoplastic material required in the manifold for adequate formation of the object. These print conditions include the type of extrusion material being fed to the extruder, the temperature of the thermoplastic material being emitted from the extruder, the speed at which the extruder is being moved in the X-Y plane, the position of the feature being formed on the object, the angle at which the extruder is being moved relative to the platform, and the like.
In the embodiment shown in
As can be seen in
To help keep the most exterior nozzle outside of the perimeter while keeping the more interior nozzles within the perimeter of the corner being formed, the rotation of the extruder is commenced prior to reaching a turn in the perimeter and is terminated past the turn. The turn shown in
If an extruder could be rotated 360 degrees, the extruder would form a feature requiring rotation by beginning at one extreme of the rotation, rotate through the appropriate arc to the ending extreme of the rotation. To reverse the twisting of the connections to the extruder, the next feature would be formed by reversing the direction of extruder rotation to the beginning of the arc previously traversed. This requirement limits the angle at which the extruder is moving when a perimeter is being started or terminated, which typically means the extruder moves in the 0, 90, 180, and 270 degrees for perimeter starts and stops. Also, with an extruder that can rotate up to about 360 degrees, the extruder could be rotated as shown in
While such operation of an extruder is theoretical, the restraints noted previously constrain the degree to which an extruder can be rotated.
In some situations, the corners that need to be formed may require more extruder rotation than the actuator is configured to provide. In these scenarios, the extruder is rotated the maximum amount but during the turning those nozzles that fall outside of the perimeter are closed. While this closure affects the width of the swaths formed, it still enables the extruder to move continuously through the corner without stopping so object formation proceeds more quickly than in systems that do not rotate the extruder continuously while moving the extruder. During extruder rotation, the faceplate is oriented in the problematic angles of 72, 162, 252, and 342 degrees where the extruded material forms three separate lines. To compensate for this effect, the rate of rotation is increased to aid in the spreading of the extruded material and small translations in the XY plane can be incorporated during the rotation to help cover the passage through these problematic angles. Additionally, selective control of the nozzles can aid in compensating for the adverse effects that arise at these angles. As shown in
While the rotation of the extruder through angled features while continuing to move the extruder is most beneficial for perimeter formation, it also has benefits for infilling. Currently, the extruder is moved along the 0°-180° axis or the 90°-270° axis for infilling in an alternating fashion to form pairs of horizontal swaths and pairs of vertical swaths so no holes are provided through layers. By rotating the extruder to 45 degree and −45 degree orientations between the current alterations and moving the extruder at its maximum speed fill the interior more quickly and add structural integrity in a variety of directions not now possible with a multi-nozzle extruder.
Rotation of the extruder about the Z axis also provides greater flexibility in faceplate nozzle layouts. For example, the nozzle layout in
It will be appreciated that variants of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems, applications or methods. Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements may be subsequently made by those skilled in the art that are also intended to be encompassed by the following claims.