The present invention relates generally to a control apparatus for controlling a system of an automotive vehicle in response to sensed dynamic behavior, and more specifically, to a method and apparatus for adjusting the activation based on heightened vehicle operating conditions.
Dynamic control systems for automotive vehicles have recently begun to be offered on various products. Dynamic control systems typically control the yaw of the vehicle by controlling the braking effort at the various wheels of the vehicle. Yaw control systems typically compare the desired direction of the vehicle based upon the steering wheel angle and the direction of travel. By regulating the amount of braking at each corner of the vehicle, the desired direction of travel may be maintained. Typically, the dynamic control systems do not address rollover (wheels lifting) of the vehicle. For high profile vehicles in particular, it would be desirable to control the rollover characteristic of the vehicle to maintain the vehicle position with respect to the road. That is, it is desirable to maintain contact of each of the four tires of the vehicle on the road.
In vehicle rollover control, it is desired to alter the vehicle attitude such that its motion along the roll direction is prevented from achieving a predetermined limit (rollover limit) with the aid of the actuation from the available active systems such as controllable brake system, steering system and suspension system. Although the vehicle attitude is well defined, direct measurement is usually impossible.
During a potential vehicular rollover event, wheels on one side of the vehicle start lifting, and the roll center of the vehicle shifts to the contact patch of the remaining tires. This shifted roll center increases the roll moment of inertia of the vehicle, and hence reduces the roll acceleration of the vehicle. However, the roll attitude could still increase rapidly. The corresponding roll motion when the vehicle starts side lifting deviates from the roll motion during normal driving conditions.
When the wheels start to lift from the pavement, it is desirable to confirm this condition. This allows the system to make an accurate determination as to the appropriate correction. If wheels are on the ground, or recontact the ground after a lift condition, this also assists with accurate control.
Some systems use position sensors to measure the relative distance between the vehicle body and the vehicle suspension. One drawback to such systems is that the distance from the body to the road must be inferred. This also increases the number of sensors on the vehicle. Other techniques use sensor signals to indirectly detect wheel lifting qualitatively.
One example of a wheel lifting determination can be found in Ford patent U.S. Pat. No. 6,356,188 and U.S. patent application Ser. No. 10/608,909, the disclosures of which are incorporated by reference herein. The system applies a change in torque to the wheels to determine wheel lift. The output from such a wheel lifting determination unit can be used qualitatively. This method is an active determination since the basis of the system relies on changing the torque of the wheels by the application of brakes or the like. In some situations it may be desirable to determine wheel lift without changing the torque of a wheel.
Due to the inevitable dead spots due to the vehicle configuration, wheel lift detection methods may be not able to identify all the conditions where four wheels are absolutely grounded in a timely and accurate fashion. For example, if the torques applied to the wheels have errors, if the vehicle reference computation has errors or there is not enough excitation in the torque provided, the wheel lift detection may provide erroneous information or no information about the roll trending of the vehicle. Wheel lift information may also be safe-guarded by information regarding the vehicle roll angle information from the various sensors.
In certain driving conditions where the vehicle is moving with all four wheels contacting ground and the wheel lift detection does not detect the grounding condition, the roll information derived from the various sensors may be the sole information for identify vehicle roll trending. If in such driving cases, the vehicle experiences very large lateral acceleration and large roll rate, the grounded conditions might be replaced by erroneous lifting conditions. That is, those signals may predict that the vehicle is in a divergent roll event but the actual vehicle is not in a rolling event at all. Such cases include when the vehicle is driven on a mountain road, off-road or banked road, tire compression or an impact may cause a large normal load. The increased normal load causes a force component to be added to the lateral acceleration sensor output. Hence, a larger than 1 g lateral acceleration is obtained but the actual lateral acceleration of the vehicle projected along the road surface might be in 0.6 g range. An off-road driving condition may also be an off-camber driving condition. When a low speed vehicle is driven on an off-camber road with some hard tire compression or impact, the control system may be fooled to activate un-necessarily.
In order to reduce false activations, it would therefore be desirable to provide a rollover detection system that sensitizes and desensitizes the roll control determination.
The present invention improves the operation of a rollover stability control system (RSC) by controlling the safety device to provide improved performance. One way in which the improvement may be implemented is by controlling or improving the brake pressure prediction to improve the feel and performance time of the system.
In one embodiment, a method of controlling a safety system of a vehicle include determining a roll rate, determining a first control pressure in response to roll rate, determining a roll angle, and determining a second control pressure in response to the roll angle. The method further includes determining a final control pressure in response to the first control pressure and the second control pressure and controlling the safety system in response to the final control pressure.
One advantage of the invention is that some or all of the ways in which to improve the system set forth herein may be used alone or simultaneously to improve the rollover control system.
Other advantages and features of the present invention will become apparent when viewed in light of the detailed description of the preferred embodiment when taken in conjunction with the attached drawings and appended claims.
In the following figures the same reference numerals will be used to identify the same components. The present teachings may be used in conjunction with a yaw control system or a rollover control system for an automotive vehicle. However, the present teachings may also be used with a deployment device such as airbag or roll bar.
Referring to
As mentioned above, the system may also be used with active/semi-active suspension systems, anti-roll bar or other safety devices deployed or activated upon sensing predetermined dynamic conditions of the vehicle.
The sensing system 16 is part of a control system 18. The sensing system 16 may use a standard yaw stability control sensor set (including lateral acceleration sensor, yaw rate sensor, steering angle sensor and wheel speed sensor) together with a roll rate sensor and a longitudinal acceleration sensor. The various sensors will be further described below. The wheel speed sensors 20 are mounted at each corner of the vehicle, and the rest of the sensors of sensing system 16 may be mounted directly on the center of gravity of the vehicle body, along the directions x,y and z shown in
The angular rate sensors and the acceleration sensors are mounted on the vehicle car body along the body frame directions b1, b2 and b3, which are the x-y-z axes of the vehicle's sprung mass.
The longitudinal acceleration sensor 36 is mounted on the car body located at the center of gravity, with its sensing direction along b1-axis, whose output is denoted as ax. The lateral acceleration sensor 32 is mounted on the car body located at the center of gravity, with its sensing direction along b2-axis, whose output is denoted as ay.
The other frame used in the following discussion includes the road frame, as depicted in
In the following discussion, the Euler angles of the body frame b1b2b3 with respect to the road frame r1r2r3 are denoted as θxr,θyr and θzr, which are also called the relative Euler angles.
Referring now to
Referring now to
In
Referring now to
Referring now to
Referring now to
In one embodiment, the sensors are located at the center of gravity of the vehicle. Those skilled in the art will recognize that the sensors may also be located off the center of gravity and translated equivalently thereto.
Lateral acceleration, roll orientation and speed may be obtained using a global positioning system (GPS). Based upon inputs from the sensors, controller 26 may control a safety device 38. Depending on the desired sensitivity of the system and various other factors, not all the sensors 20, 28, 32, 34, 35, 36, and 37, or various combinations of the sensors, may be used in a commercial embodiment. Safety device 38 may control an airbag 40, an active braking system 41, an active front steering system 42, an active rear steering system 43, an active suspension system 44, and an active anti-roll bar system 45, or combinations thereof. Each of the systems 40–45 may have their own controllers for activating each one. As mentioned above, the safety system 38 may be at least the active braking system 41.
Roll rate sensor 34 may sense the roll condition of the vehicle based on sensing the height of one or more points on the vehicle relative to the road surface. Sensors that may be used to achieve this include a radar-based proximity sensor, a laser-based proximity sensor and a sonar-based proximity sensor.
Roll rate sensor 34 may also sense the roll condition based on sensing the linear or rotational relative displacement or displacement velocity of one or more of the suspension chassis components which may include a linear height or travel sensor, a rotary height or travel sensor, a wheel speed sensor used to look for a change in velocity, a steering wheel position sensor, a steering wheel velocity sensor and a driver heading command input from an electronic component that may include steer by wire using a hand wheel or joy stick.
The roll condition may also be sensed by sensing the force or torque associated with the loading condition of one or more suspension or chassis components including a pressure transducer in active air suspension, a shock absorber sensor such as a load cell, a strain gauge, the steering system absolute or relative motor load, the steering system pressure of the hydraulic lines, a tire lateral force sensor or sensors, a longitudinal tire force sensor, a vertical tire force sensor or a tire sidewall torsion sensor.
The roll condition of the vehicle may also be established by one or more of the following translational or rotational positions, velocities or accelerations of the vehicle including a roll gyro, the roll rate sensor 34, the yaw rate sensor 28, the lateral acceleration sensor 32, a vertical acceleration sensor, a vehicle longitudinal acceleration sensor, lateral or vertical speed sensor including a wheel-based speed sensor, a radar-based speed sensor, a sonar-based speed sensor, a laser-based speed sensor or an optical-based speed sensor.
Based on the inputs from sensors 20, 28, 32, 34, 35, 36, 37, controller 26 determines a roll condition and controls any one or more of the safety devices 40–45.
Speed sensor 20 may be one of a variety of speed sensors known to those skilled in the art. For example, a suitable speed sensor 20 may include a sensor at every wheel that is averaged by controller 26. The controller 26 translates the wheel speeds into the speed of the vehicle. Yaw rate, steering angle, wheel speed and possibly a slip angle estimate at each wheel may be translated back to the speed of the vehicle at the center of gravity. Various other algorithms are known to those skilled in the art. For example, if speed is determined while speeding up or braking around a corner, the lowest or highest wheel speed may not be used because of its error. Also, a transmission sensor may be used to determine vehicle speed.
Referring now to
Referring now to
The various sensor signals may also be used to determine a relative pitch angle in relative pitch angle module 56 and a roll acceleration in roll acceleration module 58. The outputs of the wheel lift detection module 50, the transition detection module 52, and the relative roll angle module 54 are used to determine a wheel departure angle in wheel departure angle module 60. Various sensor signals and the relative pitch angle in relative pitch angle module 56 are used to determine a relative velocity total in module 62. The road reference bank angle block 64 determines the bank angle. The relative pitch angle, the roll acceleration, and various other sensor signals as described below are used to determine the road reference bank angle. Other inputs may include a roll stability control event (RSC) and/or the presence of a recent yaw stability control event, and the wheel lifting and/or grounding flags.
The global roll angle of the vehicle is determined in global roll angle module 66. The relative roll angle, the wheel departure angle, and the roll velocity total blocks are all inputs to the global roll angle total module 66. The global roll angle total block determines the global roll angle θx. An output module 68 receives the global roll angle total module 66 and the road reference bank angle from the road reference bank angle module 64. A roll signal for control is developed in roll signal module 70. The roll signal for control is illustrated as arrow 72. A sensitizing and desensitizing module 74 may also be included in the output module 68 to adjust the roll signal for control.
In the reference road bank angle module 64, the reference bank angle estimate is calculated. The objective of the reference bank estimate is to track a robust but rough indication of the road bank angle experienced during driving in both stable and highly dynamic situations, and which is in favor for roll stability control. That is, this reference bank angle is adjusted based on the vehicle driving condition and the vehicle roll condition. Most importantly, when compared to the global roll estimate, it is intended to capture the occurrence and physical magnitude of a divergent roll condition (two wheel lift) should it occur. This signal is intended to be used as a comparator against the global roll estimate for calculating the error signal which is fed back to roll stability controller 26.
In parallel with the above a transition controller 76 may implemented as will be further described below. The roll signal for control 72 may be used as an input to a proportional-integral-derivative controller 78. The terminology for the PID controller 78 refers to its functions. However, the function of double derivative may be added and a function such as integral may be used. For clarity the PID controller will be used for the controller even if all of the function proportional, integral or derivative functions are not used or if the double derivative is used. In parallel to the process above, a transitional controller may also be used. The transitional controller 76. One embodiment for example includes just the proportional and derivative functions.
The outputs of controller 76 and the controller 78 are provided to an arbitration module 80, which ultimately controls the safety system. In the present example, the safety system is a hydraulic safety system such as a rollover control system using brakes. The arbitration module 80 may, for example, simply choose the highest brake pressure requested from the transition controller and the PID controller. Of course, a weighting may also be performed.
Referring now to
Caliper pre-charge functionality. During control interventions requiring maximum pressure build rates, significant delays in pressure builds occur due to the relatively large volume of fluid required to establish caliper pressure in the lower pressure range. The higher volume consumption is due to the air gap between the rotor and linings, as well as the high effective compliance of the brake system at low pressures. The transition controller 76 includes pre-charging functionality to mitigate initial delays in establishing caliper pressure by applying low levels of pressure when steering activity suggests an RSC event is eminent.
Yaw Damping. The under-damped nature of the yaw dynamics of the vehicle can result in yaw rate overshoot in transitional maneuvers. Excessive yaw rate overshoot in limit maneuvers results in excessive side slip angles which can result in lateral forces that significantly exceed the steady state cornering capacity of the vehicle and can significantly reduce the roll stability margin of the vehicle. As a preventative measure, yaw damping may be provided to minimize the occurrence of excessive lateral forces and vehicle side slip angles that might expose the vehicle to excessive lateral forces and tripping mechanisms. The phase of the brake interventions resulting from this module introduces significant yaw damping during aggressive maneuvers. A goal is to provide as much yaw damping as possible without inhibiting the responsiveness of the vehicle or becoming intrusive.
Roll Damping. For sufficiently aggressive transitional maneuvers, the roll momentum can result in a lifting of the center of gravity of the vehicle at the end of the transition and may result in excessive wheel lift. It is an objective of this module to introduce effective roll damping before the occurrence of wheel lift by rounding off the build up lateral force when needed as they approach their peak levels in the final phase of the transition.
Pressure Build Prediction. In addition to the caliper pre-charge functionality, pressure build prediction and actuator delay compensation have been introduced in this module. Limitations in pressure build rates are compensated for by projecting forward when a pre-determined pressure level is likely to be requested, based on the relative roll angle, roll rate, roll acceleration, and estimated caliper pressure. Pressure is built during the transition so that the desired peak pressure can be achieved when it is needed to reduce the effects of limited pressure build rates.
Feed forward control. In this module, steering information, front side slip angle information and relative roll information is used to achieve a feed forward component of control from the point of view of the PID controller 78. Feed forward information is used to build significant pressure where needed to reduce the demands on the PID controller 78 for a given RSC event and to extend the functional envelop of the RSC system. For mild and moderate events, stability performance is achieved with lower levels of PID intervention. In conjunction with feed-forward control, PID control is able to handle more extreme maneuvers than would be possible without feed-forward control for two primary reasons. First, by the time the PID controller 78 has requested intervention, the vehicle will be in a more stable condition due to the feed forward control. Second, when the PID controller 78 does request pressure, significant pressure will already exist in the caliper, allowing the PID controller to achieve the required pressure much more quickly.
Gradient Control. Proportional plus Derivative control is implemented for roll angle and front linear side slip angle in the PID controller 78. For the PID controller 78, relative roll is used for the proportional term, and roll velocity is used for the derivative term. Because relative roll is used, this controller is robust to integration errors that might occur in the total roll estimate. As a result, it is possible to make the transition controller 76 more sensitive than the PID controller without the adverse consequences of integrator drift in the state estimates.
Establish initial conditions for PID controller 78. Because this module is designed to lead the PID control intervention in a given maneuver, PID control can be initiated at significantly higher pressure, requiring less error to achieve the critical pressure required to stabilize the vehicle.
Progressive Pressure Build. The transition controller 76 builds and decreases pressure with a minimum amount of jerk. This supports smooth transparent interventions and reduces the potential for exciting pitch dynamics in the vehicle.
Transparency. The transition controller 76 may also builds pressure in parallel with the transition in lateral acceleration. Because the longitudinal acceleration is building at the same time as the reversal in lateral acceleration, the pitch motion is more in phase with the roll motion, resulting in a coherent body motion. Additionally, because the build up of longitudinal acceleration is much smaller than the change in lateral acceleration, the brake intervention becomes overshadowed by the lateral jerk.
Referring now to
The transition controller 76 has the following outputs FLPrechargeActive (flag) output 150, a FLPrechargePress (bar) output 152, a FRPrechargeActive (flag) output 154, a FRPrechargePress (bar) output 156, an INST_BANK_ANGLE_EST output 158, a LEFT_TO_RIGHT_TRANSITION (flag) output 160, and a RIGHT_TO_LEFT_TRANSITION (flag) output 162.
The transition controller 76 also has predefined calibratable parameters that have the following definitions:
Referring now to
Also the lateral force, slip angle and lateral velocity at the rear axle are determined as follows:
In step 186 the component of the lateral acceleration at the rear axle due to the change in linear lateral velocity at the rear axle is calculated as follows:
In step 188 the instantaneous bank angle based on rear axle information is determined as follows:
In step 190 the rate of change of requested lateral acceleration based on steering velocity is determined. A product of the steering velocity multiplied by the steering gain of the vehicle is obtained, where the steering gain is defined as the ratio of the lateral acceleration to steering wheel angle in a steady state turn. This gain is expressed as a function of speed. The product is passed through a low pass filter to achieve the resultant rate of change of lateral acceleration being requested by the driver. This signal is used to help define the strength of the transition being requested by the driver. This determined in the flowing:
In step 192 a rate limited lateral acceleration from steering wheel angle dAYfromSWA is determined. The delay factor in the response of the power steering system may cause the system to have to catch-up to the pressure desired by the vehicle operator. For very aggressive steering inputs, power steering catch-up can cause a significant reduction in steering velocity for up to 200 ms. This can cause an interruption in pressure build when it is needed most. To prevent this, rate limited versions of dAYfromSWA are implemented for both the positive and negative directions. Each signal is allowed to increase in value as rapidly as the input signal. However, the decrease in value is rate limited by RATE_LIMIT_dAY_FROM_SWA. Both signals are limited to positive values and represent the magnitude of the rate of change in the positive and negative direction respectively. This is determined as follows:
In step 194 a change in lateral acceleration from yaw acceleration dAYfromYawAcc and a change in lateral acceleration from the rate of change of the side slip at the rear axle in dayFromBetaPRA is determined. Each signal is allowed to increase in value as rapidly as the input signal. These signals are scaled to provide a similar profile to DAyFromSWA. Final max and min DAyDt's are calculated by comparing dAYfromYawAccScldToSWA, dAyFromBetaPRAScldToSWA, and dAYFromSWA. These DayDt's can be positive or negative. Max and min rate limited DayDt's are calculated by comparing dAYfromYawAccScldToSWA, dAyFromBetaPRAScldToSWA, and rate limited DAyFromSWA's. These rate limited DayDt's are always positive. They are calculated as follows:
In step 196 a rough estimate of the mu level of the road surface is determined. The primary objective is not precise estimation of the mu level (although one could be used), but an indication of the lateral forces expected to be experienced after the transition. The Rough MU estimate is allowed to increase with the magnitude of the lateral acceleration. The value is held high for the period ROUGH_MU_HOLD_TIME following any loop in which the Rough MU estimate is increased by the lateral acceleration. Then it is allowed to ramp down at a predefined ramp rate. The important property for this calculation is that it preserves for the duration of the event, the lateral forces experienced immediately before the transition. This information is then used as a predictor of what the forces are likely to be seen after the transition. This is in turn used to determine the pressure build profile during the transition. The Rough MU signals are bounded between 1.0 and 0.1.
A Rough MU Upper is determined by:
A Rough MU Lower is determined by:
A Final Rough MU is determined by:
In step 198 a Matching Pressure is determined. The matching pressure is calculated based on the Rough MU level. Higher mu levels result in higher matching pressure. The matching pressure is used in the prediction strategy to compensate for the finite build rate available from the hydraulic system. The matching pressure is determined in the following:
In step 200 a predicted SWA sign change is determined. In this section two flags are calculated POS_SWA_EXPECTED and NEG_SWA_ESPECTED. POS_SWA_EXPECTED is set to true if the steering wheel angle is positive in the current loop or expected to be positive within a certain period of time. This period of time or signal lead is mu dependent and is intended to allow more lead in building the caliper precharge pressure for higher mu estimates. It has been experimentally determined that has indicated that on high mu and for large steering rates, initiating the pressure build after the sign crossing of the steering wheel angle may hot allow adequate pressure to be built during the transition to cancel the resulting dynamic oversteer. A similar calculation is performed for the negative direction. The prediction of sign change of SWA is determined by:
In step 202 the RSC Precharge Status flags are enabled. The enable flag is true in any loop for which the precharge pressure can be implemented. In the present example the vehicle should be above a minimum speed and the rollover stability control (RSC) system must not be disabled for the flag to be true, otherwise it will be forced to a false state. A recent PID event or a combination of sufficiently high steering 100 velocities and recent large lateral acceleration may also be required for the flag to be set true.
Several steps are used in setting the flags. First, it is determined whether a rapid change in lateral acceleration has recently occurred. This is used as an indicator that a transitional maneuver is occurring. The code for such is:
Next it is determined whether a large rough mu has recently been experienced. This flag is used to indicate that a near limit condition is or has recently occurred.
RECENT_LARGE_ROUGH_MU=RoughMU>LARGE_ROUGH_MU;
Then it is determined whether a moderate linear slip is or has recently occurred at the front axle as in:
Then, it is, determined whether a recent absolutely lifted has been determined for a wheel OR whether a recent pre lift has been sensed. This is set forth in code by:
Another factor is if significant dynamics are present which might warrant a precharge intervention. The significant dynamics variable is an intermediate variable taking into consideration the above recent rapid lateral acceleration, large rough mu, linear slip, lift status, and prelift sensing. The code is implemented as:
Then based on the significant dynamics variable, the precharge pressures and other variables by the following:
In step 204 Precharge Timers are managed. Precharge timers are used to allow the precharge strategy to occur during or immediately after the transitional portion of an event. This serves as additional screening criteria to prevent unnecessary precharge interventions.
If the rear linear slip angle is consistent with a left hand turn or the significant dynamics flag indicates there is no significant dynamic activity, the left timer is zeroed out. Otherwise it is incremented to the maximum precharge time. If the rear linear slip angle is consistent with a right hand turn or the significant dynamics flag indicates there is no significant dynamic activity, the right timer is zeroed out. Otherwise it is incremented to the maximum precharge time. This ensures that within a defined period of time, after a dynamic event, a precharge event will not be initiated, reducing the possibility of unnecessary intervention. This is set forth as:
In step 206 individual caliper pre-charge status flags are determined. The status flags indicate whether the pre-charge function is active on a given wheel in a given loop. Pre-charge must be enabled in any loop for which the pre-charge strategy is active. If the precharge timer on a given wheel is below the maximum precharge time, the function can become activated on that wheel based on steering information or side slip angle information. Additionally, the pre-charge function will remain active on a specific wheel as long as there is a non-zero pressure being requested on that wheel.
The continuous time of consistent sign for SSLIN Front or Rear is monitored.
Then the front left precharge active status flags are determined.
When the front right precharge active status flags are determined:
In step 208 calculate moderate lateral acceleration transition flags. If a lateral acceleration of a defined magnitude precedes a transition controller event associated with the opposite direction of turning within a predefined period of time, then a moderate transition flag is set for that direction until the transition controller event has been exited. These flags are used in the wheel departure angle calculation to bias any changes in total roll angle and reference bank angle towards an increasing roll signal for control.
First a counter (moderate-positive-AY-counter) is implemented which is set to a transition hold time any time the filtered lateral acceleration exceeds the transition threshold, and is decremented to zero by one count per if the lateral acceleration is not exceeding the transition lateral acceleration threshold.
Next, the recent positive lateral acceleration flag is calculated. This flag is set to true if the counter is greater than zero, otherwise it is set to false for a zero value of the counter.
The counter is now implemented for moderate negative lateral acceleration values. The negative counter is set to a transition hold time any time the filtered lateral acceleration falls below the negative of the transition threshold, and is decremented to zero by one count per if the lateral acceleration is not below the negative of the transition threshold.
Similar to above, the recent negative lateral acceleration flag is calculated. This flag is set to true if the counter is greater than zero, otherwise it is set to false for a zero value of the counter.
Next, the right to left transition flag is determined based on the recent negative lateral acceleration flag and the front right transition controller active flag. If both flags are set to true, then the right to left transition flag is set to true. If the front right transition controller active flag is false, the right to left transition controller flag is set to false. Otherwise, the value is held from the previous loop. This results in a flag that remains true until the front right transition controller event is exited.
Now the same calculation is performed for a left to right transition flag. If the recent negative lateral acceleration flag is true and the front left transition controller active flag if true, then the left to right transition flag is set to true. If the front left transition controller active flag is false, the left to right transition controller flag is set to false. Otherwise, the value is held from the previous loop. This results in a flag that remains true until the front left transition controller event is exited.
Then a timer is created to limit duration of high target slip request in the following:
In step 210 the rate of change of relative roll angle is determined. The relative roll velocity is calculated by simple differentiation of the relative roll angle placed in series with a first order low pass filter as in:
In step 212, the rate of change of linear front slip angle is determined. Similarly, the linear front tire side slip angle velocity is calculated by simple differentiation of the linear front side slip angle placed in series with a first order low pass filter.
In step 214 a lower target build rate is used, yielding larger prediction pressures when steady state limit driving is detected. This is set forth in:
In step 216 an instantaneous caliper pre-charge requested pressure levels based on relative roll information is determined. First, a pressure is calculated based on proportional plus derivative control on roll information. Relative roll angle is used for the proportional term, roll velocity is used for the derivative term. The relative roll angle is used because it provides the required level of accuracy during the critical portion of the transition, during the zero crossing, and because it is not influenced by banks and is not influenced by integrator error or errors in reference road bank. This accuracy allows tighter thresholds than would be allowable for the PID controller. Additionally, this signal offers a high level of consistency and repeatability in the timing of the pressure build that is a critical property for the initial portion of the control intervention. The PD pressure is filtered as required to achieve an adequately smooth signal.
Next the derivative of the PID pressure is calculated for determining the instantaneous relative roll pressure. The instantaneous pressure provides a predictive functionality for the PD controller. It is intended to provide a mechanism to compensate for the finite rate at which pressure can be built. Additionally, it can provide a significant smoothing effect on the leading edge of the pressure trace without delaying the pressure build. This is helpful in building the required level of pressure while minimizing the excitation of the pitching mode of the vehicle. The instantaneous pressure is that pressure which would need to be in the caliper in the current loop such that if the pressure is increased at the target build rate, the matching pressure would be achieved at the same time the PID controller is expected to request the matching pressure. The point in time for which the PID controller is expected to request the matching pressure is obtained by taking the derivative of the PID pressure and projecting forward to the point in time when the intersects the matching pressure.
Front left relative roll instantaneous pressure is determined by:
Then the Front Right relative roll instantaneous pressure is determined by:
In step 218 the conditions for applying the Yaw Rate PID controller to prevent a pressure increase from the yaw rate controller when driver is steering out of a turn are determined.
When transitioning from a right to a left turn, determine when change in SWA direction to the left has been well established; use as a condition for blocking the YAW RATE PD controller from further increasing transition pressure on FL wheel
In the case when transitioning from a left to a right turn, it is determined when a change in SWA direction to the right has been well established; to use as a condition for blocking the YAW RATE PD controller from further increasing this transition pressure on FR wheel, the following is used:
Then the instantaneous caliper precharge requested pressure levels based on yaw rate are determined.
In step 220 the instantaneous caliper precharge pressures based on front linear slip angle are determined. In this section, calculations are performed which are similar to those used for the Relative Roll PD pressure. Instead of Relative Roll angle for the proportional term, the linear side slip angle of the front axle is used. Instead of roll velocity, the rate of change of the front linear slip angle is used for the derivative term.
First, the Front Left front “front linear slip angle” instantaneous pressure is determined by:
Then Front Right front “front linear slip angle” instantaneous pressure is determined by:
In step 222 the instantaneous build rate based on the slope of instantaneous PID pressure in relation to the matching pressure and the length of time it would take for the prior value of precharge pressure to reach the matching pressure level is determined.
First the front left FL instantaneous build rate based on RelRoll PD information is determined.
Then the FL instantaneous build rate based on Yaw Rate PD information is determined.
Then the FL instantaneous build rate based on SSLinFront PD information is determined.
Then the FL instantaneous build rate based on SSLinFront PD information is determined.
Then a final FL instantaneous build rate by taking maximum of RelRoll and SSLinFront rates.
The same process is repeated for the front right FR. First, the FR instantaneous build rate based on RelRoll PD information is determined.
Then the calculation of FR instantaneous build rate based on Yaw Rate PD information is performed by:
After, the FR instantaneous build rate based on SSLinFront PD information is determined by:
Then the final FR instantaneous build rate by taking maximum of RelRoll and SSLinFront rates
In step 224, the requested pressures for each caliper are determined as follows.
Front left requested pressures are determined by:
Front right requested pressures are determined by:
In step 226 the front left caliper precharge requests are updated:
If the RelRoll or SSLin PD pressure requests an increase, the requested pressures are ramped up.
If the instantaneous pressure requests an increase, the requested pressures are ramped up.
If the steering information suggests a transitional event, the pressure is ramped up to a low mu dependent value in the following:
If a pressure increase is not requested AND no PID pressure increase is requested, the requested pressure is ramped down.
Any time the timer is above the build time AND no PID pressure increase is requested AND RelRollAngle is smaller than the RelRollDB, a reduction in pressure is forced.
In a similar manner the front right precharge request is updated.
If the RelRoll or SSLin PD pressure requests an increase, the requested pressure is ramped up.
If the instantaneous pressure requests an increase, the requested pressure is ramped up.
If the steering information suggests a transitional event, the pressure is ramped up to a low mu dependent value
If a pressure increase is not requested AND no PID pressure increase requested, then the requested pressure is ramped down.
Any time the timer is above the build time AND no PID pressure increase is requested AND RelRollAngle is smaller than the RelRollDB, force a reduction in pressure.
In step 228 the old values for next loop are updated.
PID Controller
Referring now to
Essentially, the PID controller 78 acts when more aggressive control is needed. The transition controller 76 acts before the vehicle is in an aggressive maneuver. This is typically below a threshold where the sensors are still in a linear region. Above the linear threshold, the PID takes over to aggressively control the vehicle. Aggressive control applies greater braking pressure to prevent the vehicle from rolling over.
In general, the Proportional, Integral, Derivative and Double Derivative, if present, terms are added together to form the total requested control pressure on each wheel. A brief explanation of each term follows.
The proportional term acts on a roll angle error input signal, thus the term proportional since the resulting requested control pressure will be proportional to the roll angle error magnitude by a factor K_P. A proportional peak hold strategy was added to mitigate a bouncing mode which can occur in certain aggressive maneuvers. The initiation of this strategy is contingent on the vehicle having experienced a recent divergence in roll rate magnitude.
The input to the derivative term is roll rate signal, which serves as a leading indicator of roll angle instability and thus provide an early lead on controlling the transient behavior of roll angle. The gain factor K_D multiplies the roll rate signal minus a deadband to generate a derivative pressure term. KD is an experimentally derived term. If K_D is unduly high, unnecessary control interventions may be caused (sensitive system) and the system made susceptible to input signal noise.
The double derivative term is used to capture the roll stability tendency of the vehicle. The roll acceleration signal will exhibit wide-ranging oscillations during control, so the gain factor K_DD's influence on the overall PID stabilizing pressure should be set to a minimum.
The integral control pressure is used to drive the steady state roll angle error toward zero. A bounded version of the roll angle error signal is multiplied by a gain factor K_I, then integrated to provide a requested integrator pressure. The reason for bounding the input is to prevent integrator windup.
The PID controller 78 has various inputs. The inputs include a lateral acceleration at the center of gravity (CG_FLT_LAT_ACC (m/s/s) input 300, a filtered roll rate (FLT_ROLL_RATE (deg/s) input 302, a (ROLL_ACCELERATION (deg/s/s) input 304, (ROLL_ANGLE_TOTAL. (deg) input 306, a (REFERENCE_BANK_ANGLE (deg) input 308, a front left brake pressure estimate (BRAKE_PRESSR_ESTMT [FL] (bar) input 312, a front right (BRAKE_PRESSR_ESTMT [FR] (bar) input 314, a driver requested pressure (DRIVER_REQ_PRESSURE (bar) 316, a (RSC_REFERENCE_VELOCITY (m/s) input 317, a (SLIP_RATIO [FL] (%) input 318, a (SLIP_RATIO [FR] (%) input 320, (RIGHT_TO_LEFT_TRANSITION (Boolean) input 322, (LEFT_TO_RIGHT_TRANSITION (Boolean) input 324, (DRIVER_BRAKING_FLAG (Boolean) input 326, a roll system disabled (RSC_DISABLED (Boolean) input 328, (REVERSE_MOVEMENT (Boolean) input 330, (STATUS_FIRST_RUN (Boolean) input 332, (RSC_IN_CYCLE (Boolean) input 334, (AYC_IN_CYCLE (Boolean) input 336 and a roll signal for control input 338.
The PID controller has various outputs including (PID_ACTIVE [FL] (Boolean) output 350, (PID_ACTIVE [FR] (Boolean) output 352, a stabilizer pressure (PID_STBLZ_PRESSURE [FL] (bar) output 354, (PID_STBLZ_PRESSURE [FR] (bar) output 356, (RECENT_AYC_CNTRL_EVENT (Boolean) output 358, (RECENT_PID_CNTRL_EVENT (Boolean) output 360, (INCREASE_REQUESTED_PRESSURE [FL] (Boolean) output 362, (INCREASE_REQUESTED_PRESSURE [FR] (Boolean) output 364,
The PID controller 78 includes the various calibratable parameters. The parameters are shown for his example. The parameters in implementation may be varied based on the vehicle configuration. Proportional dead band PROP_DB (linear interpolation function of vehicle speed): Absolute value of Proportional deadband above which the error signal input to the proportional controller becomes positive, thus yielding a positive requested proportional pressure. At nominal speeds, the value is chosen in the vicinity of the vehicle roll gradient experienced near 1 g of lateral acceleration.
Another is proportional gain factor K_P_UP (linear interpolation function of vehicle speed): Proportional gain factor that multiplies the roll angle error signal when above PROP_DB, thus generating a positive proportional term of the requested PID stabilizing pressure.
Proportional gain factor K_P_DOWN (linear interpolation function of vehicle speed): Proportional gain factor that multiplies the roll angle error signal when below PROP_DB, thus generating a negative proportional term of the requested PID stabilizing pressure.
LARGE_ROLL_RATE_THRESH (in this example a value of 30.0 deg/s is used): Roll rate magnitude above which recent large roll rate timer is set to the maximum value.
RECENT_LARGE_ROLL_RATE (0.5 sec): Time duration assigned to recent large roll rate timer when roll rate magnitude exceeds LARGE_ROLL_RATE_THRESH.
PROP_HOLD_ANGLE_THRESHOLD (in this example a value of 1.48*Roll_gradient is used): Roll angle at which the proportional pressure starts tracking peak proportional pressure.
PROP_PEAK_HOLD_TIME (in this example a value of 0.5 sec is used): Time duration that the proportional peak hold pressure is latched once magnitude of roll signal for control falls below PROP_HOLD_ANGLE_THRESHOLD.
PROP_PEAK_RAMP_DOWN_RATE (in this example a value of 250 bar/s is used): Ramp down rate of prior proportional peak to a new lower prop peak pressure when roll signal for control still exceeds hold angle, or ramp down rate to upstream proportional pressure if roll signal for control has not exceeded hold angle within the last PROP_PEAK_HOLD_TIME seconds.
DERIV_DB (linear interpolation function of lateral acceleration): Absolute value of derivative deadband, used outside of PID control, above which the error signal input to the derivative controller becomes positive, thus yielding a positive requested derivative pressure. Values are chosen to prevent roll rate noise at low lateral acceleration levels from inducing nuisance PID interventions.
DERIV_DB_DURING_PID_CONTROL (in this example a value of −20 deg/s is used). During PID intervention the deadband is set to a constant (non-lateral acceleration dependent) negative value, providing a phase advance on the PID pressure to mitigate roll oscillation during aggressive maneuvers.
K_D_UP (linear interpolation function of vehicle speed): Derivative gain factor that multiplies the roll rate error signal when roll rate is above DERIV_DB; generating a positive derivative term of the requested PID stabilizing pressure.
K_D_DOWN (linear interpolation function of vehicle speed): Derivative gain factor that multiplies the roll rate error signal when roll rate is below DERIV_DB; generating a negative derivative term of the requested PID stabilizing pressure.
K_DD_UP (in this example a value of 0. bar/deg/s/s is used): Double derivative gain factor that multiplies the roll acceleration signal when RSC intervention is active and roll acceleration sign matches that of the turn; generating a positive double derivative term of the requested PID stabilizing pressure.
K_DD_DOWN (in this example a value of 0 bar/deg/s/s is used): Double derivative gain factor that multiplies the roll acceleration signal when RSC intervention is not active or roll acceleration sign is opposite that of the turn; generating a nil double derivative term of the requested PID stabilizing pressure.
INTG_DB (linear interpolation function of vehicle speed): Absolute value of Integral deadband above which the error signal input to the Integral term becomes positive. At nominal speeds, value is chosen in the vicinity of the vehicle roll gradient experienced near 1 g of lateral acceleration.
MAX_INTGRTR_ERROR (in this example a value of 5.0 deg is used): Absolute value of upper bound on the error signal input to the Integral controller. The purpose of this parameter is to prevent integrator windup.
MIN_INTGRTR_ERROR (in this example a value of 5.0 deg is used): Absolute value of lower bound on the error signal input to the Integral controller. The purpose of this parameter is to avoid integrator windup.
K_I (in this example a value of 10.0 bar/deg.s is used): Integral gain factor multiplying the bounded roll angle error signal times loop time, generating the integral term of the requested stabilizing pressure.
PRESSURE_INCREASE_DELTA_FOR_INFLECTION_ADJUST (in this example a value of 10 bar is used): The pressure delta that the pressure estimate has to increase by before the downward adjustment of the PID pressure, to an offset (PRESSURE_OFFSET_DURING_PID_RAMP_UP) from the pressure estimate, occurs.
PRESSURE_OFFSET_DURING_PID_RAMP_UP (in this example a value of 20 bar is used): Specifies the maximum delta between PID pressure and estimated pressure, once the inflection adjustment begins.
LMTD_RAMP_DOWN_RATE (in this example a value of −400 bar/s is used): Maximum decrease rate that the PID requested pressure is allowed to ramp down at.
MAX_PRESSURE_DECREASE_TO_ENTER_LMTD_RAMP_DOWN (in this example a value of −0.5 bar is used): Negative delta pressure of the underlying P+I+D+DD sum required to enter the limited PID ramp down mode.
MIN_PRESSURE_INCREASE_TO_STAY_IN_LMTD_RAMP_DOW N (in this example a value of 0.5 bar is used): Positive delta pressure of the underlying P+I+D+DD sum above which limited PID ramp down mode exits.
MAX_RAMP_DOWN_RATE (in this example a value of −300 bar/s is used): Ramp down rate used when opposite front wheel requests PID intervention concurrently as inside wheel is ramping down PID requested pressure.
ENTER_THRES (in this example a value of 30.0 bar is used): PID requested pressure threshold for either front wheel, above which the flag PID_ACTIVE is set. A true value for the aforementioned flag constitutes one of the necessary conditions for activating RSC.
LAT_ACC_ACTVTION_THRSHLD (in this example a value of 5.0 m/s/s is used): Absolute value of vehicle lateral acceleration threshold above which the variable LARGE_LAT_ACC_COUNTER is initialized to LAT_ACC_COUNTER_INIT. A nonzero value of this counter is a necessary condition for activating RSC.
LAT_ACC_COUNTER_INIT (in this example a value of 3.0 sec is used): Time duration assigned to LARGE_LAT_ACC_COUNTER when vehicle lateral acceleration magnitude exceeds LARGE_ROLL_RATE_THRESH.
EXIT_THRES (in this example a value of 10.0 bar is used): PID requested pressure threshold for either front wheel below which the flag PID_ACTIVE resets to false, thus exiting PID control.
WHEEL_STABLE_IN_SLIP (in this example a value of −15% is used): Maximum slip ratio observed on PID controlled wheel before PID intervention can exit.
MIN_PID_PRES_FOR_FORCED_CONTROL_EXIT (in this example a value of 9 bar is used): PID pressure threshold below which PID intervention is forced to exit, in case wheel is allowed to lock for an extended period thus not allowing the WHEEL_STABLE_IN_SLIP criteria to be met.
RECENT_PID_EVNT_THRSHLD (in this example a value of 0.7 sec is used): Period of time during which the history of any PID intervention is logged.
RECENT_AYC_EVNT_THRSHLD (in this example a value of 0.7 sec is used): Period of time during which the history of any AYC intervention is logged.
PID_MINIMUM_ACTIVATION_SPEED (in this example a value of 7.0 m/s is used): Vehicle speed below which RSC system will not activate.
MAXIMUM_SPEED_TO_CONTINUE_PID (in this example a value of 5.0 m/s is used: If vehicle speed falls below this threshold during PID intervention, PID control exits.
MAXIMUM_STBLZ_PRESSURE (in this example a value of 255.0 bar is used).
LOOP_TIME_SEC: (in this example a value of 0.007 sec is used): Sampling time of input signals, as well as maximum allowable execution time of stability control system logic.
Compute PID Desired Braking Pressures Logic
The description of the PID feedback controller for non-tripped roll events follows. An explanation of the calculation of each term is included, and a C-language implementation of the computation is also included.
Referring now to
In step 404 a derivative term of the roll stabilizing requested pressures for each front wheel is determined. During PID intervention or if a recent moderately aggressive transition maneuver (as indicated from the transition controller), the derivative deadband determined in step 406 is set to a constant negative threshold (DERIV_DB_DURING_PID_CONTROL) to provide for a prediction of normal load oscillations. Otherwise the derivative deadband (DERIV_DB) is a function of the vehicle's lateral acceleration, nearing zero as the lateral acceleration increases beyond 0.7 g's.
For left turns (positive roll angle), compute derivative pressure term for outer (right) front wheel.
For right turns (negative roll angle), compute derivative pressure term for outer (left) front wheel.
In step 407, the double derivative term of the roll stabilizing requested pressures for each front wheel, based on roll acceleration signal is determined. This term is effective during RSC intervention, as K_DD_DOWN is set to zero.
For left turns (positive roll angle), the double derivative pressure term for outer (right) front wheel is determined.
For right turns (negative roll angle), compute derivative pressure term for outer (left) front wheel.
In step 408 a proportional term of the roll stabilizing requested pressures for each front wheel is determined. A roll signal for control is determined based on the vehicle angle. In the present example the ROLL_SIG_FOR_CONTROL is based on the difference between ROLL_ANGLE_TOTAL and REFERENCE_BANK_ANGLE as set forth in:
The proportional term is based on roll angle error signal formed by subtracting a deadband, of value PROP_DB, from the input control signal ROLL_SIG_FOR_CONTROL. This error signal is then multiplied by the proportional gain factor K_P to obtain the proportional pressure term.
For left turns (positive roll angle), compute proportional pressure term for outer (right) front wheel.
A history of recent large positive roll rate is kept. The history is used as a screening criteria for initiating proportional peak hold logic described thereafter. RECENT_LARGE_PSTV_ROLL_RATE_TIMER is used to keep track of this criteria.
Proportional peak hold logic: When a large positive roll divergence starts building, as indicated by roll signal for control exceeding PROP_HOLD_ANGLE_THRESHOLD and corroborated by the existence of a recent large positive roll rate, a constant base level of PID pressure to achieve a consistent level of deep slip on the wheel is maintained. This helps mitigate vehicle bounce during aggressive maneuvers. The constant base level is obtained by holding the peak value of the proportional term until the next proportional peak that exceeds the threshold, or until a timer (PROP_PEAK_HOLD_TIMER[FR]) runs out.
This is set forth in the following logic:
For right turns (negative roll angle), compute proportional pressure term for outer (left) front wheel by:
Keep history of recent large negative roll rate, which is used as a screening criteria for initiating proportional peak hold logic thereafter. RECENT_LARGE_NGTV_ROLL_RATE_TIMER is used to keep track of the criteria.
When a large negative roll divergence starts building, as indicated by roll signal for control exceeding PROP_HOLD_ANGLE_THRESHOLD and corroborated by the existence of a recent large negative roll rate, this strategy serves to keep a constant base level of PID pressure to achieve a consistent level of deep slip on the wheel and thus help mitigate vehicle bounce during aggressive maneuvers. The constant base level is obtained by holding the peak value of the proportional term until the next proportional peak that exceeds the threshold, or until PROP_PEAK_HOLD_TIMER[FL] runs out.
Referring back to
In step 414 an integral term of the roll stabilizing requested pressures for each front wheel is determined. A deadband, of value INTG_DB, is subtracted from ROLL_SIG_FOR_CONTROL to form the input error signal to the integral pressure term.
For the integral term, special precaution has to be taken regarding integral windup. Integrator windup is a condition that occurs when the input error signal remains large; which in turn causes the integrator term to grow (wind up) to very large values. Even after the roll angle falls within the target deadband, the integrator term takes an excessively long time to unwind; thus continuing to needlessly command control pressure. In order to avoid this situation, the following steps are applied: Impose an upper and lower bound on the input error signal [ROLL_SIG_FOR_CONTROL −INTG_DB], defined by MAX_INTGRTR_ERROR and MIN_INTGRTR_ERROR respectively. This limits the error term that gets added (integrated) each execution loop and compute an integral pressure term based on this bound input error signal.
For left turns (positive roll angle), the integral pressure term for outer (right) front wheel is determined by:
For right turns (negative roll angle), the integral pressure term for outer (left) front wheel is determined by:
In step 416 the ramp down rate of PID requested pressure while PID intervention is active is limited. The hydraulic control unit can release pressure faster than it can build it. So to provide for a more uniform PID pressure request, the ramp down rate of PID pressure is limited to the symmetrical value of the hydraulics build rate. This helps keep a consistent level of slip on the control wheel which in turn reduces possible roll oscillations. This is performed by the following logic:
In step 418 the total PID requested pressure of the current loop is determined according to the following four modes:
The PID control entrance and exit strategy is performed in step 420. A history of vehicle lateral acceleration exceeding a given large threshold is kept to be used as a screening criteria for PID activation is performed.
PID control is enabled in the following.
Activating/deactivating individual wheel PID control, figuring in Driver Brake Apply is determined in step 422. This is set forth in the following code:
If driver is braking upon PID exit, a flag is set to desensitize PID re-entry
The PID pressure is then applied to the brake system to prevent the vehicle from rolling over. The change in the current loop's delta requested pressure is also determined.
Global variables with local version are updated in step 426.
PID requested pressure if corresponding flag is false is set to zero in the following:
A history of when the last PID control is kept in the following:
A history of when last in Active Yaw Control is also kept in the following:
While the invention has been described in connection with one or more embodiments, it should be understood that the invention is not limited to those embodiments. On the contrary, the invention is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the appended claims.
The present application is a Divisional of U.S. patent application Ser. No. 10/628,484 filed Jul. 28, 2003, now abandoned, and claims priority to U.S. provisional applications 60/401,416 and 60/401,464 both filed Aug. 5, 2002, and is related to U.S. patent application Ser. Nos. 10/628,685 and 10/628,632 both filed Jul. 28, 2003, the disclosures of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2917126 | Phillips | Dec 1959 | A |
3604273 | Kwok et al. | Sep 1971 | A |
3608925 | Murphy | Sep 1971 | A |
3797893 | Burckhardt | Mar 1974 | A |
3899028 | Morris et al. | Aug 1975 | A |
3948567 | Kasselmann et al. | Apr 1976 | A |
3972543 | Presley et al. | Aug 1976 | A |
4023864 | Lang et al. | May 1977 | A |
RE30550 | Reise | Mar 1981 | E |
4294113 | Sprott et al. | Oct 1981 | A |
4480714 | Yabuta et al. | Nov 1984 | A |
4548079 | Klatt | Oct 1985 | A |
4592565 | Eagle | Jun 1986 | A |
4597462 | Sano et al. | Jul 1986 | A |
4624476 | Tanaka et al. | Nov 1986 | A |
4650212 | Yoshimura | Mar 1987 | A |
4679808 | Ito et al. | Jul 1987 | A |
4690553 | Fukamizu et al. | Sep 1987 | A |
4705130 | Fukunaga et al. | Nov 1987 | A |
4761022 | Ohashi | Aug 1988 | A |
4765649 | Ikemoto et al. | Aug 1988 | A |
4767588 | Ito | Aug 1988 | A |
4788773 | Sukegawa | Dec 1988 | A |
4809183 | Eckert | Feb 1989 | A |
4827416 | Kawagoe et al. | May 1989 | A |
4846496 | Tanaka et al. | Jul 1989 | A |
4872116 | Ito et al. | Oct 1989 | A |
4888696 | Akatsu et al. | Dec 1989 | A |
4898431 | Karnopp et al. | Feb 1990 | A |
4930082 | Harara et al. | May 1990 | A |
4951198 | Watanabe et al. | Aug 1990 | A |
4960292 | Sadler | Oct 1990 | A |
4964679 | Rath | Oct 1990 | A |
4967865 | Schindler | Nov 1990 | A |
4976330 | Matsumoto | Dec 1990 | A |
4998593 | Karnopp et al. | Mar 1991 | A |
5002142 | Klosterhaus | Mar 1991 | A |
5033770 | Kamimura et al. | Jul 1991 | A |
5058017 | Adachi et al. | Oct 1991 | A |
5066041 | Kindermann et al. | Nov 1991 | A |
5088040 | Matsuda et al. | Feb 1992 | A |
5089967 | Haseda et al. | Feb 1992 | A |
5097917 | Serizawa et al. | Mar 1992 | A |
5159553 | Karnopp et al. | Oct 1992 | A |
5163319 | Spies et al. | Nov 1992 | A |
5189920 | Martinez | Mar 1993 | A |
5200896 | Sato et al. | Apr 1993 | A |
5208749 | Adachi et al. | May 1993 | A |
5224765 | Matsuda | Jul 1993 | A |
5228757 | Ito et al. | Jul 1993 | A |
5230396 | Yasui | Jul 1993 | A |
5239868 | Takenaka et al. | Aug 1993 | A |
5247466 | Shimada et al. | Sep 1993 | A |
5261503 | Yasui | Nov 1993 | A |
5265020 | Nakayama | Nov 1993 | A |
5274576 | Williams | Dec 1993 | A |
5278761 | Ander et al. | Jan 1994 | A |
5282134 | Gioutsos et al. | Jan 1994 | A |
5297646 | Yamamura et al. | Mar 1994 | A |
5307274 | Takata et al. | Apr 1994 | A |
5311431 | Cao et al. | May 1994 | A |
5311956 | Sugiyama | May 1994 | A |
5324102 | Roll et al. | Jun 1994 | A |
5335176 | Nakamura | Aug 1994 | A |
5365439 | Momose et al. | Nov 1994 | A |
5370199 | Akuta et al. | Dec 1994 | A |
5408411 | Nakamura et al. | Apr 1995 | A |
5438515 | Miichi et al. | Aug 1995 | A |
5446658 | Pastor et al. | Aug 1995 | A |
5455770 | Hadeler et al. | Oct 1995 | A |
5490063 | Genise | Feb 1996 | A |
5510989 | Zabler et al. | Apr 1996 | A |
5515277 | Mine | May 1996 | A |
5548536 | Ammon | Aug 1996 | A |
5549328 | Cubalchini | Aug 1996 | A |
5560688 | Schappler et al. | Oct 1996 | A |
5576957 | Asanuma et al. | Nov 1996 | A |
5579245 | Kato | Nov 1996 | A |
5598335 | You | Jan 1997 | A |
5602734 | Kithil | Feb 1997 | A |
5610575 | Gioutsos | Mar 1997 | A |
5627756 | Fukada et al. | May 1997 | A |
5634698 | Cao et al. | Jun 1997 | A |
5640324 | Inagaki | Jun 1997 | A |
5648903 | Liubakka | Jul 1997 | A |
5671982 | Wanke | Sep 1997 | A |
5676433 | Inagaki et al. | Oct 1997 | A |
5684702 | Phillips et al. | Nov 1997 | A |
5694319 | Suissa et al. | Dec 1997 | A |
5703776 | Soung | Dec 1997 | A |
5707117 | Hu et al. | Jan 1998 | A |
5707120 | Monzaki et al. | Jan 1998 | A |
5719790 | Lohrenz et al. | Feb 1998 | A |
5720533 | Pastor et al. | Feb 1998 | A |
5723782 | Bolles, Jr. | Mar 1998 | A |
5732377 | Eckert | Mar 1998 | A |
5732378 | Eckert et al. | Mar 1998 | A |
5732379 | Eckert et al. | Mar 1998 | A |
5736939 | Corcoran | Apr 1998 | A |
5737224 | Jeenicke et al. | Apr 1998 | A |
5740041 | Iyoda | Apr 1998 | A |
5740877 | Sasaki | Apr 1998 | A |
5742918 | Ashrafi et al. | Apr 1998 | A |
5742919 | Ashrafi et al. | Apr 1998 | A |
5762406 | Yasui et al. | Jun 1998 | A |
5774819 | Yamamoto | Jun 1998 | A |
5782543 | Monzaki et al. | Jul 1998 | A |
5787375 | Madau et al. | Jul 1998 | A |
5801647 | Survo et al. | Sep 1998 | A |
5809434 | Ashrafi et al. | Sep 1998 | A |
5816670 | Yamada et al. | Oct 1998 | A |
5825284 | Dunwoody et al. | Oct 1998 | A |
5842143 | Lohrenz et al. | Nov 1998 | A |
5857160 | Dickinson et al. | Jan 1999 | A |
5857535 | Brooks | Jan 1999 | A |
5869943 | Nakashima et al. | Feb 1999 | A |
5878357 | Sivashankar et al. | Mar 1999 | A |
5890084 | Halasz et al. | Mar 1999 | A |
5893896 | Imamura et al. | Apr 1999 | A |
5925083 | Ackermann | Jul 1999 | A |
5926087 | Busch | Jul 1999 | A |
5931546 | Nakashima et al. | Aug 1999 | A |
5941920 | Schubert | Aug 1999 | A |
5944137 | Moser et al. | Aug 1999 | A |
5944392 | Tachihata et al. | Aug 1999 | A |
5946644 | Cowan et al. | Aug 1999 | A |
5964819 | Naito | Oct 1999 | A |
5965808 | Normann | Oct 1999 | A |
5971503 | Joyce et al. | Oct 1999 | A |
6002974 | Schiffmann | Dec 1999 | A |
6002975 | Schiffmann et al. | Dec 1999 | A |
6026926 | Noro et al. | Feb 2000 | A |
6038495 | Schiffman | Mar 2000 | A |
6040916 | Griesinger | Mar 2000 | A |
6050360 | Pattok et al. | Apr 2000 | A |
6055472 | Breunig et al. | Apr 2000 | A |
6062336 | Amberkar et al. | May 2000 | A |
6065558 | Wielenga | May 2000 | A |
6073065 | Brown et al. | Jun 2000 | A |
6079513 | Nishizaki et al. | Jun 2000 | A |
6081761 | Harada et al. | Jun 2000 | A |
6085133 | Keuper et al. | Jul 2000 | A |
6085860 | Hackl et al. | Jul 2000 | A |
6086168 | Rump | Jul 2000 | A |
6089344 | Baughn et al. | Jul 2000 | A |
6104284 | Otsuka | Aug 2000 | A |
6121873 | Yamada et al. | Sep 2000 | A |
6122568 | Madau et al. | Sep 2000 | A |
6122584 | Lin et al. | Sep 2000 | A |
6129172 | Yoshida | Oct 2000 | A |
6141604 | Mattes et al. | Oct 2000 | A |
6141605 | Joyce | Oct 2000 | A |
6144904 | Tseng | Nov 2000 | A |
6149251 | Wuerth et al. | Nov 2000 | A |
6161905 | Hac et al. | Dec 2000 | A |
6167357 | Zhu | Dec 2000 | A |
6169939 | Raad et al. | Jan 2001 | B1 |
6169946 | Griessbach | Jan 2001 | B1 |
6170594 | Gilbert | Jan 2001 | B1 |
6176555 | Semsey | Jan 2001 | B1 |
6178365 | Kawagoe et al. | Jan 2001 | B1 |
6178375 | Breunig | Jan 2001 | B1 |
6179310 | Clare et al. | Jan 2001 | B1 |
6179394 | Browalski et al. | Jan 2001 | B1 |
6184637 | Yamawaki et al. | Feb 2001 | B1 |
6185485 | Ashrafti et al. | Feb 2001 | B1 |
6185497 | Taniguchi et al. | Feb 2001 | B1 |
6186267 | Hackl et al. | Feb 2001 | B1 |
6192305 | Schiffmann | Feb 2001 | B1 |
6195606 | Barta et al. | Feb 2001 | B1 |
6198988 | Tseng | Mar 2001 | B1 |
6202009 | Tseng | Mar 2001 | B1 |
6202020 | Kyrtsos | Mar 2001 | B1 |
6206383 | Burdock | Mar 2001 | B1 |
6219604 | Dilger et al. | Apr 2001 | B1 |
6223114 | Boros et al. | Apr 2001 | B1 |
6226579 | Hackl et al. | May 2001 | B1 |
6227482 | Yamamoto | May 2001 | B1 |
6232875 | DeZorzi | May 2001 | B1 |
6233510 | Platner et al. | May 2001 | B1 |
6236916 | Staub et al. | May 2001 | B1 |
6263261 | Brown et al. | Jul 2001 | B1 |
6266596 | Hartman et al. | Jul 2001 | B1 |
6272420 | Schramm et al. | Aug 2001 | B1 |
6278930 | Yamada et al. | Aug 2001 | B1 |
6282471 | Burdock et al. | Aug 2001 | B1 |
6282472 | Jones et al. | Aug 2001 | B1 |
6282474 | Chou et al. | Aug 2001 | B1 |
6290019 | Kolassa et al. | Sep 2001 | B1 |
6292734 | Murakami et al. | Sep 2001 | B1 |
6292759 | Schiffmann | Sep 2001 | B1 |
6311111 | Leimbach et al. | Oct 2001 | B1 |
6314329 | Madau et al. | Nov 2001 | B1 |
6315373 | Yamada et al. | Nov 2001 | B1 |
6321141 | Leimbach | Nov 2001 | B1 |
6324445 | Tozu et al. | Nov 2001 | B1 |
6324446 | Brown et al. | Nov 2001 | B1 |
6324458 | Takagi et al. | Nov 2001 | B1 |
6330522 | Takeuchi | Dec 2001 | B1 |
6332104 | Brown et al. | Dec 2001 | B1 |
6338012 | Brown et al. | Jan 2002 | B1 |
6349247 | Schramm et al. | Feb 2002 | B1 |
6351694 | Tseng et al. | Feb 2002 | B1 |
6352318 | Hosomi et al. | Mar 2002 | B1 |
6356188 | Meyers et al. | Mar 2002 | B1 |
6360147 | Lee | Mar 2002 | B1 |
6363309 | Irie et al. | Mar 2002 | B1 |
6366844 | Woywod et al. | Apr 2002 | B1 |
6370938 | Leimbach et al. | Apr 2002 | B1 |
6394240 | Barwick | May 2002 | B1 |
6397127 | Meyers et al. | May 2002 | B1 |
6419240 | Burdock et al. | Jul 2002 | B1 |
6424897 | Mattes et al. | Jul 2002 | B1 |
6427102 | Ding | Jul 2002 | B1 |
6428118 | Blosch | Aug 2002 | B1 |
6433681 | Foo et al. | Aug 2002 | B1 |
6438463 | Tobaru et al. | Aug 2002 | B1 |
6438464 | Woywod et al. | Aug 2002 | B1 |
6454365 | Arwine et al. | Sep 2002 | B1 |
6456194 | Carlson et al. | Sep 2002 | B1 |
6459990 | McCall et al. | Oct 2002 | B1 |
6471218 | Burdock et al. | Oct 2002 | B1 |
6477480 | Tseng et al. | Nov 2002 | B1 |
6496758 | Rhode et al. | Dec 2002 | B1 |
6496763 | Griessbach | Dec 2002 | B1 |
6498976 | Ehlbeck et al. | Dec 2002 | B1 |
6502023 | Fukada | Dec 2002 | B1 |
6523637 | Nakano et al. | Feb 2003 | B1 |
6526342 | Burdock et al. | Feb 2003 | B1 |
6529803 | Meyers et al. | Mar 2003 | B1 |
6542073 | Yeh et al. | Apr 2003 | B1 |
6542792 | Schubert et al. | Apr 2003 | B1 |
6547022 | Hosomi et al. | Apr 2003 | B1 |
6553284 | Holst et al. | Apr 2003 | B1 |
6554293 | Fennel et al. | Apr 2003 | B1 |
6556908 | Lu et al. | Apr 2003 | B1 |
6559634 | Yamada | May 2003 | B1 |
6593849 | Chubb | Jul 2003 | B1 |
6598946 | Nagae | Jul 2003 | B1 |
6600414 | Foo et al. | Jul 2003 | B1 |
6600985 | Weaver | Jul 2003 | B1 |
6618656 | Kueblbeck et al. | Sep 2003 | B1 |
6631317 | Lu | Oct 2003 | B1 |
6637543 | Card | Oct 2003 | B1 |
6644454 | Yamada et al. | Nov 2003 | B1 |
6650971 | Haas | Nov 2003 | B1 |
6654674 | Lu et al. | Nov 2003 | B1 |
6657539 | Yamamoto et al. | Dec 2003 | B1 |
6678631 | Schiffmann | Jan 2004 | B1 |
6681196 | Glaser et al. | Jan 2004 | B1 |
6681881 | Andonian et al. | Jan 2004 | B1 |
6698542 | Nishizaki et al. | Mar 2004 | B1 |
6704631 | Winner et al. | Mar 2004 | B1 |
6718248 | Lu | Apr 2004 | B1 |
6719087 | Demerly | Apr 2004 | B1 |
6745624 | Porter | Jun 2004 | B1 |
6747553 | Yamada et al. | Jun 2004 | B1 |
6756890 | Schramm et al. | Jun 2004 | B1 |
6784794 | McQuade | Aug 2004 | B1 |
6799092 | Lu | Sep 2004 | B1 |
6816764 | Coelingh et al. | Nov 2004 | B1 |
6834218 | Meyers et al. | Dec 2004 | B1 |
20020109310 | Lim | Aug 2002 | A1 |
20030055549 | Barta et al. | Mar 2003 | A1 |
20030109939 | Burgdorf et al. | Jun 2003 | A1 |
20030171865 | Moser | Sep 2003 | A1 |
20030182025 | Tseng et al. | Sep 2003 | A1 |
20040019418 | Lu | Jan 2004 | A1 |
20040026158 | Rieth et al. | Feb 2004 | A1 |
20040078131 | Faye | Apr 2004 | A1 |
20040119335 | Szabo et al. | Jun 2004 | A1 |
20040158368 | Haas | Aug 2004 | A1 |
Number | Date | Country |
---|---|---|
10065010 | Dec 2000 | DE |
0 662 601 | Jul 1995 | EP |
1 046 571 | Apr 2000 | EP |
1 197 409 | Sep 2001 | EP |
2257403 | Jan 1993 | GB |
2 342 078 | Apr 2000 | GB |
11321603 | Nov 1999 | JP |
816849 | Mar 1981 | SU |
WO 0220318 | Mar 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20050256628 A1 | Nov 2005 | US |
Number | Date | Country | |
---|---|---|---|
60401416 | Aug 2002 | US | |
60401464 | Aug 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10628484 | Jul 2003 | US |
Child | 11120016 | US |