Semiconductor Optical Amplifier (SOA)-based Mach-Zehnder interferometers (SOA-MZI) are widely used in fiber-optic communication systems for photonic re-amplification, reshaping (P2R), retiming (P3R), Optical Time-Division Demultiplexing (OTDM), and optical logic gates.
However, low extinction ratios at the output of SOA-MZIs tend to diminish the effectiveness of these devices as communication components. Accordingly, there is a need in the art for an improved SOA-MZI communication circuit.
According to one embodiment, an optical circuit is disclosed, which may include an SOA-MZI circuit providing an output signal; and a polarization filtering device (PFD) configured to receive the output signal of the SOA-MZI and to provide at least one signal at the output of the PFD.
Other aspects, features, advantages, etc. will become apparent to one skilled in the art when the description of the preferred embodiments of the invention herein is taken in conjunction with the accompanying drawings.
For the purposes of illustrating the various aspects of the invention, there are shown in the drawings forms that are presently preferred, it being understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.
In the following description, for purposes of explanation, specific numbers, materials and configurations are set forth in order to provide a thorough understanding of the invention. It will be apparent, however, to one having ordinary skill in the art that the invention may be practiced without these specific details. In some instances, well-known features may be omitted or simplified so as not to obscure the present invention. Furthermore, reference in the specification to phrases such as “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of phrases such as “in one embodiment” or “in an embodiment” in various places in the specification do not necessarily all refer to the same embodiment.
In this disclosure, we propose a method of using a polarization-filtering device (PFD) to improve the performance of an SOA-MZI, especially the optical extinction ratio thereof.
An SOA-MZI circuit 100 is shown schematically in
An input signal of wavelength λ2 from I2 is split into two paths at coupler C2104, passing through SOA A1110 and/or SOA A2112, wherein signals along paths 110 and 112 may recombine at coupler C3114. Another signal of wavelength λ1, shown as I1102, is directed through SOA A1, which induces an additional phase shift to the part of the I2 signal passing through SOA path A1110, due to a phenomenon called cross-phase modulation.
The intensity of the output signal “O” 116 depends on this phase shift. When the phase shift is 0 degrees or an even multiple of 180 degrees, constructive interference between the two λ2 signals occurs, resulting in a stronger signal. In contrast, when the phase shift (or, otherwise stated, “phase difference”) between the two signals is an odd multiple of 180 degrees, destructive interference occurs, thereby leading to a combined signal having a magnitude close to 0 if the amplitudes of two λ2 signals are equal.
In normal, non-inverting operation of the SOA-MZI (and in the absence of the I1 signal 102), the interferometer is set up so as to enable destructive interference between the signals proceeding through SOAs A1110 and A2112, by adjusting the magnitude of the injection current directed into SOAs A1110 and A2, respectively. However, there are two orthogonal polarization states, namely TE polarization and TM polarization, in the SOAs, and the current settings at which the interferometer 100 reaches destructive interference are, in general, different for these two polarization states.
If the input signal from I2 is not perfectly aligned with either polarization state, the destructive interference of the combined state will have much higher power than a combined signal arising with either of the orthogonal states. Thus, when signal I1102 is present, the SOA-MZI will have a lower extinction ratio due to the existence of higher zero-state power.
To confirm that the two polarization states achieve destructive interference at different current settings, the circuit of
In this embodiment, a polarization-aligned laser diode (LD) 206 directs light into the slow axis of a polarization maintaining fiber (PMF) 208. The PMF 208 is preferably substantially aligned with the Transverse Electrical (TE) polarization of the SOA-MZI chip 202. SOA-MZI circuit 202 may generally correspond to the construction of SOA-MZI circuit 100 which was described previously.
An ILX current driver 204 (available from ILX Lightwave Corp.) preferably directs current into the two SOAs 218-a, 218-b of the SOA-MZI interferometer 202. Current is preferably fixed for one SOA and preferably varies for the other SOA. The output from the SOA-MZI 202 is preferably directed through PMF 210, shown at the right of SOA-MZI 202. PMF 210, as with PMF 208 discussed above, is preferably at least approximately aligned with the TE polarization of the SOA-MZI 202.
First, the output power may be measured at PMF 210. Then, a polarization beam splitter (PBS) 212 may be attached to the output of PMF 210. The signals at the slow axis output (S.A.) 214 and fast axis output (F.A.) 216 of the PBS 212 may then be measured separately.
As shown in
Normally, the output of an SOA-MZI is taken directly without any polarization-filtering device (PFD), such as PBS 212 of
A polarization filtering device may be any device that is capable of allowing a signal of a selected polarization, or polarization range, to pass therethrough while blocking signals having other polarizations. Devices which may serve as a PFD include but are not limited to: a PBS (such as PBS 212), a single polarization fiber (SPF), a polarizer, or even a single-polarization amplifier. Upon deploying any of the above types of PFDs in the location of PBS 212 of
Thus, when using a PFD, such as, but not limited to a polarizer, aligned with the slow axis of the PMF 210, the extinction ratio is improved from 7.6 dB to 13.6 dB.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/893,187, filed Mar. 6, 2007, entitled “SOA-MZI performance With Polarization Filtering Device”, the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60893187 | Mar 2007 | US |