The various embodiments of the present invention relate generally to operating an autonomous vehicle at different automation levels and, more particularly, to transitioning between automation levels in accordance with conditions in the vehicle's surroundings.
Vehicles, especially automobiles, are increasingly including autonomous driving technologies. Many of the autonomous driving technologies implement different levels of vehicle automation. Moreover, existing driving solutions are unable to address every possible circumstances encountered by vehicles operating autonomously. Therefore, a solution to enable a vehicle to perform automatic driving operations under various circumstances at different levels of automation is desirable.
Examples of the disclosure are directed to operating a vehicle at different automation levels depending on the characteristics of the vehicle's surroundings and driver preferences, which can be preset or be specified in real time. A vehicle in accordance with an embodiment of the present invention can navigate itself at a fully automated level, semi-automated level, assisted level, drive-by-wire level, or allow the driver to manually take over driving operations depending on the characteristics of the vehicle's surroundings and driver preferences. Additionally, the different levels of automation can be composed of a plurality of modes for performing automated driving operations.
In the following description of examples, references are made to the accompanying drawings that form a part hereof, and in which it is shown by way of illustration specific examples that can be practiced. It is to be understood that other examples can be used and structural changes can be made without departing from the scope of the disclosed examples. Further, in the context of this disclosure, “autonomous driving” (or the like) can refer to either autonomous driving, partially autonomous driving, and/or driver assistance systems.
Some vehicles, such as automobiles, may include technology for performing automated driving operations. Additionally, vehicles include various sensors for detecting and gathering information about the vehicles' surroundings. However, many of the autonomous driving technologies implement different levels of vehicle automation and these existing driving solutions are unable to address all possible circumstances encountered by vehicles operating autonomously. Examples of the disclosure are directed to using automated driving technologies for performing autonomous driving operations at different levels of autonomy based on user preferences and characteristics about the vehicle's surroundings. A vehicle can transition between levels of automation in response to determining that certain conditions exist in the vehicle's surroundings and/or based on user input (e.g., preferences). Once operating at a given automation level, vehicle operations can be controlled by logic and procedures associated with that automation level, which can be tailored to certain conditions (e.g., characteristics about the vehicle's surroundings). In this way, the vehicle can easily and effectively address many different conditions encountered by the vehicle.
At step 110, process 100 runs a systems check to verify that the vehicle is functioning properly. This may include checking all of the vehicle's sensors to ensure that nothing on the vehicle is malfunctioning and/or that it is safe to autonomously operate the vehicle. For example, the vehicle may verify that the location of the vehicle provided by a Global Navigation Satellite System (GNSS) (e.g., Global Positioning System (GPS), BeiDou, Galileo, etc.) is initialized properly, the weather conditions are safe for autonomous driving, the vehicle's tires have adequate air pressure (e.g., are not punctured), all vehicle fluids are at adequate levels, and/or the brakes are not worn out by processing information from the vehicle's sensors. The vehicle can also verify that all of the vehicle's doors are closed and/or that all of the passengers are wearing seatbelts. In some examples, process 100 can notify the driver or any other third party if something on the vehicle is malfunctioning or if it is unsafe to autonomously operate the vehicle. In that instance, process 100 can remain at step 110 until it is safe to operate the vehicle autonomously, the vehicle is shut down, or the driver takes over driving operations.
At step 120, process 100 automates vehicle driving operations at a user-desired level of autonomy (e.g., fully automated, semi-automated, assisted driving, and/or drive-by-wire as described in detail below). For example, process 100 can operate the vehicle at a fully automated level without user input (e.g., other than designating the vehicle's destination). Process 100 can also operate the vehicle at a semi-automated level where the user activates discrete automated vehicle operations such as lane-following (e.g., to stay within the vehicle's current lane while keeping up with the flow of traffic), passing another vehicle on the road, changing lanes, parking, pulling over, and/or any other discrete driving operation or maneuver. Additionally, process 100 can operate the vehicle at an assisted level that enables basic assisted-driving operations such as automatic speed control (e.g., cruise control and/or assisted cruise control functionalities), automatic lane keeping (e.g., automatically staying within the vehicle's lane without automating the vehicle's speed), and/or automatic parallel parking. Lastly, process 100 can operate the vehicle at a drive-by-wire level where the user navigates the vehicle electronically (e.g., controls vehicle acceleration, deceleration, and turning electronically). In some examples, the vehicle can display the current automation level and/or all of the available automation levels. Process 100 can also automate vehicle operations at the automation levels defined by the U.S. Department of Transportation's National Highway Traffic Safety Administration (NHTSA). (See http://www.nhtsa.gov/About+NHTSA/Press+Releases/U.S.+Department+of+Transportation+Rel eases+Policy+on+Automated+Vehicle+Development.)
At step 130, process 100 alerts the driver or any designated third party that the vehicle must exit and/or is exiting automated driving operations and the driver or any designated third party must manually take over driving operations. In some examples, the vehicle may provide a haptic indicator (e.g., one or more vibrating seats and/or seatbelts). In some examples, the vehicle can provide a visual alert through the vehicle's one or more display systems (e.g., control panel, entertainment system, heads up display system, or infotainment system). In some examples, the alert can include activating visual and/or audio indicators. Visual indicators can include one or more of a headlight, a hazard light, a smog light, or any light source on the outside or the inside of the vehicle. The audio indicators can include one or more of a horn, a speaker, an alarm system, and/or any other sound source in the vehicle. In some examples, the visual and/or audio indicators can intensify (e.g., get louder or increase frequency) until the driver manually takes over driving operations. In some examples, the alert can be a phone call, text message, email, or any form of electronic or audible/visual communication to an electronic device associated with the vehicle's owner, driver, passenger(s), or any third party (e.g., smartphone and/or other electronic device). The designated third party can be the vehicle's owner, a call center, a 911 operator, and/or any other third party. In some examples, the designated third party can be located in the vehicle or can be located remotely from the vehicle.
At step 140, process 100 allows the driver to manually take over driving operations. Process 100 can allow the driver to take over driving operations after performing the alert operation in step 130 or from any automation level at step 120 (e.g., fully automated, semi-automated, assisted driving, and/or drive-by-wire). For example, the vehicle can be operating at the fully automated level (e.g., autonomously navigating to its destination) when the driver decides to manually take over driving operations. As another example, the vehicle can be operating in the semi-automated level when the vehicle enters an area with heavy fog (and/or any other severe weather conditions), requiring the driver to manually take over driver operations. In some examples, process 100 can notify the driver or any designated third party that the process exited the automated driving mode and entered step 140. In some examples, process 100 can return to operating the vehicle at the same or a different automated level (e.g., return to step 120) from step 140. For example, the driver can manually take over driving operations while navigating through the drive-thru lane of a fast food restaurant (e.g., manually operate the vehicle at step 140) and subsequently request that process 100 autonomously drive the vehicle home under the fully automated level at step 120.
At step 150, process 100 can disable the vehicle by shutting it down (e.g., turning off the engine) or by idling the vehicle. In some examples, the driver can request that process 100 disable the vehicle at step 140 or at any automated level at step 120 (e.g., the driver manually requests that process 100 transition to step 150 to disable the vehicle). In some examples, process 100 can automatically transition from step 120 to step 150 to disable the vehicle (e.g., as discussed in further detail below). For example, the vehicle can autonomously navigate through a route (e.g., operating driving operations at the fully automated level) until the vehicle reaches its destination. Upon reaching the destination, the vehicle can then automatically (e.g., without user input) park itself at the destination at step 120 and subsequently disable itself at step 150. In some examples, step 150 can include a safe pull over function (e.g., as described in further detail below) to ensure that the vehicle is not on a road and is not moving before the vehicle is disabled.
In some examples, possible transitions between automated levels 210, 220, 230, and 240 can be automatically detected. For example, the vehicle can be operating in the drive-by-wire level 240 with the driver electronically controlling the speed and steering of the vehicle when the vehicle uses its localization systems (e.g., GPS, radar, LIDAR, and/or camera systems) and map information to determine that the current road does not have any traffic lights and/or does not curve for a threshold distance (e.g., 3 or more miles) and automatically prompts the driver to transition to a higher level of autonomy (e.g., any of automated level 210, 220, or 230). For another example, the vehicle can be operating at semi-automated level 220 when the vehicle uses its sensors (e.g., GPS, radar, LIDAR, and/or camera systems) and map information to detect heavy pedestrian activity around a school zone or a park and automatically prompts the driver to transition to a lower level of autonomy (e.g., automated driving level 230 or 240). In some examples, the prompt can be a visual, haptic, and/or audio notification to the driver of the possible transition. In some examples, the notification can be on any of the vehicle's display system(s) (e.g., the control, entertainment, infotainment, and/or heads up display system(s)), a smartphone, or any other electronic device with a display. In some examples, the vehicle can provide an audible notification through the vehicle's speaker(s) or any other sound source in the vehicle. In some examples, the notification can be a phone call, text message, email, or any form of electronic or audible/visual communication to an electronic device. In some examples, the driver can confirm or reject the transition to a different automated level through a control system such as a button, a touch screen, a voice command, a computer, a smartphone, or any device or system that allows user input to be entered.
In some examples, the transitions between automated levels 210, 220, 230, and 240 can be automatic. In this way, the examples described above can transition between automated levels without input from the driver. For example, the vehicle can be operating at semi-automated level 220 when the vehicle uses its sensors (e.g., GPS, radar, LIDAR, and/or camera systems) and map information to detect that it is entering a freeway and the vehicle automatically transitions to fully automated level 210. The vehicle can then automatically transition back to operating at semi-automated level 220 or to any other lower level of autonomy (e.g., automated driving level 230 or 240) when the vehicle uses its sensors and map information to detect that it is exiting the freeway. In another example, the vehicle can be operating at assisted level 230 when the vehicle uses its sensors and map information to detect that it is entering a parking lot and transitions to drive-by-wire level 240. In some examples, the vehicle can transition to fully automated level 210 when entering an automated driving lane, automated driving road, and/or any other designated automated driving area. In some examples, the driver can set preferences for under what circumstances to operate the vehicle at each of automated levels 210, 220, 230, and 240. For example, the driver can set preferences to operate the vehicle at fully automated level 210 on all freeways, on particular freeways, and/or on particular freeways at particular times, to operate the vehicle at drive-by-wire level 240 at all parking lots and/or particular parking lots, to operate the vehicle at assisted level 230 on particular roads, highways, and/or particular stretches of roads and/or highways, or to operate the vehicle at any desired automated level for any particular set of circumstances (e.g., location, time, traffic, weather, and/or any other driving conditions).
In some examples, one or more of the modes may not be associated with criteria for transitioning out of those modes. Instead, while the vehicle is operating in a particular mode, it may continuously or periodically monitor conditions in its surroundings. Upon determining that the conditions in its surroundings satisfy criteria for transitioning into another mode (rather than criteria for transitioning out of the particular mode), the vehicle can both transition out of the particular mode and transition into the other mode in accordance with the satisfaction of the criteria for transitioning into the other mode. In some examples, a given set of conditions in the vehicle's surroundings will only correspond to a single mode (e.g., the given set of conditions trigger a determination that the vehicle should transition into a single particular mode), while in some examples, a given set of conditions in the vehicle's surroundings may correspond to more than one mode (e.g., the given set of conditions trigger a determination that the vehicle should transition into multiple candidate modes). In such examples, the vehicle can transition to a respective mode of the multiple candidate modes based on a predefined priority ordering of the modes (e.g., a predefined hierarchy of modes, such that the vehicle transitions to the mode with the highest position in the mode hierarchy of the multiple candidate modes).
In some examples, lane-following mode 302 can be the default driving mode in which the vehicle can initially operate when process 100 enters automate step 120 (e.g., as described above with reference to
Passing mode 304 can correspond to a mode to which the vehicle can transition if conditions in the vehicle's surroundings dictate that the vehicle should pass another vehicle in the same driving lane. For example, if the vehicle determines that another vehicle in front of it is driving significantly below the speed limit (e.g., 5 miles per hour or more below the limit) or is slowing down, and the flow of traffic in another adjacent lane is faster than the speed of the other vehicle, the vehicle can automatically transition from mode 302 to mode 304. In some examples, passing mode 304 can simply cause the vehicle to change lanes, and not necessarily pass the other vehicle. The logic or procedures associated with mode 304 can be specific to mode 304 to ensure that successful passing or lane changing is completed. The vehicle can operate in mode 304 until the criteria for transitioning back into mode 302 (or the criteria for transitioning into another mode) are satisfied. In some examples, the vehicle must transition back into mode 302 before being able to transition into another mode (e.g., all mode changes are between mode 302 and another mode). In some examples, the vehicle is able to transition from any driving mode into any other driving mode without first needing to transition to mode 302. The above-described mode transition details can apply analogously to other driving modes described below, but will not be repeated for brevity.
Aborting lane change 306 can correspond to a cautionary mode into which the vehicle can automatically transition if conditions in the vehicle's surroundings dictate that the vehicle should abort lane change (or passing) procedures. For example, if the vehicle determines that a vehicle or an object has quickly and/or unexpectedly moved into the vehicle's path (e.g., a speeding vehicle in the adjacent lane), and poses a risk of colliding with the vehicle (e.g., the vehicle or object is within a threshold distance of the vehicle), the vehicle can transition into mode 306. The logic or procedures in mode 306 can be specific to mode 306 for avoiding a collision with the vehicle or object. For example, while in mode 306, the vehicle can be prepared to return to (or stay within) the current driving lane, and can increase a confidence factor in its rear sensor information (e.g., increase the weight given to information received from sensors for detecting conditions in the vehicle's rear surroundings when making various autonomous driving determinations). In this way, the vehicle can navigate back into (or stay within) the current driving lane while maintaining a safe distance (e.g., greater than a predetermined distance) from a trailing vehicle, so as to avoid a collision with the trailing vehicle as well. The vehicle can transition out of mode 306 in response to determining that conditions in its surroundings indicate that it is safe to do so (e.g., can transition back into mode 302 in response to determining that the vehicle will not collide with the vehicle or object).
Merge mode 308 can correspond to a driving mode into which the vehicle can automatically transition if the vehicle determines that it must merge into traffic (e.g., at a highway on-ramp, at a yield sign, into a rotunda, or any other instance that requires the vehicle to merge with another lane). The logic and procedures in mode 308 can be specific to mode 308 for safely merging into traffic or another lane. For example, while in mode 308, the vehicle can slow down, stop, or speed up and be prepared to make quick changes to its driving speed (e.g., with its brakes or its accelerator) or steering to safely merge into traffic. The vehicle can transition out of mode 308 in response to determining that it successfully merged into traffic (e.g., can transition back into mode 302).
Safe pull over mode 310 can correspond to a driving mode into which the vehicle can automatically transition if the vehicle determines that it must pull over after detecting a flat tire, engine trouble, a faulty sensor, or any other malfunction. The vehicle can also transition into mode 310 to allow an emergency vehicle (e.g., a police car, a fire truck, or an ambulance) to pass. The logic and procedures in mode 310 can be specific to mode 310 for safely pulling over. For example, while in mode 310, the vehicle can focus its sensors on the conditions on the vehicle's right when the vehicle is pulling over to the right side of the road to identify a path to move over to the right side of the road that is clear of obstacles. The vehicle can follow the identified path while monitoring other objects or vehicles to the vehicle's right to avoid collisions with those objects or vehicles. In this way, the vehicle can quickly and safely pull over. In some examples, the safe pull over mode 310 can be incorporated into step 130 and/or step 150 of process 100 (e.g., as described above with reference to
Low speed navigation mode 312 can correspond to a driving mode into which the vehicle can automatically transition if the vehicle determines that it must navigate at a low speed (e.g., through traffic, a parking lot, a school zone, a narrow driveway, around a stalled vehicle or vehicle(s) involved in an accident, or any other situation that would require the vehicle to travel at a low speed). The logic and procedures in mode 312 can be specific to mode 312 for navigating the vehicle below a speed threshold (e.g., 20 miles per hour or less). For example, while in mode 312, the vehicle can automatically navigate itself along a driving path composed of a series of waypoints. In additional longitudinal and latitudinal coordinates, these waypoints can each have a corresponding speed and heading for the vehicle to follow. In some examples, the vehicle can generate the waypoint path information based on location, traffic, or any other relevant information received by the vehicle's sensors or from an Internet connection to the vehicle. In some examples, mode 312 can ignore road markings (e.g., lane markings, parking spot markings, and crosswalk markings). In some examples, the vehicle can focus its sensors on the area immediately surrounding the vehicle because of the vehicle's slow speed. In this way, the vehicle can safely navigate itself through narrow spaces. The vehicle can transition out of mode 312 in response to determining that the need to travel at a low speed has passed (e.g., can transition back to mode 302).
The modes illustrated in
As another example, the vehicle can have access to a mode for racing. The logic or procedures in a racing mode can be specific to this mode for safely driving around and ahead of other vehicles along a race track. For example, while in the racing mode, the vehicle can travel at top speed at close proximity to other vehicles on the race track. In this mode, the vehicle can implement aggressive passing tactics (e.g., cutting off other vehicles at close proximities) and limit deceleration (e.g., braking). In some examples, this mode can simply record data about the vehicle and/or track that can be transferred to a computer for future use by a race crew.
It should be appreciated that in some embodiments a learning algorithm can be implemented such as a neural network (deep or shallow, which may employ a residual learning framework) and be applied instead of, or in conjunction with, another algorithm described herein to create additional modes or to improve the above-described modes and/or transitions between modes. Such learning algorithms may implement a feedforward neural network (e.g., a convolutional neural network) and/or a recurrent neural network, with structured learning, unstructured learning, and/or reinforcement learning. In some embodiments, backpropagation may be implemented (e.g., by implementing a supervised long short-term memory recurrent neural network, or a max-pooling convolutional neural network which may run on a graphics processing unit). Moreover, in some embodiments, unstructured learning methods may be used to improve structured learning methods. Moreover still, in some embodiments, resources such as energy and time may be saved by including spiking neurons in a neural network (e.g., neurons in a neural network that do not fire at each propagation cycle).
In some examples, the vehicle control system 800 can be connected (e.g., via controller 820) to one or more actuator systems 830 in the vehicle and one or more indicator systems 840 in the vehicle. The one or more actuator systems 830 can include, but are not limited to, a motor 831 or engine 832, battery system 833, transmission gearing 834, suspension setup 835, brakes 836, steering system 837, and door system 838. The vehicle control system 800 can control, via controller 820, one or more of these actuator systems 830 during vehicle operation; for example, to open or close one or more of the doors of the vehicle using the door actuator system 838, to control the vehicle during autonomous driving or parking operations, which can utilize the automation level or driving mode determinations made by the on-board computer 810, using the motor 831 or engine 832, battery system 833, transmission gearing 834, suspension setup 835, brakes 836, and/or steering system 837, etc. The one or more indicator systems 840 can include, but are not limited to, one or more speakers 841 in the vehicle (e.g., as part of an entertainment system in the vehicle), one or more lights 842 in the vehicle, one or more displays 843 in the vehicle (e.g., as part of a control or entertainment system in the vehicle), and one or more tactile actuators 844 in the vehicle (e.g., as part of a steering wheel or seat in the vehicle). The vehicle control system 800 can control, via controller 820, one or more of these indicator systems 840 to provide indications to a driver of the vehicle of the automation level or driving mode determinations made by the on-board computer 810 (e.g., to alert the driver to take control of the vehicle if the on-board computer determines that conditions in the vehicle's surroundings warrant driver intervention). For example, on-board computer 810 can store in its memory 816 driving mode 302 which includes particular settings of how the controller 820 controls the motor 831, battery system 833, transmission gearing 834, suspension 835, brakes 836, steering system 837, etc., when the vehicle is in driving mode 302. Similarly, on-board computer 810 can also include in its memory 816 program logic that determines whether to switch to a different driving mode or automation level when the processor receives inputs from one or more of the cameras 806, sensors 806, GPS receiver 808, and/or map information 805. When certain conditions are met, as described in this disclosure, on-board computer 810 can instruct the controller 820 to set the actuator systems 830 into a setting corresponding to the new driving mode or automation level. On-board computer 810 can also receive inputs from the cameras 806, sensors 806, GPS receiver 808, and/or map information 805, and control the actuator systems 830 while the vehicle is in a particular driving mode.
Thus, the examples of the disclosure provide various ways to operate a vehicle in accordance with predefined automation levels corresponding to a plurality of driving modes and different conditions in the vehicle's surroundings.
Therefore, according to the above, some examples of the disclosure are directed to a system comprising: one or more processors; and a memory including instructions, which when executed by the one or more processors, cause the one or more processors to perform a method comprising: operating a vehicle in a first automation level, the first automation level corresponding to a first plurality of modes for operating the vehicle, the first plurality of modes comprising logic for performing one or more automated driving operations, wherein the first automation level is associated with a first logic for transitioning between the first plurality of modes; while operating the vehicle in the first automation level, determining that automation level change criteria for transitioning from the first automation level to a second automation level, different from the first automation level, are satisfied; and in response to the determination, operating the vehicle in the second automation level, the second automation level corresponding to a second plurality of modes for operating the vehicle, the second plurality of modes comprising logic for performing one or more automated driving operations, wherein the second automation level is associated with a second logic, different from the first logic, for transitioning between the second plurality of modes. Additionally or alternatively to one or more of the examples disclosed above, in some examples, determining that the automation level change criteria for transitioning from the first automation level to the second automation level are satisfied is based on driver input. Additionally or alternatively to one or more of the examples disclosed above, in some examples, determining that the automation level change criteria for transitioning from the first automation level to the second automation level are satisfied is based on map information. Additionally or alternatively to one or more of the examples disclosed above, in some examples, determining that the automation level change criteria for transitioning from the first automation level to the second automation level are satisfied is based on characteristics in the vehicle's surroundings. Additionally or alternatively to one or more of the examples disclosed above, in some examples, in response to the determination that the automation level change criteria for transitioning from the first automation level to the second automation level are satisfied, notifying the driver of the determination. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the driver confirms or rejects operating the vehicle in the second automation level. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the first logic for transitioning between the first plurality of modes comprises logic for automatic transitions between the first plurality of modes; and the second logic for transitioning between the second plurality of modes comprises logic for automatic and manual transitions between the second plurality of modes. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the first logic and the second logic for automatic transitions are based on characteristics in the vehicle's surroundings; and the second logic for manual transitions are based on driver input. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the first logic for transitioning between the first plurality of modes comprises logic for automatic transitions between the first plurality of modes based on characteristics in the vehicle's surroundings; and the second logic for transitioning between the second plurality of modes comprises logic for manual transitions between the second plurality of modes based on driver input. Additionally or alternatively to one or more of the examples disclosed above, in some examples, while operating the vehicle in the second automation level, determining that respective automation level change criteria for transitioning from the second automation level to a respective automation level are satisfied; and in accordance with a determination that the respective automation level change criteria comprise automation level change criteria for transitioning from the second automation level to a third automation level, operating the vehicle in the third automation level, different from the first and second automation levels; and in accordance with a determination that the respective automation level change criteria comprise automation level change criteria for transitioning from the second automation level to the first automation level, operating the vehicle in the first automation level. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the third automation level corresponds to a third plurality of modes for operating the vehicle, the third plurality of modes comprising logic for performing one or more automated driving operations; and the third automation level is associated with a third logic, different from the first logic and the second logic, for manually transitioning between the third plurality of modes. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the third automation level comprises logic for operating the vehicle through drive-by-wire driving operation instructions entered by the driver. Additionally or alternatively to one or more of the examples disclosed above, in some examples, while operating the vehicle in the respective automation level, determining that respective automation level change criteria for exiting vehicle automation are satisfied; and in accordance with a determination that the respective automation level change criteria comprise automation level change criteria for transitioning from the respective automation level to alert the driver that the vehicle is exiting vehicle automation, alerting the driver that the vehicle is exiting the respective automation level, exiting the respective automation level, and enabling the driver to manually take over driving operations after performing the alert; in accordance with a determination that the respective automation level change criteria comprise automation level change criteria for transitioning from the respective automation level to enable the driver to manually take over driving operations, exiting the respective automation level and enabling the driver to manually take over driving operations; and in accordance with a determination that the respective automation level change criteria comprise automation level change criteria for transitioning from the respective automation level to disabling the vehicle, exiting the respective automation level and disabling the vehicle. Additionally or alternatively to one or more of the examples disclosed above, in some examples, determining that the respective automation level change criteria are satisfied is based on characteristics about the vehicle's surroundings. Additionally or alternatively to one or more of the examples disclosed above, in some examples, determining that the respective automation level change criteria are satisfied is based on map information.
Some examples of the disclosure are directed to a non-transitory computer-readable medium including instructions, which when executed by one or more processors, cause the one or more processors to perform a method comprising: operating a vehicle in a first automation level, the first automation level corresponding to a first plurality of modes for operating the vehicle, the first plurality of modes comprising logic for performing one or more automated driving operations, wherein the first automation level is associated with a first logic for transitioning between the first plurality of modes; while operating the vehicle in the first automation level, determining that automation level change criteria for transitioning from the first automation level to a second automation level, different from the first automation level, are satisfied; and in response to the determination, operating the vehicle in the second automation level, the second automation level corresponding to a second plurality of modes for operating the vehicle, the second plurality of modes comprising logic for performing one or more automated driving operations, wherein the second automation level is associated with a second logic, different from the first logic, for transitioning between the second plurality of modes.
Some examples of the disclosure are directed to a vehicle comprising: one or more processors; and a memory including instructions, which when executed by the one or more processors, cause the one or more processors to perform a method comprising: operating the vehicle in a first automation level, the first automation level corresponding to a first plurality of modes for operating the vehicle, the first plurality of modes comprising logic for performing one or more automated driving operations, wherein the first automation level is associated with a first logic for transitioning between the first plurality of modes; while operating the vehicle in the first automation level, determining that automation level change criteria for transitioning from the first automation level to a second automation level, different from the first automation level, are satisfied; and in response to the determination, operating the vehicle in the second automation level, the second automation level corresponding to a second plurality of modes for operating the vehicle, the second plurality of modes comprising logic for performing one or more automated driving operations, wherein the second automation level is associated with a second logic, different from the first logic, for transitioning between the second plurality of modes.
Some examples of the disclosure are directed to a method comprising: operating a vehicle in a first automation level, the first automation level corresponding to a first plurality of modes for operating the vehicle, the first plurality of modes comprising logic for performing one or more automated driving operations, wherein the first automation level is associated with a first logic for transitioning between the first plurality of modes; while operating the vehicle in the first automation level, determining that automation level change criteria for transitioning from the first automation level to a second automation level, different from the first automation level, are satisfied; and in response to the determination, operating the vehicle in the second automation level, the second automation level corresponding to a second plurality of modes for operating the vehicle, the second plurality of modes comprising logic for performing one or more automated driving operations, wherein the second automation level is associated with a second logic, different from the first logic, for transitioning between the second plurality of modes.
Although examples have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of examples of this disclosure as defined by the appended claims.
This application claims the benefit of U.S. Provisional Application No. 62/382,144, filed Aug. 31, 2016, the entirety of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62382144 | Aug 2016 | US |