Incorporated by reference in its entirety is a computer-readable nucleotide/amino acid sequence listing submitted concurrently herewith, and identified as follows: One 156 KiloByte ASCII (Text) file named “20041_SeqList_ST25.txt” created on Jun. 11, 2015.
The present invention relates generally to systems, devices, and processes for facilitating various levels of control over cells and tissues in vivo, and more particularly to systems and methods for physiologic intervention wherein light may be utilized as an input to tissues which have been modified to become light sensitive.
An estimated 70 million people are affected by chronic pain. It is responsible for an estimated $100 billion a year in medical costs, lost working days, and workers compensation, and is a major risk factor for depression and suicide.
Pain can be divided into two general categories: nociceptive and neuropathic. In the former, mechanical, thermal, or chemical damage to tissue causes nociceptor response and initiates action potentials in nerve fibers. Afferent fibers terminate directly or indirectly on transmission cells in the spinal cord that convey information to the brainstem and midbrain. Neuropathic pain, in contrast, involves a miscoding of afferent input; mild inputs yield dramatic pain responses, through mechanisms that are not well understood. Often this is the result of an initial nociceptive pain that, instead of resolving with healing of the initial stimulus, proceeds to spontaneous pain and low-threshold for light touch to evoke pain.
Treatment of pain depends on many factors, including type, cause, and location. There are myriad options, most notably topical agents, acetaminophen and nsaids, antidepressants, anticonvulsant drugs, sodium and calcium channel antagonists, opioids, epidural and intrathecal analgesia, acupuncture and other alternative techniques, botulinum toxin injections, neurolysis, cryoneurolysis, spinal cord stimulation, neurosurgical techniques, radiofrequency ablation, peripheral nerve stimulation, transcutaneous electrical nerve stimulation, and rehabilitation therapy.
So many treatments exist because each has important limitations. For example, local anesthetic drugs block sodium channels, preventing neurons from achieving action potentials. However, effectiveness of this treatment is limited by the degree to which specificity for pain neurons can be maintained, avoiding the side effects of numbness or paralysis from blocking other sensory or motor fibers (as well as potential cardiac effects should the drug travel further through the circulatory system). In order to achieve this, low dosages are needed, requiring frequent administration of the drug. Additionally, not all kinds of pain react to local anesthetic treatment, and some cases become refractory over time, or require ever increasing doses.
Surgical treatments, including dorsal or cranial nerve rhizotomy, ganglionectomy, sympathectomy, or thalomatomy, are more drastic options, appropriate in certain severe cases. However, relief from these is unpredictable; notably, it is sometimes only temporary, and may involve complications. Spinal cord stimulation (SCS) is also used in some cases, attempting to limit chronic pain through placement of electrodes in the epidural space adjacent to a targeted spinal cord area thought to be causing pain; however, there is limited evidence of the effectiveness of this technique. In addition, because electrical stimulation is not selective, the stimulation excites motor nerves that produce twitching. Because spinal cord stimulation is excitatory patients often feel a tingling sensation.
While each of these traditional methods is effective in some cases, chronic pain remains a largely intractable problem. Thus, there is a clear need for new way to treat pain such as is described herein which offers the possibility to selectively interrupt or alter neurotransmission and even to interfere with the plastic changes in the nervous system underlying the development or persistence of chronic pain.
Pharmacological and direct electrical neuromodulation techniques have been employed in various interventional settings to address challenges such as prolonged orthopedic pain, epilepsy, and hypertension. Pharmacological manipulations of the neural system may be targeted to certain specific cell types, and may have relatively significant physiologic impacts, but they typically act on a time scale of minutes, whereas neurons physiologically act on a time scale of milliseconds. Electrical stimulation techniques, on the other hand, may be more precise from an interventional time scale perspective, but they generally are not cell type specific and may therefore involve significant clinical disadvantages. A new neurointerventional field termed “Optogenetics” is being developed which involves the use of light-sensitive proteins, configurations for delivering related genes in a very specific way to targeted cells, and targeted illumination techniques to produce interventional tools with both low latency from a time scale perspective, and also high specificity from a cell type perspective.
For example, optogenetic technologies and techniques recently have been utilized in laboratory settings to change the membrane voltage potentials of excitable cells, such as neurons, and to study the behavior of such neurons before and after exposure to light of various wavelengths. In neurons, membrane depolarization leads to the activation of transient electrical signals (also called action potentials or “spikes”), which are the basis of neuronal communication. Conversely, membrane hyperpolarization leads to the inhibition of such signals. By exogenously expressing light-activated proteins that change the membrane potential in neurons, light can be utilized as a triggering means to induce inhibition or excitation.
One approach is to utilize naturally-occurring genes that encode light-sensitive proteins, such as the so-called “opsins”. These light-sensitive transmembrane proteins may be covalently bonded to chromophore retinal, which upon absorption of light, isomerizes to activate the protein. Notably, retinal compounds are found in most vertebrate cells in sufficient quantities, thus eliminating the need to administer exogenous molecules for this purpose. The first genetically encoded system for optical control in mammalian neurons using light-sensitive signaling proteins was established in Drosophila melanogaster, a fruit fly species, and neurons expressing such proteins were shown to respond to light exposure with waves of depolarization and spiking. More recently it has been discovered that opsins from microorganisms which combine the light-sensitive domain with an ion pump or ion channel in the same protein may also modulate neuronal signaling to facilitate faster control in a single, easily-expressed, protein. In 2002, it was discovered that a protein that causes green algae (Chlamydomonas reinhardtii) to move toward areas of light exposure is a light-sensitive channel; exposure to light of a particular wavelength (maximum results at blue light spectrum 480 nm for the opsin ChR2, also known as “channelrhodopsin”) causes the membrane channel to open, allowing positive ions, such as sodium ions, to flood into the cell, much like the influx of ions that cause nerve cells to fire. Various other excitatory opsins, such as Volvox Channelrhodopsin (“VChR1”), Step Function Opsins (or “SFO”; ChR2 variants which can produce prolonged, stable, excitable states with blue-wavelength light exposure, and be reversed with exposure to green-wavelength light), or red-shifted optical excitation variants, such as “C1V1”, have been described by Karl Deisseroth and others, such as at the opsin sequence information site hosted at the URL: http://www.stanford.edu/group/dlab/optogenetics/sequence_info.html, the content of which is incorporated by reference herein in its entirety. Examples of opsins are described in U.S. patent application Ser. Nos. 11/459,638, 12/988,567, 12/522,520, and 13/577,565, and in Yizhar et al. 2011, Neuron 71:9-34 and Zhang et al. 2011, Cell 147:1446-1457, all of which are incorporated by reference herein in their entirety.
While excitation is desirable in some clinical scenarios, such as to provide a perception of a sensory nerve stimulation equivalent, relatively high-levels of excitation may also be utilized to provide the functional equivalent of inhibition in an “overdrive” or “hyperstimulation” configuration. For example, a hyperstimulation configuration has been utilized with capsaicin, the active component of chili peppers, to essentially overdrive associated pain receptors in a manner that prevents pain receptors from otherwise delivering pain signals to the brain (i.e., in an analgesic indication). An example of clinical use of hyperstimulation is the Brindley anterior sacral nerve root stimulator for electrical stimulation of bladder emptying (Brindley et al. Paraplegia 1982 20:365-381; Brindley et al. Journal of Neurology, Neurosurgery, and Psychiatry 1986 49:1104-1114; Brindley Paraplegia 1994 32:795-805; van der Aa et al. Archives of Physiology and Biochemistry 1999 107:248-256; Nosseir et al. Neurourology and Urodynamics 2007 26:228-233; Martens et al. Neurourology and Urodynamics 2011 30:551-555). In a parallel manner, hyperstimulation or overdriving of excitation with an excitatory opsin configuration may provide inhibitory functionality.
Other opsin configurations have been found to directly inhibit signal transmission without hyperstimulation or overdriving. For example, light stimulation of halorhodopsin (“NpHR”), a chloride ion pump, hyperpolarizes neurons and directly inhibits spikes in response to yellow-wavelength (˜589 nm) light irradiation. Other more recent variants (such as those termed “eNpHR2.0” and “eNpHR3.0”) exhibit improved membrane targeting and photocurrents in mammalian cells. Light driven proton pumps such as archaerhodopsin-3 (“Arch”), Mac, bacteriorhodopsin (“eBR”), and Guillardia theta rhodopsin-3 (“GtR3) may also be utilized to hyperpolarize neurons and block signaling. A new class of channel, recently described by Karl Deisseroth et al, such as in Science. April 2014. 344(6182):420-4, and Jonas Weitek, et al, in Science. April 2014. 344(6182):409-12, in which are incorporated by reference in their entirety, that is based on ChR but is modified to permit cations to pass through the “inhibitory” channel (which may be termed, by way of non-limiting examples; “iChR”, “iC1C2”, “ChloC”, or “SwiChR”) will open and permit large amounts of Cl-ions to pass, thereby hyperpolarizing the neuron more effectively and thus inhibiting the cell with greater efficiency and sensitivity. Thus this new class of channel, which is based on ChR (channel rhodopsin) but is modified to permit cations to pass through the channel rather than anions, provides yet further options. In response to blue light, this new “inhibitory” channel (iChR) will open and permit large amounts of Cl− ions to pass, thereby hyperpolarizing the neuron more effectively and thus inhibiting the cell with greater efficiency and sensitivity. When these opsins are transferred into neurons in the nervous system, those neurons can be activated or inactivated at will and with great efficiency and temporal control in response to specific wavelengths of light delivered by a light emitting device. Optogenetics therefore provides opportunities to regulate circuits with great biological specificity, so that only specific populations of neurons are activated or inhibited, without influencing nearby axons which are passing by and serve functions which are not intended targets of the therapy. This also provides opportunities for greater degree of restoration of broader circuit function by specific activating and/or inactivating multiple populations of neurons in a fashion that cannot be achieved with existing therapies. Direct hyperpolarization is a specific and physiological intervention that mimics normal neuronal inhibition. Suitable inhibitory opsins are also described in the aforementioned incorporated by reference resources.
Further, a ChR2 variant known as a Stabilized Step Function Opsin (or “SSFO”) provides light-activated ion channel functionality that can inhibit neural activity by depolarization block at the level of the axon. This occurs when the depolarization results in a depolarized membrane potential such that sodium channels are inactivated and no action potential of spikes can be generated.
We have demonstrated in animal models that NpHR can inhibit pain after the generation of neuropathic pain using intaneural AAV6 delivery i.e. viral delivery after onset of mechanical allodynia. That is, our optogenetic approach can inhibit pain when virus is delivered after nerve injury. We have also demonstrated in animal models that inhibitory chloride channels iC1C2167C and iC1C2167T (SwiChR) can reduce mechanical allodynia following intraneural AAV6 delivery. We have further demonstrated in animal models that intrathecal delivery is also a promising route by showing that the delivery of AAV8 expressing iC1C2 can transduce multiple dorsal root ganglion (DRG) and result in inhibition of neuropathic pain due to a Chronic Constrictive Injury (CCI). That is, inhibitory channels have been shown to inhibit pain using any of the herein described intraneural, intrathecal and direct DRG delivery approaches. Furthermore, light-mediated increases in pain tolerance were observed in the contralateral foot. This demonstrates this therapeutic delivery approach and the ability to affect multiple dermatomes following a single injection. That is, intrathecal delivery of AAV8:iC1C2 have been shown to result in more widespread transduction and inhibit pain in multiple dermatomes in response to light following a single injection. We have still further demonstrated in animal models that the present inventive optogenetic approach can reduce pain in at least two different neuropathic pain models, Chronic Constrictive Injury (CCI) and Complex Regional Pain Syndrome (CRPS). That is, our inventive optogenetic approach have been shown to inhibit pain in at least two different neuropathic pain models. We have also demonstrated in animal models that direct DRG injections of AAV5 expressing iC1C2 can lead to more restricted expression and result in inhibition of neuropathic pain in both rat CCI and CRPS models. That is, delivery of AAV5:iC1C2 directly to the DRG have been shown to result in opsin expression restricted to relevant neurons and inhibit pain in response to light in at least two different species utilizing the present invention. All of this supporting evidence strongly points to the present invention's clinical potentiality.
With a variety of opsins available for optogenetic experimentation in the laboratory, there is a need to bring such technologies to the stage of medical intervention, which requires not only a suitable selection of opsin-based tools for excitation and/or inhibition, but also a means for delivering the genetic material to the subject patient and a means for controllably illuminating the subject tissue within the patient to utilize the light-driven capabilities which may address the need for improved pain therapies.
One embodiment is directed to a system for controllably managing pain in the afferent nervous system of a patient having a targeted tissue structure that has been genetically modified to have light sensitive protein, comprising a light delivery element configured to direct radiation to at least a portion of a targeted tissue structure; a light source configured to provide light to the light delivery element; and a controller operatively coupled to light source; wherein the targeted tissue structure comprises a sensory neuron of the patient; and wherein the controller is configured to be automatically operated to illuminate the targeted tissue structure with radiation such that a membrane potential of cells comprising the targeted tissue structure is modulated at least in part due to exposure of the light sensitive protein to the radiation. The portion of the targeted tissue structure of the patient may be selected from the group consisting of: a spinal cord, a nerve cell body, a ganglion, a dorsal root ganglion, an afferent nerve fiber, an afferent nerve bundle, an afferent nerve ending, a sensory nerve fiber, a sensory nerve bundle, a sensory nerve ending, a sensory receptor, a free nerve ending, a mechanoreceptor, and a nociceptor. An applicator may be disposed to illuminate the target tissue structure, the applicator being comprised of at least a light delivery element and a sensor, wherein the sensor is configured to: produce an electrical signal representative of the state of the target tissue or its environment; and deliver the signal to the controller, wherein the controller is further configured to interpret the signal from the sensor and adjust at least one light source output parameter such that the signal is maintained within a desired range, wherein the light source output parameter may be chosen from the group containing of; current, voltage, optical power, irradiance, pulse duration, pulse interval time, pulse repetition frequency, and duty cycle. The sensor may be selected from the group consisting of: an optical sensor, a temperature sensor, a chemical sensor, and an electrical sensor. The controller further may be configured to drive the light source in a pulsatile fashion. The current pulses may be of a duration within the range of 1 millisecond to 100 seconds. The duty cycle of the current pulses may be within the range of 99% to 0.1%. The controller may be responsive to a patient input. The system may be configured such that patient input may trigger the delivery of current. The current controller further may be configured to control one or more variables selected from the group consisting of: the current amplitude, the pulse duration, the duty cycle, and the overall energy delivered. The light delivery element may be placed about at least 60% of circumference of a nerve or nerve bundle. The light delivery element may be placed inside of the body of a patient. The light delivery element may be placed outside of a body of a patient. The light sensitive protein may be an opsin protein. The opsin protein may be selected from the group consisting of: a depolarizing opsin, a hyperpolarizing opsin, a stimulatory opsin, an inhibitory opsin, a chimeric opsin, and a step-function opsin. The opsin protein may be selected from the group consisting of: NpHR, eNpHR 1.0, eNpHR 2.0, eNpHR 3.0, SwiChR, SwiChR 2.0, SwiChR 3.0, Mac, Mac 3.0, Arch, ArchT, Arch 3.0, ArchT 3.0, iChR, ChR2, C1V1-T, C1V1-TT, Chronos, Chrimson, ChrimsonR, CatCh, VChR1-SFO, ChR2-SFO, ChR2-SSFO, ChEF, ChIEF, Jaws, ChloC, Slow ChloC, iC1C2, iC1C2 2.0, and iC1C2 3.0. The light sensitive protein may be delivered to the target tissue using a virus. The virus may be selected from the group consisting of: AAV1, AAV2, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, lentivirus, and HSV. The virus may contain a polynucleotide that encodes for the opsin protein. The polynucleotide may encode for a transcription promoter. The transcription promoter may be selected from the group consisting of: CaMKIIa, hSyn, CMV, Hb9Hb, Thy1, and Ef1a. The viral construct may be selected from the group consisting of: AAV5-hSyn-eNpHR3.0, AAV5-CAG-eNpHR3.0, AAV5-hSyn-Arch3.0, AAV5-CAG-Arch3.0, AAV5-hSyn-iC1C23.0, AAV5-CAG-iC1C23.0, AAV5-hSyn-SwiChR3.0, AAV5-CAG-SwiChR3.0, AAV6-hSyn-eNpHR3.0, AAV6-CAG-eNpHR3.0, AAV6-hSyn-Arch3.0, AAV6-CAG-Arch3.0, AAV6-hSyn-iC1C23.0, AAV6-CAG-iC1C23.0, AAV6-hSyn-SwiChR3.0, AAV6-CAG-SwiChR3.0, AAV8-hSyn-eNpHR3.0, AAV8-CAG-eNpHR3.0, AAV8-hSyn-Arch3.0, AAV8-CAG-Arch3.0, AAV8-hSyn-iC1C23.0, AAV8-CAG-iC1C23.0, AAV8-hSyn-SwiChR3.0, and AAV8-CAG-SwiChR3.0. The light source may be configured to emit light having a wavelength that is within a wavelength range that is selected from the group consisting of: 440 nm to 490 nm, 491 nm to 540 nm, 541 nm to 600 nm, 601 nm to 650 nm, and 651 nm to 700 nm. The light delivery element may comprise a light emitting diode (LED). The virus may be delivered to an anatomical location that is different than that of the target tissue structure. Such anatomical location may be selected from the group consisting of: a spinal cord, a nerve cell body, a ganglion, a dorsal root ganglion, an afferent nerve fiber, an afferent nerve bundle, an afferent nerve ending, a sensory nerve fiber, a sensory nerve bundle, a sensory nerve ending, and a sensory receptor.
Referring to
As noted above, an optogenetics-based neuromodulation intervention involves determination of a desired nervous system functional modulation which can be facilitated by optogenetic excitation and/or inhibition, followed by a selection of neuroanatomic resource within the patient to provide such outcome, delivery of an effective amount of polynucleotide encoding a light-responsive opsin protein which is expressed in neurons of the targeted neuroanatomy, waiting for a period of time to ensure that sufficient portions of the targeted neuroanatomy will indeed express the light-responsive opsin protein-driven currents upon exposure to light, and delivering light to the targeted neuroanatomy to cause controlled, specific excitation and/or inhibition of such neuroanatomy by virtue of the presence of the light-responsive opsin protein therein.
While the development and use of transgenic animals has been utilized to address some of the aforementioned challenges, such techniques are not suitable in human medicine. Means to deliver the light-responsive opsin to cells in vivo are required; there are a number of potential methodologies that can be used to achieve this goal. These include viral mediated gene delivery, electroporation, optoporation, ultrasound, hydrodynamic delivery, or the introduction of naked DNA either by direct injection or complemented by additional facilitators such as cationic lipids or polymers.
Viral expression systems have the dual advantages of fast and versatile implementation combined with high copy number for robust expression levels in targeted neuroanatomy. Cellular specificity may be obtained with viruses by virtue of promoter selection if the promoters are small and specific, by localized targeting, and by restriction of opsin activation (i.e., via targeted illumination) of particular cells or projections of cells. In an embodiment, an opsin is targeted by methods described in Yizhar et al. 2011, Neuron 71:9-34. In addition, different serotypes of the virus (conferred by the viral capsid or coat proteins) will show different tissue tropism. Lenti- and adeno-associated (“AAV”) viral vectors have been utilized successfully to introduce opsins into the mouse, rat and primate brain. Other vectors include but are not limited to equine infectious anemia virus pseudotyped with a retrograde transport protein (e.g., Rabies G protein), and herpes simplex virus (“HSV”).
Additionally, these have been well tolerated and highly expressed over relatively long periods of time with no reported adverse effects, providing the opportunity for long-term treatment paradigms. Lentivirus, for example, is easily produced using standard tissue culture and ultracentrifuge techniques, while AAV may be reliably produced either by individual laboratories or through core viral facilities. AAV is a preferred vector due to its safety profile, and AAV serotypes 1 and 6 have been shown to infect motor neurons following intramuscular injection in primates. Additionally, AAV serotype 2 has been shown to be expressed and well tolerated in human patients.
AAV6 may be a preferred serotype for intraneural injections as it has been demonstrated to preferentially infect nociceptive fibers following nerve injection in rodents.
AAV8 may be a preferred serotype for intrathecal injections as it has been demonstrated to efficiently transduce DRG neurons following lumbar puncture in rodents, dogs and pigs.
AAV5 may be a preferred serotype for direct DRG injections as it has high neural tropism when injected into rodent and primate brains, but also, has low tropism for axons of passage, which may be important to restrict expression from motor neurons which have axons of passage adjacent to the DRG. AAV2 may also be a preferred serotype for direct DRG injections as it has experience in neural parenchyma injections in the humans, and also, has limited tropism for axons of passage.
Viral expression techniques, generally comprising delivery of DNA encoding a desired opsin and promoter/catalyst sequence packaged within a recombinant viral vector have been utilized with success in mammals to effectively transfect targeted neuroanatomy and deliver genetic material to the nuclei of targeted neurons, thereby inducing such neurons to produce light-sensitive proteins which are migrated throughout the neuron cell membranes where they are made functionally available to illumination components of the interventional system. Typically a viral vector will package what may be referred to as an “opsin expression cassette”, which will contain the opsin (e.g., ChR2, NpHR, etc.) and a promoter that will be selected to drive expression of the particular opsin within a targeted set of cells. In the case of adeno-associated virus (or AAV), the gene of interest (opsin) can be in a single stranded configuration with only one opsin expression cassette or in a self-complementary structure with two copies of opsin expression cassette complimentary in sequence with one another and connected by hairpin loops. The self-complementary AAVs are thought to be more stable and show higher expression levels and shows faster expression. The promoter may confer specificity to a targeted tissue, such as in the case of the human synapsin promoter (“hSyn”) or the human Thy1 promoter (“hThy1”) which allow protein expression of the gene under its control in neurons. Another example is the calcium/calmodulin-dependent kinase II promoter (“CAMKII”), which allows protein expression of the gene under its control only in excitatory neurons, a subset of the neuron population. Alternatively, a ubiquitous promoter may be utilized, such as the human cytomegalovirus (“CMV”) promoter, or the chicken beta-actin (“CBA”) promoter, each of which is not particularly neural specific, and each of which has been utilized safely in gene therapy trials for neurodegenerative disease. Viral constructs carrying opsins are optimized for specific neuronal populations and are not limited to such illustrative examples.
Viral expression systems have the dual advantages of fast and versatile implementation combined with high infective/copy number for robust expression levels in targeted neuroanatomy. Cellular specificity may be obtained with viruses by virtue of promoter selection if the promoters are small, specific, and strong enough, by localized targeting of virus injection, as discussed in further detail below, and by restriction of opsin activation (i.e., via targeted illumination) of particular cells or projections of cells, also as described in further detail below. In an embodiment, an opsin is targeted by methods described in Yizhar et al. 2011, Neuron 71:9-34. In addition, different serotypes of the virus (conferred by the viral capsid or coat proteins) will show different tissue trophism. Lenti- and adeno-associated (“AAV”) viral vectors have been utilized successfully to introduce opsins into the mouse, rat and primate brain. Additionally, these have been well tolerated and highly expressed over relatively long periods of time with no reported adverse effects, providing the opportunity for long-term treatment paradigms. Lentivirus, for example, is easily produced using standard tissue culture and ultracentrifuge techniques, while AAV may be reliably produced either by individual laboratories or through core viral facilities. Viruses have been utilized to target many tissue structures and systems, including but not limited to hypocretin neurons in the hypothalamus, excitatory pyramidal neurons, basal ganglia dopaminergic neurons, striatal GABAergic neurons, amygdala glutamatergic neurons, prefrontal cortical excitatory neurons and others, as well as astroglia. For example, it has been shown that the use of AAV-delivered ChR2 to control astroglial activity in the brainstem of mice and create a mechanism by which astroglia can transfer systemic information from the blood to neurons underlying homeostasis, in this case directly modulating neurons that manipulate the rate of respiration. AAV is a preferred vector due to its safety profile, and AAV serotypes 1 and 6 have been shown to infect motor neurons following intramuscular injection in primates. Other vectors include but are not limited to equine infectious anemia virus pseudotyped with a retrograde transport protein (e.g., Rabies G protein), and herpes simplex virus (“HSV”).
Delivery of the virus comprising the light-responsive opsin protein to be expressed in neurons of the targeted neuroanatomy may involve injection, infusion, or instillation in one or more configurations. By way of nonlimiting example, in a Pain therapy configuration, delivery means may include tissue structure injection (or infusion) (i.e., directly into the DRG, and/or the intrathecal space, and/or the targeted nerve or bundle thereof). Each of these injection configurations is explored in further detail below.
In one embodiment, nerve fibers may be targeted by direct injection (i.e., injection into the nerve itself). This approach, which may be termed “intrafascicular” or “intraneural” injection, involves placing a needle into the fascicle of a nerve bundle. Intrafascicular injections are an attractive approach because they allow specific targeting those neurons which may innervate a relatively large target (e.g., fibers across entire kidney, fibers across entire dermatome of skin, fibers across entire stomach wall) with one injection (e.g., before the fibers enter the tissue and anatomically bifurcate). The pertinent vector solution may be injected through the needle where it may diffuse throughout the entire nerve bundle (10 to 1000's of axon fibers). The vector may then enter the individual axon fibers through active (receptor-mediated) or passive (diffusion across intact membranes or transiently disrupted membranes) means. Once it has entered the axon, the vector may be delivered to the cell body via retrograde transport mechanisms, as described above. The number of injections and dose of virus injected to the nerve are dependent upon the size of the nerve, and can be extrapolated from successful transduction studies. For example, injection of the sciatic nerve of mice (approximately 0.3 mm diameter) with 0.002 mL saline containing 1×109 vg of AAV has been shown to result in efficient transgene delivery to sensory neurons involved in pain sensing. Likewise, injection of the sciatic nerve of rats (1 mm diameter) with 0.010 mL saline containing 1-4×1010 vg of AAV has also achieved desirable transfection results. The trigeminal nerve in humans is 2 mm in diameter, and through extrapolation of the data from these pertinent studies, the trigeminal nerve may be transfected to efficiently deliver a transgene to these pertinent pain neurons using a direct injection of 0.05 mL saline containing 4×1010×1014 vg of AAV into the trigeminal bundle. These titers and injection volumes are illustrative examples and are specifically determined for each viral construct-target neuron pairing.
The protocol for nerve injections will vary depending upon the target. Superficial nerves may be targeted by making an incision through the skin, and then exposing the nerve through separation of muscles, fascia and tendons. Deeper nerves (i.e., outside of the abdominal and thoracic cavity—such as the pudendal nerve) may be targeted through ultrasound-guided surgical intervention. Nerves in the abdominal cavity may be targeted through laparoscopic surgical approaches wherein one or more small incisions may be made through the skin and other structures (such as the abdominal wall) to allow insertion of the surgical apparatus (camera, needle, tools, etc.) to a position adjacent the anatomy of interest. The needle may be guided into the nerve (as visualized through the camera and other available imaging systems, such as ultrasound, fluoroscopy, radiography, etc.). In all cases, the vector solution may be injected as a single bolus dose, or slowly through an infusion pump (0.001 to 0.1 mL/min).
In another particular example of intraneural injection, nociceptive fibers of the trigeminal nerve may be directly injected to address neuropathic pain symptoms, as briefly described above. In one embodiment, the trigeminal nerve may be directly injected with an AAV vector solution either through exposure of the nerve or through the skin via ultrasound guidance. Once in the nerve fascicle, the vector is configured to preferentially enter the non-myelinated or poorly-myelinated fibers that correspond to those cells mediating pain.
In another particular example of intraneural injection, the sciatic nerve may be injected with an AAV vector solution either through exposure of the nerve or through the skin via ultrasound guidance. The vector may be configured such that once it accesses the nerve fascicle, it preferentially enters the sensory neurons or motor neurons responsible for the symptoms of spasticity.
In another particular example of intraneural injection, the cervical vagus nerve may be injected with an AAV vector solution through exposure of the nerve in the neck. Once in the nerve fascicle, the vector may be configured to preferentially enter the relevant nerve fibers that are the mediators of the therapeutic effect of electrical vagus nerve stimulation for epilepsy.
In another particular example of intraneural injection, the cervical vagus nerve may be injected with an AAV vector solution through exposure of the nerve in the neck. Once in the nerve fascicle, the vector may be configured to preferentially enter the relevant nerve fibers that are the mediators of the therapeutic effect of vagus electric nerve stimulation for depression.
As mentioned above, injection into the ganglion may be utilized to target the neural cell bodies of peripheral nerves. Ganglia consist of sensory neurons of the peripheral nervous system, as well as autonomic neurons of the parasympathetic and sympathetic nervous system. A needle may be inserted into the ganglion which contains the cell bodies and a vector solution injected through the needle, where it may diffuse throughout the tissue and be taken up by the cell bodies (100s to 1000s of cells). In one embodiment, a dose of approximately 0.1 mL saline containing from 1×1011 vg to 1×1014 vg of AAV may be used per ganglion. There are different types of ganglia that may be targeted. Dorsal root ganglion of the spinal cord may be injected in a similar method that is used during selective dorsal rhizotomy (i.e. injection via the intrathecal subarachnoid space of the spinal cord), except rather than cutting the nerves, the dorsal root ganglia may be injected. Other ganglia not in the abdominal cavity, such as the nodose ganglion of the vagus nerve, may be targeted by making an incision through the skin, and then exposing the ganglia through separation of muscles, fascia and tendons. Ganglia in the abdominal cavity, such as the ganglia of the renal plexus, may be injected through laparoscopic techniques, wherein one or more small incisions may be made through the skin and abdominal wall to allow insertion of the surgical apparatus (camera, needle, tools, etc.) to locations facilitating access and imaging of the pertinent targeted tissue. The needle may be guided into the ganglia (as visualized through a camera or other imaging device, such as ultrasound or fluoroscopy). In all cases, the vector solution may be injected as a single bolus dose, or slowly through an infusion pump (0.001 to 0.1 mL/min). These ranges are illustrative, and doses are tested for each virus-promoter-opsin construct pairing them with the targeted neurons.
In one particular example of ganglion injection, the dorsal root ganglia mediating clinical neuropathic pain may be injected with an AAV vector solution, preferably containing an AAV vector that has tropism for cell body.
In another particular example of ganglion injection, the dorsal root ganglia mediating undesired muscular spasticity may be injected with an AAV vector solution. An AAV vector that has tropism for cell body may be used towards this goal, as is described elsewhere herein.
In addition to the method described previously for direct ganglion injection (i.e. enter through the route used for dorsal rhizotomy, however, rather than cutting the nerve we will inject the viral solution) we propose an alternative method wherein a myelogram may be obtained by administering contrast medium into the dorsal subarachnoid space. A guide needle may then be passed through the skin lateral to the midline and progressed ventromedially toward the DRG under CT guidance. Upon the needle being directly adjacent to the dorsal aspect of the DRG, the stylet of the guide needle may be withdrawn and more contrast medium may be injected to verify the tip has reached the lateral recess of the intrathecal space without penetrating the DRG. A second stepped cannula may then be inserted through the guide needle such that it may puncture the DRG by a predetermined length (by way of non-limiting example, for between 1 and 2 mm). Then a higher gauge needle (32 to 34 G) may be put through the second cannula to penetrate further into the DRG. The virus may then be delivered through this needle at a rate between 50 nL and 1 μL per minute. Volumes between 5 and 100 μL may be delivered containing between 5×109 vg and 1×1014 vg of AAV.
Finally, topical injection or application to a tissue structure surface may be utilized to deliver genetic material for optogenetic therapy. Recombinant vectors are capable of diffusing through membranes and infecting neural nerve endings following such topical application or exposure. Examples are the infection of sensory fibers following topical application on skin, which has been shown in pain treatment studies. Likewise, efficacy of topical application of viral vectors has been increased using vector solutions suspended in gels. In one embodiment, a vector may be suspended in a gel and applied (e.g., swabbed, painted, injected, or sprayed) to the surface of tissues that have high densities of targeted superficial nerve fibers. With such embodiment, vectors will diffuse through the gel and infect nerve fibers via diffusion across intact neural fiber membranes. Internal topical application may be achieved using laparoscopic techniques, wherein one or more small incisions may be made through the skin and other pertinent tissue structures (such as the abdominal wall) to allow insertion of the surgical apparatus (camera, needle, tools, etc.). A needle may be guided into the target tissue (as visualized through the camera or other imaging devices). In all cases, the vector may be mixed with the gel (e.g. the product sold under the tradename “KY Jelly” by Johnson & Johnson Corporation) and then sprayed onto, painted onto, or injected out upon the surface of the pertinent tissue. A dose of approximately 0.1 mL saline containing 1×1010 vg to 1×1014 vg of AAV may be used to cover each 1 cm2 area. These ranges are illustrative, and doses are tested for each virus-promoter-opsin construct pairing them with the targeted neurons.
In one particular example of topical application, a solution or gel may be applied to infect the targeted afferent nerve fibers of the skin, such as, but not limited to, the free nerve endings which reside in the upper dermis and epidermis.
Alternately, the micropuncture device shown in
Referring back to
Referring to
Referring to
Referring to
Referring to
Organic LEDs (or “OLED”s) are light emitting diodes wherein the emissive electroluminescent layer is a film of organic compound that emits light in response to an electric current. This layer of organic semiconductor material is situated between two electrodes, which can be made to be flexible. At least one of these electrodes may be made to be transparent. The nontransparent electrode may be made to serve as a reflective layer along the outer surface on an optical applicator, as will be explained later. The inherent flexibility of OLEDs provides for their use in optical applicators such as those described herein that conform to their targets or are coupled to flexible or movable substrates, as described above in reference to
Other suitable light sources for embodiments of the inventive systems described herein include polymer LEDs, quantum dots, light emitting electrochemical cells, laser diodes, vertical cavity surface-emitting lasers, and horizontal cavity surface-emitting lasers.
Polymer LEDs (or “PLED”s), and also light-emitting polymers (“LEP”), involve an electroluminescent conductive polymer that emits light when connected to an external voltage. They are used as a thin film for full-spectrum color displays. Polymer OLEDs are quite efficient and require a relatively small amount of power for the amount of light produced.
Quantum dots (or “QD”) are semiconductor nanocrystals that possess unique optical properties. Their emission color may be tuned from the visible throughout the infrared spectrum. They are constructed in a manner similar to that of OLEDs.
A light-emitting electrochemical cell (“LEC” or “LEEC”) is a solid-state device that generates light from an electric current (electroluminescence). LECs may be usually composed of two electrodes connected by (e.g. “sandwiching”) an organic semiconductor containing mobile ions. Aside from the mobile ions, their structure is very similar to that of an OLED. LECs have most of the advantages of OLEDs, as well as a few additional ones, including:
Semiconductor Lasers are available in a variety of output colors, or wavelengths. There are a variety of different configurations available that lend themselves to usage in the present invention, as well. Indium gallium nitride (InxGa1-xN, or just InGaN) laser diodes have high brightness output at both 405, 445, and 485 nm, which are suitable for the activation of ChR2. The emitted wavelength, dependent on the material's band gap, can be controlled by the GaN/InN ratio; violet-blue 420 nm for 0.2In/0.8Ga, and blue 440 nm for 0.3In/0.7Ga, to red for higher ratios and also by the thickness of the InGaN layers which are typically in the range of 2-3 nm.
A laser diode (or “LD”) is a laser whose active medium is a semiconductor similar to that found in a light-emitting diode. The most common type of laser diode is formed from a p-n junction and powered by injected electric current. The former devices are sometimes referred to as injection laser diodes to distinguish them from optically pumped laser diodes. A laser diode may be formed by doping a very thin layer on the surface of a crystal wafer. The crystal may be doped to produce an n-type region and a p-type region, one above the other, resulting in a p-n junction, or diode. Laser diodes form a subset of the larger classification of semiconductor p-n junction diodes. Forward electrical bias across the laser diode causes the two species of charge carrier—holes and electrons—to be “injected” from opposite sides of the p-n junction into the depletion region. Holes are injected from the p-doped, and electrons from the n-doped, semiconductor. (A depletion region, devoid of any charge carriers, forms as a result of the difference in electrical potential between n- and p-type semiconductors wherever they are in physical contact.) Due to the use of charge injection in powering most diode lasers, this class of lasers is sometimes termed “injection lasers” or “injection laser diodes” (“ILD”). As diode lasers are semiconductor devices, they may also be classified as semiconductor lasers. Either designation distinguishes diode lasers from solid-state lasers. Another method of powering some diode lasers is the use of optical pumping. Optically Pumped Semiconductor Lasers (or “OPSL”) use a III-V semiconductor chip as the gain media, and another laser (often another diode laser) as the pump source. OPSLs offer several advantages over ILDs, particularly in wavelength selection and lack of interference from internal electrode structures. When an electron and a hole are present in the same region, they may recombine or “annihilate” with the result being spontaneous emission—i.e., the electron may re-occupy the energy state of the hole, emitting a photon with energy equal to the difference between the electron and hole states involved. (In a conventional semiconductor junction diode, the energy released from the recombination of electrons and holes is carried away as phonons, i.e., lattice vibrations, rather than as photons.) Spontaneous emission gives the laser diode below lasing threshold similar properties to an LED. Spontaneous emission is necessary to initiate laser oscillation, but it is one among several sources of inefficiency once the laser is oscillating. The difference between the photon-emitting semiconductor laser and conventional phonon-emitting (non-light-emitting) semiconductor junction diodes lies in the use of a different type of semiconductor, one whose physical and atomic structure confers the possibility for photon emission. These photon-emitting semiconductors are the so-called “direct bandgap” semiconductors. The properties of silicon and germanium, which are single-element semiconductors, have bandgaps that do not align in the way needed to allow photon emission and are not considered “direct.” Other materials, the so-called compound semiconductors, have virtually identical crystalline structures as silicon or germanium but use alternating arrangements of two different atomic species in a checkerboard-like pattern to break the symmetry. The transition between the materials in the alternating pattern creates the critical “direct bandgap” property. Gallium arsenide, indium phosphide, gallium antimonide, and gallium nitride are all examples of compound semiconductor materials that may be used to create junction diodes that emit light.
Vertical-cavity surface-emitting lasers (or “VCSEL”s) have the optical cavity axis along the direction of current flow rather than perpendicular to the current flow as in conventional laser diodes. The active region length is very short compared with the lateral dimensions so that the radiation emerges from the surface of the cavity rather than from its edge as shown in the figure. The reflectors at the ends of the cavity are dielectric mirrors made from alternating high and low refractive index quarter-wave thick multilayer. VCSELs allow for monolithic optical structures to be produced.
Horizontal cavity surface-emitting lasers (or “HCSEL”s) combine the power and high reliability of a standard edge-emitting laser diode with the low cost and ease of packaging of a vertical cavity surface-emitting laser (VCSEL). They also lend themselves to use in integrated on-chip optronic, or photonic packages.
The irradiance required at the neural membrane in which the optogenetic channels reside is on the order of 0.05-2 mW/mm2 and depends upon numerous elements, such as opsin channel expression density, activation threshold, etc. A modified channelrhodopsin-2 resident within a neuron may be activated by illumination of the neuron with green or blue light having a wavelength of between about 400 nm and about 550 nm, and in one example about 473 nm, with an intensity of between about 0.5 mW/mm2 and about 10 mW/mm2, such as between about 1 mW/mm2 and about 5 mW/mm2, and in one example about 2.4 mW/mm2. Although the excitation spectrum may be different, similar exposure values hold for other opsins, such as NpHR and iC1C2, as well. Because most opsin-expressing targets are contained within a tissue or other structure, the light emitted from the applicator may need to be higher in order to attain the requisite values at the target itself. Light intensity, or irradiance, is lost predominantly due to optical scattering in tissue, which is a turbid medium. There is also parasitic absorption of endogenous chromophores, such as blood, that may also diminish the target exposure. Because of these effects, the irradiance range required at the output of an applicator is, for most of the cases described herein, between 1-100 mW/mm2. Referring to
The optical penetration depth, δ, is the tissue thickness that causes light to attenuate to e−1 (˜37%) of its initial value, and is given by the following diffusion approximation.
where μa is the absorption coefficient, and μs, is the reduced scattering coefficient. The reduced scattering coefficient is a lumped property incorporating the scattering coefficient μs and the anisotropy g: μs′=μs(1−g) [cm−1]. The purpose of μs′ is to describe the diffusion of photons in a random walk of step size of 1/μs′ [cm] where each step involves isotropic scattering. Such a description is equivalent to description of photon movement using many small steps 1/μs that each involve only a partial deflection angle θ, if there are many scattering events before an absorption event, i.e., μa<<μs′. The anisotropy of scattering, g, is effectively the expectation value of the scattering angle, θ. Furthermore, the “diffusion exponent,” μeff, is a lumped parameter containing ensemble information regarding the absorption and scattering of materials, μeff=Sqrt(3μa(μa+μs′). The cerebral cortex constitutes a superficial layer of grey matter (high proportion of nerve cell bodies) and internally the white matter, which is responsible for communication between axons. The white matter appears white because of the multiple layers formed by the myelin sheaths around the axons, which are the origin of the high, inhomogeneous and anisotropic scattering properties of brain, and is a suitable surrogate for use in neural tissue optics calculations with published optical properties, such as those below for feline white matter.
As was described earlier, the one-dimensional irradiance profile in tissue, I, obeys the following relation, I=Ioe−(Qμz), where Q is the volume fraction of the characterized material that is surrounded by an optically neutral substance such as interstitial fluid or physiologic saline. In the case of most nerves, Q=0.45 can be estimated from cross-sectional images. The optical transport properties of tissue yield an exponential decrease of the irradiance (ignoring temporal spreading, which is inconsequential for this application) through the target, or the tissue surrounding the target(s). The plot above contains good agreement between theory and model, validating the approach. It can be also seen that the optical penetration depth, as calculated by the above optical parameters agrees reasonably well with the experimental observations of measured response vs. irradiance for the example described above.
Furthermore, the use of multidirectional illumination, as has been described herein, may serve to reduce this demand, and thus the target radius may be considered as the limiting geometry, and not the diameter. For instance, if the abovementioned case of illuminating a 1 mm nerve from 2 opposing sides instead of just the one, we can see that we will only need an irradiance of ˜6 mW/mm2 because the effective thickness of the target tissue is now ½ of what it was. It should be noted that this is not a simple linear system, or the irradiance value would have been 20/2=10 mW/mm2. The discrepancy lies in the exponential nature of the photon transport process, which yields the severe diminution of the incident power at the extremes of the irradiation field. Thus, there is a practical limit to the number of illuminations directions that provide an efficiency advantage for deep, thick, and/or embedded tissue targets.
By way of non-limiting example, a 2 mm diameter nerve target may be considered a 1 mm thick target when illuminated circumferentially. Values of the sizes of a few key nerves follow as a set of non-limiting examples. The diameter of the main trunk of the pudendal nerve is 4.67±1.17 mm, whereas the branches of the ulnar nerve range in diameter from about 0.7-2.2 mm and the vagus nerve in the neck between 1.5-2.5 mm. Circumferential, and/or broad illumination may be employed to achieve electrically and optically efficient optogenetic target activation for larger structures and/or enclosed targets that cannot be addressed directly. This is illustrated in
From the examples above, activation of a neuron, or set(s) of neurons within a 2.5 mm diameter vagus nerve may be nominally circumferentially illuminated by means of the optical applicators described later using an external surface irradiance of ≧5.3 mW/mm2, as can be seen using the above curve when considering the radius as the target tissue thickness, as before. However, this is greatly improved over the 28 mW/mm2 required for a 2.5 mm target diameter, or thickness. In this case, 2 sets of the opposing illumination systems from the embodiment above may be used, as the target surface area has increased, configuring the system to use Optical Fibers OF3 & OF4 to provide Illumination Fields I3 & I4, as shown in
As described above, optical applicators suitable for use with the present invention may be configured in a variety of ways. Referring to
Biocompatible adhesive may be applied to the ends of connector (C) to ensure the integrity of the coupling. Alternately, connector (C) may be configured to be a contiguous part of either the applicator or the delivery device. Connector (C) may also provide a hermetic electrical connection in the case where the light source is located at the applicator. In this case, it may also serve to house the light source, too. The light source may be made to butt-couple to the waveguide of the applicator for efficient optical transport. Connector (C) may be contiguous with the delivery segment or the applicator. Connector (C) may be made to have cross-sectional shape with multiple internal lobes such that it may better serve to center the delivery segment to the applicator.
The applicator (A) in this embodiment also comprises a Proximal Junction (PJ) that defines the beginning of the applicator segment that is in optical proximity to the target nerve. That is, PJ is the proximal location on the applicator optical conduit (with respect to the direction the light travels into the applicator) that is well positioned and suited to provide for light output onto the target. The segment just before PJ is curved, in this example, to provide for a more linear aspect to the overall device, such as might be required when the applicator is deployed along a nerve, and is not necessarily well suited for target illumination. Furthermore, the applicator of this exemplary embodiment also comprises a Distal Junction (DJ), and Inner Surface (IS), and an Outer Surface (OS). Distal Junction (DJ) represents the final location of the applicator still well positioned and suited to illuminate the target tissue(s). However, the applicator may extend beyond DJ, no illumination is intended beyond DJ. DJ may also be made to be a reflective element, such as a mirror, retro-reflector, diffuse reflector, a diffraction grating, A Fiber Bragg Grating (“FBG”—further described below in reference to
Inner Surface (IS) describes the portion of the applicator that “faces” the target tissue, shown here as Nerve (N). That is, N lies within the coils of the applicator and is in optical communication with IS. That is, light exiting IS is directed towards N. Similarly, Outer Surface (OS) describes that portion of the applicator that is not in optical communication with the target. That is, the portion that faces outwards, away from the target, such a nerve that lies within the helix. Outer Surface (OS) may be made to be a reflective surface, and as such will serve to confine the light within the waveguide and allow for output to the target via Inner Surface (IS). The reflectivity of OS may be achieved by use of a metallic or dielectric reflector deposited along it, or simply via the intrinsic mechanism underlying fiber optics, total internal reflection (“TIR”). Furthermore, Inner Surface (IS) may be conditioned, or affected, such that it provides for output coupling of the light confined within the helical waveguide. The term output coupling is used herein to describe the process of allowing light to exit the waveguide in a controlled fashion, or desired manner. Output coupling may be achieved in various ways. One such approach may be to texture IS such that light being internally reflected no longer encounters a smooth TIR interface. This may be done along IS continuously, or in steps. The former is illustrated in
In this non-limiting example, IS contains areas textured with Textured Areas TA correspond to output couplers (OCs), and between them are Untextured Areas (UA). Texturing of textured Areas (TA) may be accomplished by, for example, mechanical means (such as abrasion) or chemical means (such as etching). In the case where optical fiber is used as the basis for the applicator, one may first strip the buffer and cladding layers to expose the core for texturing. The waveguide may lay flat (with respect to gravity) for more uniform depth of surface etching, or may be tilted to provide for a more wedge-shaped etch.
Referring to the schematic representation of
In either case, the proportion of light coupled out to the target should may also be controlled to be a function of the location along the applicator to provide more uniform illumination output coupling from IS to the target, as shown below. This may be done to account for the diminishing proportion of light encountering later (or distal) output coupling zones. For example, if we consider the three (3) output coupling zones represented by Textured Areas (TA) in the present non-limiting example schematically illustrated in
Referring to
In another embodiment, as illustrated in
In a similar manner, the surface roughness of the Textured Areas (TA) may be changed as a function of location along the applicator. As described above, the amount of output coupling is proportional to the surface rugosity, or roughness. In particular, it is proportional to the first raw moment (“mean”) of the distribution characterizing the surface rugosity. The uniformity in both it spatial and angular emission are proportional to the third and forth standardized moments (or “skewness” and “kurtosis”), respectively. These are values that may be adjusted, or tailored, to suit the clinical and/or design need in a particular embodiment. Also, the size, extent, spacing and surface roughness may each be employed for controlling the amount and ensemble distribution of the target illumination.
Alternately, directionally specific output coupling maybe employed that preferentially outputs light traveling in a certain direction by virtue of the angle it makes with respect to IS. For example, a wedge-shaped groove transverse to the waveguide axis of IS will preferentially couple light encountering it when the angle incidence is greater than that required for TIR. If not, the light will be internally reflected and continue to travel down the applicator waveguide.
Furthermore, in such a directionally specific output coupling configuration, the applicator may utilize the abovementioned retro-reflection means distal to DJ.
A waveguide, such as a fiber, can support one or even many guided modes. Modes are the intensity distributions that are located at or immediately around the fiber core, although some of the intensity may propagate within the fiber cladding. In addition, there is a multitude of cladding modes, which are not restricted to the core region. The optical power in cladding modes is usually lost after some moderate distance of propagation, but can in some cases propagate over longer distances. Outside the cladding, there is typically a protective polymer coating, which gives the fiber improved mechanical strength and protection against moisture, and also determines the losses for cladding modes. Such buffer coatings may consist of acrylate, silicone or polyimide. For long-term implantation in a body, moisture must be kept away from the waveguide to prevent refractive index changes that will alter the target illumination distribution and yield other commensurate losses. Therefore, for long-term implantation, a buffer layer (or region) may be applied to the Textured Areas TAx of the applicator waveguide. Long-term is herein defined as greater than or equal to 2 years. The predominant deleterious effect of moisture absorption on optical waveguides is the creation of hydroxyl absorption bands that cause transmission losses in the system. This is a negligible for the visible spectrum, but an issue for light with wavelengths longer than about 850 nm. Secondarily, moisture absorption may reduce the material strength of the waveguide itself and lead to fatigue failure. Thus, while it is a concern, it is more of a concern for the delivery segments, which may likely undergo more motion and cycles of motion than the applicator.
Furthermore, the applicator maybe enveloped or partially enclosed by a jacket, such as Sleeve S shown in the figure. Sleeve S may be made to be a reflector, as well, and serve to confine light to the intended target. Reflective material(s), such as Mylar, metal foils, or sheets of multilayer dielectric thin films may be located within the bulk of Sleeve S, or along its inner or outer surfaces. While the outer surface of Sleeve S may also be utilized reflective purposes, it is not preferred, as it is in more intimate contact with the surrounding tissue than the inner surface. Such a jacket may be fabricated from polymeric material to provide the necessary compliance required for a tight fit around the applicator. Sleeve S, or an adjunct or alternative to, may be configured such that its ends slightly compress the target over a slight distance, but circumferentially to prevent axial migration, infiltration along the target surface. Sleeve S may also be made to be highly scattering (white, high albedo) to serve as diffusive retro-reflector to improve overall optical efficiency by redirecting light to the target.
Fluidic compression may also be used to snug the sleeve over the applicator and provide for a tighter fit to inhibit proliferation of cells and tissue ingrowth that may degrade the optical delivery to the target. Fluidic channels may be integrated into Sleeve S and filled at the time of implantation. A valve or pinch-off may be employed to seal the fluidic channels. Further details are described in a subsequent section.
Furthermore, Sleeve S may also be made to elute compounds that inhibit scar tissue formation. This may provide for increased longevity of the optical irradiation parameters that might otherwise be altered by the formation of a scar, or the infiltration of tissue between the applicator and the target. Such tissues may scatter light and diminish the optical exposure. However, the presence of such infiltrates could also be detected by means of an optical sensor placed adjacent to the target or the applicator. Such a sensor could serve to monitor the optical properties of the local environment for system diagnostic purposes. Sleeve S may also be configured to utilize a joining means that is self-sufficient, such as is illustrated in the cross-section of
In a further embodiment, output coupling may be achieved by means of localized strain-induced effects with the applicator waveguide that serve to alter the trajectory of the light within it, or the bulk refractive index on the waveguide material itself, such as the use of polarization or modal dispersion. For example, output coupling may be achieved by placing regions (or areas, or volumes) of form-induced refractive index variation and/or birefringence that serve to alter the trajectory of the light within the waveguide beyond the critical angle required for spatial confinement and/or by altering the value of the critical angle, which is refractive-index-dependent. Alternately, the shape of the waveguide may be altered to output couple light from the waveguide because the angle of incidence at the periphery of the waveguide has been modified to be greater than that of the critical angle required for waveguide confinement. These modifications may be accomplished by heating, and/or twisting, and/or pinching the applicator in those regions where output coupling for target illumination is desired. A non-limiting example is shown in
Referring to
From the geometry of the above figure we have:
sin θr=sin(90°−θc)=cos θc
where
is the critical angle for total internal reflection.
Substituting cos θc for sin θr in Snell's law we get:
By squaring both sides we get:
Solving, we find the formula stated above:
n sin θmax=√{square root over (ncore2−nclad2)},
This has the same form as the numerical aperture (NA) in other optical systems, so it has become common to define the NA of any type of fiber to be
NA=√{square root over (ncore2−nclad2)},
It should be noted that not all of the optical energy impinging at less than the critical angle will be coupled out of the system.
Alternately, the refractive index may be modified using exposure to ultraviolet (UV) light, such might be done to create a Fiber Bragg Grating (FBG). This modification of the bulk waveguide material will cause the light propagating through the waveguide to refractive to greater or lesser extent due to the refractive index variation. Normally a germanium-doped silica fiber is used in the fabrication of such refractive index variations. The germanium-doped fiber is photosensitive, which means that the refractive index of the core changes with exposure to UV light.
Alternately, and/or in combination with the abovementioned aspects and embodiments of the present invention, “whispering gallery modes” may be utilized within the waveguide to provide for enhanced geometric and/or strain-induced output coupling of the light along the length of the waveguide. Such modes of propagation are more sensitive to small changes in the refractive index, birefringence and the critical confinement angle than typical waveguide-filling modes because they are concentrated about the periphery of a waveguide. Thus, they are more susceptible to such means of output coupling and provide for more subtle means of producing a controlled illumination distribution at the target tissue.
Alternately, more than a single Delivery Segment DS may be brought from the housing (H) to the applicator (A), as shown in
In either case, the applicator may alternately further comprise separate optical channels for the light from the different Delivery Segments DSx (where x denotes the individual number of a particular delivery segment) in order to nominally illuminate the target area. A further alternate embodiment may exploit the inherent spectral sensitivity of the retro-reflection means to provide for decreased output coupling of one channel over another. Such would be the case when using a FBG retro-reflector, for instance. In this exemplary case, light of a single color, or narrow range of colors will be acted on by the FBG. Thus, it will retro-reflect only the light from a given source for bi-directional output coupling, while light form the other source will pass through largely unperturbed and be ejected elsewhere. Alternately, a chirped FBG may be used to provide for retro-reflection of a broader spectrum, allowing for more than a single narrow wavelength range to be acted upon by the FBG and be utilized in bi-directional output coupling. Of course, more than two such channels and/or Delivery Segments (DSx) are also within the scope of the present invention, such as might be the case when selecting to control the directionality of the instigated nerve impulse, as will be described in a subsequent section.
Alternately, multiple Delivery Segments may also provide light to a single applicator, or become the applicator(s) themselves, as is described in further detail below.
Alternately, a single delivery device may used to channel light from multiple light sources to the applicator. This may be achieved through the use of spliced, or conjoined, waveguides (such as optical fibers), or by means of a fiber switcher, or a beam combiner prior to initial injection into the waveguide, as shown in
In this embodiment, Light Sources LS1 & LS2 output light along paths W1 & W2, respectively. Lenses L1 & L2 may be used to redirect the light toward Beam Combiner (BC), which may serve to reflect the output of one light source, while transmitting the other. The output of LS1 & LS2 may be of different color, or wavelength, or spectral band, or they may be the same. If they are different, BC may be a dichroic mirror, or other such spectrally discriminating optical element. If the outputs of Light Sources LS1 & LS2 are spectrally similar, BC may utilize polarization to combine the beams. Lens L3 may be used to couple the W1 & W2 into Waveguide (WG). Lenses L1 & L2 may also be replaced by other optical elements, such as mirrors, etc. This method is extensible to greater numbers of light sources.
The type of optical fiber that may be used as either delivery segments or within the applicators is varied, and may be selected from the group consisting of: Step-index, GRIN, Power-Law index, etc. Alternately, hollow-core waveguides, photonic crystal fiber (PCF), and/or fluid filled channels may also be used as optical conduits. PCF is meant to encompass any waveguide with the ability to confine light in hollow cores or with confinement characteristics not possible in conventional optical fiber. More specific categories of PCF include photonic-bandgap fiber (PBG, PCFs that confine light by band gap effects), holey fiber (PCFs using air holes in their cross-sections), hole-assisted fiber (PCFs guiding light by a conventional higher-index core modified by the presence of air holes), and Bragg fiber (PBG formed by concentric rings of multilayer film). These are also known as “microstructured fibers”. End-caps or such enclosure means should be used with open, hollow waveguides such as tubes and PCF to prevent fluid infill that would spoil the waveguide.
PCF and PBG intrinsically support higher numerical aperture (NA) than standard glass fibers, as do plastic and plastic-clad glass fibers. These provide for the delivery of lower brightness sources, such as LEDs, OLEDs, etc. This is important to note because such lower brightness sources are typically more electrically efficient than laser light sources, which is important for implantable device embodiments in accordance with the present invention that utilize battery power sources. Configurations for to creating high-NA waveguide channels are described in greater detail below.
Alternately, a bundle of small and/or single mode (SM) optical fibers/waveguides may be used to transport light as delivery segments, and/or as an applicator structure, such as is shown in a non-limiting exemplary embodiment in
Referring to
A rectangular slab waveguide may be configured to be like that of the aforementioned helical-type, or it can have a permanent waveguide (WG) attached/inlaid. For example, a slab may be formed such that is a limiting case of a helical-type applicator, such as is illustrated in
In the exemplary embodiment, Applicator (A) is fed by Delivery Segment (DS) and the effectively half-pitch helix is closed along the depicted edge ∈, with closure holes (CH) provided, but not required. Of course, this is a reduction of the geometries discussed previously, and meant to convey the abstraction and interchangeability of the basic concepts therein and between those of the slab-type waveguides to be discussed.
It should also be understood that the helical-type applicator described herein may also be utilized as a straight applicator, such as may be used to provide illumination along a linear structure like a nerve, etc. A straight applicator may also be configured as the helical-type applicators described herein, such as with a reflector to redirect stray light toward the target, as is illustrated in
Here Waveguide (WG) contains Textured Area (TA), and the addition of Reflector (M) that at least partially surrounds target anatomy (N). This configuration provides for exposure of the far side of the target by redirecting purposefully exposed and scattered light toward the side of the target opposite the applicator.
In another alternate embodiment, a straight illuminator may be affixed to the target, or tissue surrounding or adjacent or nearby to the target by means of the same helix-type applicator. However, in this case the helical portion is not the illuminator, it is the means to position and maintain another illuminator in place with respect to the target. The embodiment illustrated in
Slab-type geometries of Applicator A, such as thin, planar structures, can be implanted, or installed at, near, or around the tissue target or tissue(s) containing the intended target(s). An embodiment of such a slab-type applicator configuration is illustrated in
The slab-type applicator (A) illustrated in
The current embodiment utilizes PDMS, or some other such well-qualified polymer, as a substrate (SUB) that forms the body of the applicator (A). For example, biological materials such as hyaluronan, elastin, and collagen, which are components of the native extracellular matrix, may also be used alone or in combination with inorganic compounds to form the substrate (SUB).
A material with a refractive index lower than that of the substrate (SUB) (PDMS in this non-limiting example) may used as filling (LFA) to create waveguide cladding where the PDMS itself acts as the waveguide core. In the visible spectrum, the refractive index of PDMS is ˜1.4. Water, and even PBS & Saline have indices of ˜1.33, making them suitable for cladding materials. They are also biocompatible and safe for use in an illumination management system as presented herein, even if the integrity of the applicator (A) is compromised and they are released into the body.
Alternately, a higher index filling may be used as the waveguide channel. This may be thought of as the inverse of the previously described geometry, where in lieu of the polymer comprising substrate (SUB), you have a liquid filling (LFA) acting as the waveguide core medium, and the substrate (SUB) material acting as the cladding. Many oils have refractive indices of ˜1.5 or higher, making them suitable for core materials.
Alternately, a second polymer of differing refractive index may be used instead of the aforementioned liquid fillings. A high-refractive-index polymer (HRIP) is a polymer that has a refractive index greater than 1.50. The refractive index is related to the molar refractivity, structure and weight of the monomer. In general, high molar refractivity and low molar volumes increase the refractive index of the polymer. Sulfur-containing substituents including linear thioether and sulfone, cyclic thiophene, thiadiazole and thianthrene are the most commonly used groups for increasing refractive index of a polymer in forming a HRIP. Polymers with sulfur-rich thianthrene and tetrathiaanthrene moieties exhibit n values above 1.72, depending on the degree of molecular packing. Such materials may be suitable for use as waveguide channels within a lower refractive polymeric substrate. Phosphorus-containing groups, such as phosphonates and phosphazenes, often exhibit high molar refractivity and optical transmittance in the visible light region. Polyphosphonates have high refractive indices due to the phosphorus moiety even if they have chemical structures analogous to polycarbonates. In addition, polyphosphonates exhibit good thermal stability and optical transparency; they are also suitable for casting into plastic lenses. Organometallic components also result in HRIPs with good film forming ability and relatively low optical dispersion. Polyferrocenylsilanes and polyferrocenes containing phosphorus spacers and phenyl side chains show unusually high n values (n=1.74 and n=1.72), as well, and are also candidates for waveguides.
Hybrid techniques which combine an organic polymer matrix with highly refractive inorganic nanoparticles may be employed to produce polymers with high n values. As such, PDMS may also be used to fabricate the waveguide channels that may be integrated to a PDMS substrate, where native PDMS is used as the waveguide cladding. The factors affecting the refractive index of a HRIP nanocomposite include the characteristics of the polymer matrix, nanoparticles, and the hybrid technology between inorganic and organic components. Linking inorganic and organic phases is also achieved using covalent bonds. One such example of hybrid technology is the use of special bifunctional molecules, such as MEMO, which possess a polymerisable group as well as alkoxy groups. Such compounds are commercially available and can be used to obtain homogeneous hybrid materials with covalent links, either by simultaneous or subsequent polymerization reactions.
The following relation estimates the refractive index of a nanocomposite,
n
comp=φpnp+φorgnorg
where, ncomp, np and norg stand for the refractive indices of the nanocomposite, nanoparticle and organic matrix, respectively, while φp and φorg represent the volume fractions of the nanoparticles and organic matrix, respectively.
The nanoparticle load is also important in designing HRIP nanocomposites for optical applications, because excessive concentrations increase the optical loss and decrease the processability of the nanocomposites. The choice of nanoparticles is often influenced by their size and surface characteristics. In order to increase optical transparency and reduce Rayleigh scattering of the nanocomposite, the diameter of the nanoparticle should be below 25 nm. Direct mixing of nanoparticles with the polymer matrix often results in the undesirable aggregation of nanoparticles—this is may be avoided by modifying their surface, or thinning the viscosity of the liquid polymer with a solvent such as Xylenes; which may later be removed by vacuum during ultrasonic mixing of the composite prior to curing. Nanoparticles for HRIPs may be chosen from the group consisting of: TiO2 (anatase, n=2.45; rutile, n=2.70), ZrO2 (n=2.10), amorphous silicon (n=4.23), PbS (n=4.20) and ZnS (n=2.36). Further materials are given in the table below. The resulting nanocomposites may exhibit a tunable refractive index range, per the above relation.
In one exemplary embodiment, a HRIP preparation based on PDMS and PbS, the volume fraction of particles needs to be around 0.2 or higher to yield ncomp≧1.96, which corresponds to a weight fraction of at least 0.8 (using the density of PbS of 7.50 g cm−3 and of PDMS of 1.35 g cm−3). Such a HRIP can support a high numerical aperture (NA), which is useful when coupling light from relatively low brightness sources such as LEDs. The information given above allows for the recipe of other alternate formulations to be readily ascertained.
There are many synthesis strategies for nanocomposites. Most of them can be grouped into three different types. The preparation methods are all based on liquid particle dispersions, but differ in the type of the continuous phase. In melt processing particles are dispersed into a polymer melt and nanocomposites are obtained by extrusion. Casting methods use a polymer solution as dispersant and solvent evaporation yields the composite materials, as described earlier. Particle dispersions in monomers and subsequent polymerization result in nanocomposites in the so-called in situ polymerization route.
In a similar way, low refractive index composite materials have may also be prepared. As suitable filler materials, metals with low refractive indices below 1, such as gold (shown in the table above) may be chosen, and the resulting low index material used as the waveguide cladding.
There are a variety of optical plenum configurations for capturing light input and creating multiple output channels. As shown in the figure, the facets are comprised of linear faces. The angle of the face with respect to the input direction of the light dictates the numerical aperture (NA). Alternately, curved faces may be employed for nonlinear angular distribution and intensity homogenization. A parabolic surface profile may be used, for example. Furthermore, the faces need be planar. A three-dimensional surface may similarly be employed. The position of these plenum distribution facets DF may be used to dictate the proportion of power captured as input to a channel, as well. Alternately, the plenum distribution facets DF may spatially located in accordance with the intensity/irradiance distribution of the input light source. As a non-limiting example, an input with a lambertian irradiance distribution, such as may be output by an LED, the geometry of the distribution facets DF may be tailored to limit the middle channel to have ⅓ of the emitted light, and the outer channels evenly divide the remaining ⅔, such as is shown in
Output Coupling may be achieved many ways, as discussed earlier. Furthering that discussion, and to be considered as part thereof, scattering surfaces in areas of intended emission may be utilized. Furthermore, output coupling facets, such as POC and TOC shown previously, may also be employed. These may reflective, refractive, scattering, etc. The height of facet may be configured to be in proportion to the amount or proportion of light intercepted, while the longitudinal position dictates the output location. As was also discussed previously, for systems employing multiple serial OCs, the degree of output coupling of each may be made to be proportional to homogenize the ensemble illumination. A single-sided facet within the waveguide channel may be disposed such that it predominantly captures light traveling one way down the waveguide channel (or core). Alternately, a double-sided facet that captures light traveling both ways down the waveguide channel (or core) to provide both forward and backward output coupling. This would be used predominantly with distal retroreflector designs. Such facets may be shaped as, by way of non-limiting example; a pyramid, a ramp, an upward-curved surface, a downward-curved surface, etc.
Light Ray ER enters (or is propagation within) Waveguide Core WG. It impinges upon Output Coupling Facet F and is redirected to the opposite surface. It becomes Reflected Ray RR1, from which Output Coupled Ray OCR1 is created, as is Reflected Ray RR2. OCR1 is directed at the target. OCR2 and RR3 are likewise created from RR2. Note that OCR2 is emitted from the same surface of WG as the facet. If there is no target or reflector on that side, the light is lost. The depth of F is H, and the Angle θ. Angle θ dictates the direction of RR1, and its subsequent rays. Angle α may be provided in order to allow for mold release for simplified fabrication. It may also be used to output couple light traversing in the opposite direct as ER, such as might be the case when distal retro-reflectors are used.
Alternately, Output Coupling Facet F may protrude from the waveguide, allowing for the light to be redirected in an alternate direction, but by similar means.
The waveguide channel(s) may be as described above. Use of fluidics may also be employed to expand (or contract) the applicator to alter the fit or “snugness”, as was described above regarding Sleeve S. When used with the applicator (A), it may serve to decrease infiltrate permeability as well as to increase optical penetration via pressure-induced tissue clearing. Fluidic channels incorporated into the applicator substrate may also be used to tune the output coupling facets. Small reservoirs beneath the facets may be made to swell and in turn distend the location and/or the angle of the facet in order to adjust the amount of light and/or the direction of that light.
Captured light may also be used to assess efficiency or functional “health” of the applicator and/or system by providing information regarding the optical transport efficiency of the device/tissue states. The detection of increased light scattering may be indicative of changes in the optical quality or character of the tissue and or the device. Such changes may be evidenced by the alteration of the amount of detected light collected by the sensor. It may take the form of an increase or a decrease in the signal strength, depending upon the relative positions of the sensor and emitter(s). An opposing optical sensor may be employed to more directly sample the output, as is illustrated in
Alternately, the temporal character of the detected signals may be used for diagnostic purposes. For example, slower changes may indicate tissue changes or device aging, while faster changes could be strain, or temperature dependent fluctuations. Furthermore, this signal may be used for closed loop control by adjusting power output over time to assure more constant exposure at the target. The detected signal of a Sensor such as SEN1 may also be used to ascertain the amount of optogenetic absorbers present in the target. If such detection is difficult to the proportionately small effects on the signal, a heterodyned detection scheme may be employed for this purpose. Such an exposure may be of insufficient duration or intensity to cause a therapeutic effect, but made solely for the purposes of overall system diagnostics.
Alternately, an applicator may be fabricated with individually addressable optical source elements to enable adjustment of the intensity and location of the light delivery, as is shown in the embodiment of
An alternate example of such an applicator is shown in
Alternate configurations are shown in
A linear array optogenetic light applicator (A), or “optarray, may be inserted into the intrathecal space to deliver light to the sacral roots for optogenetic modulation of neurons involved in bowel, bladder, and erectile function. Alternately, it may be inserted higher in the spinal column for pain control applications, such as those described elsewhere in this application. Either the linear or matrix array optarray(s) may be inserted into the anterior intrathecal to control motor neurons and/or into the posterior intrathecal to control sensory neurons. A single optical element may be illuminated for greater specificity, or multiple elements may be illuminated.
The system may be tested for utility at the time of implantation, or subsequent to it. The tests may provide for system configurations, such as which areas of the applicator are most effective, or efficacious, by triggering different light sources alone, or in combination, to ascertain their effect on the patient. This may be utilized when a multi-element system, such as an array of LEDs, for example, or a multiple output coupling method is used. Such diagnostic measurements may be achieved by using an implanted electrode that resides on, in or near the applicator, or one that was implanted elsewhere, as will be described in another section. Alternately, such measurements maybe made at the time of implantation using a local nerve electrode for induced stimulation, and/or an electrical probe to query the nerve impulses intraoperatively using a device such as the Stimulator sold under the tradename “Checkpoint”® from NDI and Checkpoint Surgical, Inc. to provide electrical stimulation of exposed motor nerves or muscle tissue and in turn locate and identify nerves as well to test their excitability. Once obtained, an applicator illumination configuration may be programmed into the system for optimal therapeutic outcome using an external Programmer/Controller (P/C) via a Telemetry Module (TM) into the Controller, or Processor/CPU of the system Housing (H), as are defined further below.
The electrical connections for devices such as these where the light source is either embedded within, on, or located nearby to the applicator, may be integrated into the applicators described herein. Materials like the product sold by NanoSonics, Inc. under the tradename MetalRubber® and/or mc10's extensible inorganic flexible circuit platform may be used to fabricate an electrical circuit on or within an applicator. Alternately, the product sold by DuPont, Inc., under the tradename Pyralux®, or other such flexible and electrically insulating material, like polyimide, may be used to form a flexible circuit; including one with a copper-clad laminate for connections. Pyralux in sheet form allows for such a circuit to be rolled. More flexibility may be afforded by cutting the circuit material into a shape that contains only the electrodes and a small surrounding area of polyimide.
Such circuits may then be encapsulated for electrical isolation using a conformal coating. A variety of such conformal insulation coatings are available, including by way of non-limiting example, parlene (Poly-Para-Xylylene) and parlene-C (parylene with the addition of one chlorine group per repeat unit), both of which are chemically and biologically inert. Silicones and polyurethanes may also be used, and may be made to comprise the applicator body, or substrate, itself. The coating material can be applied by various methods, including brushing, spraying and dipping. Parylene-C is the most bio-accepted coating for stents, defibrillators, pacemakers and other devices permanently implanted into the body.
In a particular embodiment, biocompatible and bio-inert coatings may be used to reduce foreign body responses, such as that may result in cell growth over or around an applicator and change the optical properties of the system. These coatings may also be made to adhere to the electrodes and to the interface between the array and the hermetic packaging that forms the applicator.
By way of non-limiting example, both parylene-C and poly(ethylene glycol) (PEG, described earlier) have been shown to be biocompatible and may be used as encapsulating materials for an applicator. Bioinert materials non-specifically downregulate, or otherwise ameliorate, biological responses. An example of such a bioinert material for use in an embodiment of the present invention is phosphoryl choline, the hydrophilic head group of phospholipids (lecithin and sphingomyelin), which predominate in the outer envelope of mammalian cell membranes. Another such example is Polyethylene oxide polymers (PEO), which provide some of the properties of natural mucous membrane surfaces. PEO polymers are highly hydrophilic, mobile, long chain molecules, which may trap a large hydration shell. They may enhance resistance to protein and cell spoliation, and may be applied onto a variety of material surfaces, such as PDMS, or other such polymers. An alternate embodiment of a biocompatible and bioinert material combination for use in practicing the present invention is phosphoryl choline (PC) copolymer, which may be coated on a PDMS substrate. Alternately, a metallic coating, such as Gold or Platinum, as were described earlier, may also be used. Such metallic coatings may be further configured to provide for a bioinert outer layer formed of self-assembled monolayers (SAMs) of, for example, D-mannitol-terminated alkanethiols. Such a SAM may be produced by soaking the intended device to be coated in 2 mM alkanethiol solution (in ethanol) overnight at room temperature to allow the SAMs to form upon it. The device may then be taken out and washed with absolute ethanol and dried with nitrogen to clean it.
A variety of embodiments of light applicators are disclosed herein. There are further bifurcations that depend upon where the light is produced (i.e., in or near the applicator vs. in the housing or elsewhere).
Referring to
Referring to the configuration of
The pertinent delivery segments may be optical waveguides, such as optical fibers, in the case where the light is not generated in or near the applicator(s). Alternately, when the light is generated at or near the applicator(s), the delivery segments may be electrical wires. They may be further comprised of fluidic conduits to provide for fluidic control and/or adjustment of the applicator(s). They may also be any combination thereof, as dictated by the specific embodiment utilized, as have been previously described.
Embodiments of the subject system may be partially, or entirely, implanted in the body of a patient.
Referring to
Memory (MEM) may store instructions for execution by Processor CPU, optical and/or sensor data processed by sensing circuitry SC, and obtained from sensors both within the housing, such as battery level, discharge rate, etc., and those deployed outside of the Housing (H), possibly in Applicator A, such as optical and temperature sensors, and/or other information regarding therapy for the patient. Processor (CPU) may control Driving Circuitry DC to deliver power to the light source (not shown) according to a selected one or more of a plurality of programs or program groups stored in Memory (MEM). The Light Source may be internal to the housing H, or remotely located in or near the applicator (A), as previously described. Memory (MEM) may include any electronic data storage media, such as random access memory (RAM), read-only memory (ROM), electronically-erasable programmable ROM (EEPROM), flash memory, etc. Memory (MEM) may store program instructions that, when executed by Processor (CPU), cause Processor (CPU) to perform various functions ascribed to Processor (CPU) and its subsystems, such as dictate pulsing parameters for the light source.
In accordance with the techniques described in this disclosure, information stored in Memory (MEM) may include information regarding therapy that the patient had previously received. Storing such information may be useful for subsequent treatments such that, for example, a clinician may retrieve the stored information to determine the therapy applied to the patient during his/her last visit, in accordance with this disclosure. Processor CPU may include one or more microprocessors, digital signal processors (DSPs), application-specific integrated circuits (ASICs), field-programmable gate arrays (FPGAs), or other digital logic circuitry. Processor CPU controls operation of implantable stimulator, e.g., controls stimulation generator to deliver stimulation therapy according to a selected program or group of programs retrieved from memory (MEM). For example, processor (CPU) may control Driving Circuitry DC to deliver optical signals, e.g., as stimulation pulses, with intensities, wavelengths, pulse widths (if applicable), and rates specified by one or more stimulation programs. Processor (CPU) may also control Driving Circuitry (DC) to selectively deliver the stimulation via subsets of Delivery Segments (DSx), and with stimulation specified by one or more programs. Different delivery segments (DSx) may be directed to different target tissue sites, as was previously described.
Telemetry module (TM) may include a radio frequency (RF) transceiver to permit bi-directional communication between implantable stimulator and each of clinician programmer and patient programmer (C/P). Telemetry module (TM) may include an Antenna (ANT), of any of a variety of forms. For example, Antenna (ANT) may be formed by a conductive coil or wire embedded in a housing associated with medical device. Alternatively, antenna (ANT) may be mounted on a circuit board carrying other components of implantable stimulator or take the form of a circuit trace on the circuit board. In this way, telemetry module (TM) may permit communication with a controller/programmer (C/P). Given the energy demands and modest data-rate requirements, the Telemetry system may be configured to use inductive coupling to provide both telemetry communications and power for recharging, although a separate recharging circuit (RC) is shown in
Referring to
The control of the output pulse train, or burst, may be managed locally by a state-machine, as shown in this non-limiting example, with parameters passed from the microprocessor. Most of the design constraints are imposed by the output drive DAC. First, a stable current is required to reference for the system. A constant current of 100 nA, generated and trimmed on chip, is used to drive the reference current generator, which consists of an R-2Rbased DAC to generate an 8-bit reference current with a maximum value of 5 A. The reference current is then amplified in the current output stage with the ratio of Ro and Rref, designed as a maximum value of 40. An on-chip sense-resistor-based architecture was chosen for the current output stage to eliminate the need to keep output transistors in saturation, reducing voltage headroom requirements to improve power efficiency. The architecture uses thin-film resistors (TFRs) in the output driver mirroring to enhance matching. To achieve accurate mirroring, the nodes X and Y may be forced to be the same by the negative feedback of the amplifier, which results in the same voltage drop on Ro and Rref. Therefore, the ratio of output current, IO, and the reference current, Iref, equals to the ratio of and Rref and RO.
The capacitor, C, retains the voltage acquired in the precharge phase. When the voltage at Node Y is exactly equal to the earlier voltage at Node X, the stored voltage on C biases the gate of P2 properly so that it balances Ibias. If, for example, the voltage across RO is lower than the original Rref voltage, the gate of P2 is pulled up, allowing Ibias to pull down on the gate on P1, resulting in more current to RO. In the design of this embodiment, charge injection is minimized by using a large holding capacitor of 10 pF. The performance may be eventually limited by resistor matching, leakage, and finite amplifier gain. With 512 current output stages, the optical stimulation IC may drive two outputs for activation and inhibition (as shown in the figure) with separate sources, each delivering a maximum current of 51.2 mA.
Alternatively, if the maximum back-bias on the optical element can withstand the drop of the other element, then the devices can be driven in opposite phases (one as sinks, one as sources) and the maximum current exceeds 100 mA. The stimulation rate can be tuned from 0.153 Hz to 1 kHz and the pulse or burst duration(s) can be tuned from 100 s to 12 ms. However, the actual limitation in the stimulation output pulse-train characteristic is ultimately set by the energy transfer of the charge pump, and this must be considered when configuring the therapeutic protocol.
The Housing H (or applicator, or the system via remote placement) may further contain an accelerometer to provide sensor input to the controller resident in the housing. This may be useful for modulation and fine control of a hypertension device, for example, or for regulation of a pacemaker. Remote placement of an accelerometer may be made at or near the anatomical element under optogenetic control, and may reside within the applicator, or nearby it. In times of notable detected motion, the system may alter it programming to accommodate the patient's intentions and provide more or less stimulation and/or inhibition, as is required for the specific case at hand.
The Housing H may still further contain a fluidic pump (not shown) for use with the applicator, as was previously described herein.
External programming devices for patient and/or physician can be used to alter the settings and performance of the implanted housing. Similarly, the implanted apparatus may communicate with the external device to transfer information regarding system status and feedback information. This may be configured to be a PC-based system, or a stand-alone system. In either case, the system must communicate with the housing via the telemetry circuits of Telemetry Module (TM) and Antenna (ANT). Both patient and physician may utilize controller/programmers (C/P) to tailor stimulation parameters such as duration of treatment, optical intensity or amplitude, pulse width, pulse frequency, burst length, and burst rate, as is appropriate.
Once the communications link (CL) is established, data transfer between the MMN programmer/controller and the housing may begin. Examples of such data are:
1. From housing to controller/programmer:
2. From controller/programmer to housing:
By way of non-limiting examples, near field communications, either low power and/or low frequency; such as ZigBee, may be employed for telemetry. The tissue(s) of the body have a well-defined electromagnetic response(s). For example, the relative permittivity of muscle demonstrates a monotonic log-log frequency response, or dispersion. Therefore, it is advantageous to operate an embedded telemetry device in the frequency range of ≦1 GHz. In 2009 (and then updated in 2011), the US FCC dedicated a portion of the EM Frequency spectrum for the wireless biotelemetry in implantable systems, known as The Medical Device Radiocommunications Service (known as “MedRadio”). Devices employing such telemetry and known as “medical micropower networks” or “MMN” services. The currently reserved spectra are in the 401-406, 413-419, 426-432, 438-444, and 451-457 MHz ranges, and provide for these authorized bandwidths:
The rules do not specify a channeling scheme for MedRadio devices. However, it should be understood that the FCC stipulates that:
Interestingly, these frequency bands are used for other purposes on a primary basis such as Federal government and private land mobile radios, Federal government radars, and remote broadcast of radio stations. It has recently been shown that higher frequency ranges are also applicable and efficient for telemetry and wireless power transfer in implantable medical devices.
An MMN may be made not to interfere or be interfered with by external fields by means of a magnetic switch in the implant itself. Such a switch may be only activated when the MMN programmer/controller is in close proximity to the implant. This also provides for improved electrical efficiency due to the restriction of emission only when triggered by the magnetic switch. Giant Magnetorestrictive (GMR) devices are available with activation field strengths of between 5 and 150 Gauss. This is typically referred to as the magnetic operate point. There is intrinsic hysteresis in GMR devices, and they also exhibit a magnetic release point range that is typically about one-half of the operate point field strength. Thus, a design utilizing a magnetic field that is close to the operate point will suffer from sensitivities to the distance between the housing and the MMN programmer/controller, unless the field is shaped to accommodate this. Alternately, one may increase the field strength of the MMN programmer/controller to provide for reduced sensitivity to position/distance between it and the implant. In a further embodiment, the MMN may be made to require a frequency of the magnetic field to improve the safety profile and electrical efficiency of the device, making it is less susceptible to errant magnetic exposure. This can be accomplished by providing a tuned electrical circuit (such as an L-C or R-C circuit) at the output of the switch.
Alternately, another type of magnetic device may be employed as a switch. By way of non-limiting example, a MEMS device may be used. A cantilevered MEMS switch may be constructed such that one member of the MEMS may be made to physically contact another aspect of the MEMS by virtue of its magnetic susceptibility, similar to a miniaturized magnetic reed switch. The suspended cantilever may be made to be magnetically susceptible by depositing a ferromagnetic material (such as, but not limited to Ni, Fe, Co, NiFe, and NdFeB) atop the end of the supported cantilever member. Such a device may also be tuned by virtue of the cantilever length such that it only makes contact when the oscillations of the cantilever are driven by an oscillating magnetic field at frequencies beyond the natural resonance of the cantilever.
Alternately, an infrared-sensitive switch might be used. In this embodiment of this aspect of the present invention, a photodiode or photoconductor may be exposed to the outer surface of the housing and an infrared light source used to initiate the communications link for the MMN. Infrared light penetrates body tissues more readily than visible light due to its reduced scattering. However, water and other intrinsic chromophores have avid absorption, with peaks at 960, 1180, 1440, and 1950 nm, as are shown in the spectra of
However, the penetration depth in tissue is more influenced by its scattering properties, as shown in the spectrum of
This relatively monotonic reduction in optical scattering far outweighs absorption, when the abovementioned peaks are avoided. Thus, an infrared (or near-infrared) transmitter operating within the range of 800-1300 nm is preferred. This spectral range is known as the skin's “optical window.”
Such a system may further utilize an electronic circuit, such as that shown in
Generically, the SNR of a link is defined as,
where Is and IN are the photocurrents resulting from incident signal optical power and photodiode noise current respectively, Ps is the received signal optical power, R is the photodiode responsivity (A/W), INelec is the input referred noise for the receiver and PNamb is the incident optical power due to interfering light sources (such as ambient light).
PS can be further defined as
P
S=∫A
where PTX (W) is the optical power of the transmitted pulse, JRxλ (cm−2) is the tissue's optical spatial impulse response flux at wavelength λ, ηλ is an efficiency factor (ηλ≦1) accounting for any inefficiencies in optics/optical filters at λ and AT represents the tissue area over which the receiver optics integrate the signal.
The abovementioned factors that affect the total signal photocurrent and their relationship to system level design parameters include emitter wavelength, emitter optical power, tissue effects, lens size, transmitter-receiver misalignment, receiver noise, ambient light sources, photodiode responsivity, optical domain filtering, receiver signal domain filtering, line coding and photodiode and emitter selection. Each of these parameters can be independently manipulated to ensure that the proper signal strength for a given design will be achieved.
Most potentially interfering light sources have signal power that consists of relatively low frequencies (e.g. Daylight: DC, Fluorescent lights: frequencies up to tens or hundreds of kilohertz), and can therefore be rejected by using a high-pass filter in the signal domain and using higher frequencies for data transmission.
The emitter may be chosen from the group consisting of, by way of non-limiting example, a VCSEL, an LED, a HCSEL. VCSELs are generally both higher brightness and more energy efficient than the other sources and they are capable of high-frequency modulation. An example of such a light source is the device sold under the model identifier “HFE 4093-342” from Finisar, Inc., which operates at 860 nm and provides ≦5 mW of average power. Other sources are also useful, as are a variety of receivers (detectors). Some non-limiting examples are listed in the following table.
Alignment of the telemetry emitter to receiver may be improved by using a non-contact registration system, such as an array of coordinated magnets with the housing that interact with sensors in the controller/programmer to provide positional information to the user that the units are aligned. In this way, the overall energy consumption of the entire system may be reduced.
Although glycerol and polyethylene glycol (PEG) reduce optical scattering in human skin, their clinical utility has been very limited. Penetration of glycerol and PEG through intact skin is very minimal and extremely slow, because these agents are hydrophilic and penetrate the lipophilic stratum corneum poorly. In order to enhance skin penetration, these agents need to be either injected into the dermis or the stratum corneum has to be removed, mechanically (e.g., tape stripping, light abrasion) or thermally (e.g., erbium: YAG laser ablation), etc. Such methods include tape stripping, ultrasound, iontophoresis, electroporation, microdermabrasion, laser ablation, needle-free injection guns, and photomechanically driven chemical waves (aka “optoporation”). Alternately, microneedles contained in an array or on a roller (such as the Dermaroller) may be used to decrease the penetration barrier. The Dermaroller is configured such that each of its 192 needles has a 70 μm diameter and 500 μm height. These microneedles are distributed uniformly atop a 2 cm wide by 2 cm diameter cylindrical roller. Standard use of the microneedle roller typically results in a perforation density of 240 perforations/cm2 after 10 to 15 applications over the same skin area. While such microneedle approaches are certainly functional and worthwhile, clinical utility would be improved if the clearing agent could simply be applied topically onto intact skin and thereafter migrate across the stratum corneum and epidermis into the dermis. Food and Drug Administration (FDA) approved lipophilic polypropylene glycol-based polymers (PPG) and hydrophilic PEG-based polymers, both with indices of refraction that closely match that of dermal collagen (n=1.47) are available alone and in a combined pre-polymer mixture, such as polydimethylsiloxane (PDMS). PDMS is optically clear, and, in general, is considered to be inert, non-toxic and non-flammable. It is occasionally called dimethicone and is one of several types of silicone oil (polymerized siloxane), as was described in detail in an earlier section. The chemical formula for PDMS is CH3[Si(CH3)2O]nSi(CH3)3, where n is the number of repeating monomer [SiO(CH3)2] units. The penetration of these optical clearing agents into appropriately treated skin takes about 60 minutes to achieve a high degree of scattering reduction and commensurate optical transport efficiency. With that in mind, a system utilizing this approach may be configured to activate its illumination after a time sufficient to establish optical clearing, and in sufficient volume to maintain it nominally throughout or during the treatment exposure. Alternately, the patient/user may be instructed to treat their skin a sufficient time prior to system usage.
Alternately, the microneedle roller may be configured with the addition of central fluid chamber that may contain the tissue clearing agent, which is in communication with the needles. This configuration may provide for enhanced tissue clearing by allowing the tissue clearing agent to be injected directly via the microneedles.
A compression bandage-like system could push exposed emitters and/or applicators into the tissue containing a subsurface optogenetic target to provide enhanced optical penetration via pressure-induced tissue clearing in cases where the applicator is worn on the outside of the body; as might be the case with a few of the clinical indications described herein, like micromastia, erectile dysfunction, and neuropathic pain. This configuration may also be combined with tissue clearing agents for increased effect. The degree of pressure tolerable is certainly a function of the clinical application and the site of its disposition. Alternately, the combination of light source compression into the target area may also be combined with an implanted delivery segment, or delivery segments, that would also serve to collect the light from the external source for delivery to the applicator(s). Such an example is shown in
An electrical synapse is a mechanical and electrically conductive pore between two abutting neurons that is formed at a narrow gap between the pre- and postsynaptic neurons known as a gap junction. At gap junctions, such cells approach within about 3.5 nm of each other, a much shorter distance than the 20 to 40 nm distance that separates cells at a chemical synapse. In many systems, electrical synapse systems co-exist with chemical synapses.
Compared to chemical synapses, electrical synapses conduct nerve impulses faster, but unlike chemical synapses they do not have gain (the signal in the postsynaptic neuron is the same or smaller than that of the originating neuron). Electrical synapses are often found in neural systems that require the fastest possible response, such as defensive reflexes and in cases where a concerted behavior of a subpopulation of cells is required (propagation of calcium waves in astrocytes, etc.). An important characteristic of electrical synapses is that most of the time, they are bidirectional, i.e. they allow impulse transmission in either direction. However, some gap junctions do allow for communication in only one direction.
Normally, current carried by ions could travel in either direction through this type of synapse. However, sometimes the junctions are rectifying synapses, containing voltage-dependent gates that open in response to a depolarization and prevent current from traveling in one of the two directions. Some channels may also close in response to increased calcium (Ca2+) or hydrogen (H+) ion concentration so as not to spread damage from one cell to another.
Certain embodiments of the present invention relate to systems, methods and apparatuses that provide for optogenetic control of synaptic rectification in order to offer improved control for both optogenetic and electrical nerve stimulation.
Nerve stimulation, such as electrical stimulation (“e-stim”), causes bidirectional impulses in a neuron, antidromic and orthodromic stimulation. That is, an action potential triggers pulses that propagate in both directions along a neuron. However, the coordinated use of optogenetic inhibition in combination with stimulation to allow only the intended signal to propagate beyond the target location by suppression or cancellation of the errant signal using optogenetic inhibition. This may be achieved in multiple ways using what we will term “multi-applicator devices” or “multi-zone devices”. The function and characteristics of the individual elements utilized in such devices were defined earlier.
In a first embodiment, a multi-applicator device is configured to utilize separate applicators Ax for each interaction zone Zx along the target nerve N, as is shown in
Alternately, as mentioned above, only a pair of applicators may be required when the therapy dictates that only a single direction is required. Referring to the embodiment of
Alternately, referring to the embodiment of
Furthermore, the combined electrical stimulation and optical stimulation described herein may also be used for intraoperative tests of inhibition in which an electrical stimulation is delivered and inhibited by the application of light to confirm proper functioning of the implant and optogenetic inhibition. This may be performed using the applicators and system previously described for testing during the surgical procedure, or afterwards, depending upon medical constraints and/or idiosyncrasies of the patient and/or condition under treatment. The combination of a multiple-applicator, or multiple-zone applicator, or multiple applicators, may also be define which individual optical source elements within said applicator or applicators may be the most efficacious and/or efficient means by which to inhibit nerve function. That is, an e-stim device may be used as a system diagnostic tool to test the effects of different emitters and/or applicators within a multiple emitter, or distributed emitter, system by suppressing, or attempting to suppress, the induced stimulation via optogenetic inhibition using an emitter, or a set of emitters and ascertaining, or measuring, the patient, or target, response(s) to see the optimal combination for use. That optimal combination may then be used as input to configure the system via the telemetric link to the housing via the external controller/programmer. Alternately, the optimal pulsing characteristics of a single emitter, or set of emitters, may be likewise ascertained and deployed to the implanted system.
Referring to
Referring to
Referring to
Referring to
In certain scenarios wherein light sensitivity of opsin genetic material is of paramount importance, it may be desirable to focus less on wavelength (as discussed above, certain “red-shifted” opsins may be advantageous due to the greater permeability of the associated radiation wavelengths through materials such as tissue structures) and more on a tradeoff that has been shown between response time and light sensitivity (or absorption cross-section). In other words, optimal opsin selection in many applications may be a function of system kinetics and light sensitivity. Referring to the plot (252) of
Thus, the combination of low exposure density (H-thresh), long photorecovery time (tau-off), and high photocurrent results in an opsin well-suited for applications that do not require ultra-temporal precision, such as those described herein for addressing satiety, vision restoration, and pain. As described above, a further consideration remains the optical penetration depth of the light or radiation responsible for activating the opsin. Tissue is a turbid medium, and predominantly attenuates the power density of light by Mie (elements of similar size to the wavelength of light) and Rayleigh (elements of smaller size than the wavelength of light) scattering effects. Both effects are inversely proportional to the wavelength, i.e. shorter wavelength is scattered more than a longer wavelength. Thus, a longer opsin excitation wavelength is preferred, but not required, for configurations where there is tissue interposed between the illumination source and the target. A balance may be made between the ultimate irradiance (optical power density and distribution) at the target tissue containing the opsin and the response of the opsin itself. The penetration depth in tissue (assuming a simple lambda−4 scattering dependence) is listed in the table above. Considering all the abovementioned parameters, both C1V1t and VChR1 are desirable choices in many clinical scenarios, due to combination of low exposure threshold, long photorecovery time, and optical penetration depth.
Excitatory opsins useful in the invention may include red-shifted depolarizing opsins including, by way of non-limiting examples, C1V1 and C1V1 variants C1V1/E162T and C1V1/E122T/E162T; blue depolarizing opsins including ChR2/L132C and ChR2/T159C and combinations of these with the ChETA substitutions E123T and E123A; and SFOs including ChR2/C128T, ChR2/C128A, and ChR2/C128S. These opsins may also be useful for inhibition using a depolarization block strategy. Inhibitory opsins useful in the invention may include, by way of non-limiting examples, NpHR, eNpHR 1.0, eNpHR 2.0, eNpHR 3.0, SwiChR, SwiChR 2.0, SwiChR 3.0, Mac, Mac 3.0, Arch, ArchT, Arch 3.0, ArchT 3.0, iChR, ChR2, C1V1-T, C1V1-TT, Chronos, Chrimson, ChrimsonR, CatCh, VChR1-SFO, ChR2-SFO, ChR2-SSFO, ChEF, ChIEF, Jaws, ChloC, Slow ChloC, iC1C2, iC1C2 2.0, and iC1C2 3.0. Opsins including trafficking motifs may be useful. An inhibitory opsin may be selected from those listed in
In one embodiment, for example, the housing (H) comprises control circuitry and a power supply; the delivery system (DS) comprises an electrical lead to pass power and monitoring signals as the lead operatively couples the housing (H) to the applicator (A); the applicator (A) preferably comprises a single fiber output style applicator, which may be similar to those described elsewhere herein. Generally the opsin configuration will be selected to facilitate controllable inhibitory neuromodulation of the associated neurons within the targeted neuroanatomy in response to light application through the applicator. Thus in one embodiment an inhibitory opsin such as NpHR, eNpHR 1.0, eNpHR 2.0, eNpHR 3.0, SwiChR, SwiChR 2.0, SwiChR 3.0, Mac, Mac 3.0, Arch, ArchT, Arch 3.0, ArchT 3.0, iChR, ChR2, C1V1-T, C1V1-TT, Chronos, Chrimson, ChrimsonR, CatCh, VChR1-SFO, ChR2-SFO, ChR2-SSFO, ChEF, ChIEF, Jaws, ChloC, Slow ChloC, iC1C2, iC1C2 2.0, and iC1C2 3.0 may be utilized. In another embodiment, an inhibitory paradigm may be accomplished by utilizing a stimulatory opsin in a hyper-activation paradigm, as described above. Suitable stimulatory opsins for hyperactivation inhibition may include ChR2, VChR1, certain Step Function Opsins (ChR2 variants, SFO), ChR2/L132C (CatCH), excitatory opsins listed herein, or a red-shifted C1V1 variant (e.g., C1V1) or the Chrimsom family of opsins, which may assist with illumination penetration through fibrous tissues which may tend to creep in or encapsulate the applicator (A) relative to the targeted neuroanatomy. In another embodiment, an SSFO may be utilized. An SFO or an SSFO or an inhibitory channel is differentiated in that it may have a time domain effect for a prolonged period of minutes to hours, which may assist in the downstream therapy in terms of saving battery life (i.e., one light pulse may get a longer-lasting physiological result, resulting in less overall light application through the applicator A). As described above, preferably the associated genetic material is delivered via viral transfection in association with injection paradigm, as described above. An inhibitory opsin may be selected from those listed in
Alternately, a system may be configured to utilize one or more wireless power transfer inductors/receivers that are implanted within the body of a patient that are configured to supply power to the implantable power supply.
There are a variety of different modalities of inductive coupling and wireless power transfer. For example, there is non-radiative resonant coupling, such as is available from Witricity, or the more conventional inductive (near-field) coupling seen in many consumer devices. All are considered within the scope of the present invention. The proposed inductive receiver may be implanted into a patient for a long period of time. Thus, the mechanical flexibility of the inductors may need to be similar to that of human skin or tissue. Polyimide that is known to be biocompatible was used for a flexible substrate.
By way of non-limiting example, a planar spiral inductor may be fabricated using flexible printed circuit board (FPCB) technologies into a flexible implantable device. There are many kinds of a planar inductor coils including, but not limited to; hoop, spiral, meander, and closed configurations. In order to concentrate a magnetic flux and field between two inductors, the permeability of the core material is the most important parameter. As permeability increases, more magnetic flux and field are concentrated between two inductors. Ferrite has high permeability, but is not compatible with microfabrication technologies, such as evaporation and electroplating. However, electrodeposition techniques may be employed for many alloys that have a high permeability. In particular, Ni (81%) and Fe (19%) composition films combine maximum permeability, minimum coercive force, minimum anisotropy field, and maximum mechanical hardness. An exemplary inductor fabricated using such NiFe material may be configured to include 200 μm width trace line width, 100 μm width trace line space, and have 40 turns, for a resultant self-inductance of about 25 pH in a device comprising a flexible 24 mm square that may be implanted within the tissue of a patient. The power rate is directly proportional to the self-inductance.
The radio-frequency protection guidelines (RFPG) in many countries such as Japan and the USA recommend the limits of current for contact hazard due to an ungrounded metallic object under the electromagnetic field in the frequency range from 10 kHz to 15 MHz. Power transmission generally requires a carrier frequency no higher than tens of MHz for effective penetration into the subcutaneous tissue.
In certain embodiments of the present invention, an implanted power supply may take the form of, or otherwise incorporate, a rechargeable micro-battery, and/or capacitor, and/or super-capacitor to store sufficient electrical energy to operate the light source and/or other circuitry within or associated with the implant when used along with an external wireless power transfer device. Exemplary microbatteries, such as the Rechargeable NiMH button cells available from VARTA, are within the scope of the present invention. Supercapacitors are also known as electrochemical capacitors.
An inhibitory opsin protein may be selected from the group consisting of, by way of non-limiting examples: NpHR, eNpHR 1.0, eNpHR 2.0, eNpHR 3.0, Mac, Mac 3.0, Arch, Arch3.0, ArchT, Jaws, iC1C2, iChR, and SwiChR families. An inhibitory opsin may be selected from those listed in
As described above, a light source, such as laser diode, LED or OLED, by way of nonlimiting examples, may be used as the light engine for powering the photo-sensitive ion channel reaction. When multiple wavelengths, each responsible for stimulating a subset of photo-sensitive ion channels, are required in one device, individual emitters with different wavelengths can be grouped together to achieve what we will refer to as “wavelength multiplexing”. As shown in the exemplary two color channel device shown schematically in
Other wavelengths and output spectra are also possible and considered to be within the scope of the present invention. The choice of output color, or spectrum, is a function of the target opsin.
Of course, other more complicated patterns, wavelengths, and number of emitters is possible.
A light-emitting diode (LED, or alternately ILED to denote the distinction between this inorganic system and Organic LEDs, or OLEDs) is a semiconductor light source, and versions are available with emissions across the visible, ultraviolet, and infrared wavelengths, with very high brightness. When a light-emitting diode is forward-biased (switched on), electrons are able to recombine with electron holes within the device, releasing energy in the form of photons. This effect is called electroluminescence and the color of the light (corresponding to the energy of the photon) is determined by the energy gap of the semiconductor. An LED is often small in area (less than 1 mm2), and integrated optical components may be used to shape its radiation pattern, or the radiation pattern of an ensemble of light sources. An example of an LED useful for the present invention is manufactured by Cree Inc., it is a Silicon Carbide device and provides 24 mW of 450±30 nm (blue) light at 20 mA. A table of general LED characteristics is given for reference in
Such as is shown in the embodiments of
Alternately, the above two embodiments may be combined to form a system employing both wavelength and spatial multiplexing. As such, each light source may be independently addressable, or made to be addressable in groups that correspond to their output wavelength (i.e. color) and/or position relative to the target tissue. We refer to this configuration as “hybrid multiplexing.”
Optical elements may also be added to the device to deliver light onto a target by means of beam shaping, guiding, concentration, and/or homogenization that shapes, and/or redistributes the optical power from the emitter/light source. The underlying mechanism of such optical elements consists of, but is not limited to, the following four major categories; Diffractive, Refractive, Reflective, and Diffusive.
Various illumination profiles (i.e. irradiance distributions, or distributions) may be produced with added diffractive or refractive optical elements to optimize the illumination efficiency for the specific dimension and/or shape of the tissue target, such as, by way of non-limiting example, a nerve cell body or axon. For example, an ellipsoidal or line illumination is more desirable than a Gaussian spot when applying light stimulation on a length of neuron or nerve fiber as this shape is a better match to that of the target and provides for more efficient use of the illumination light than a round spot which “spills” light outside of the nominally linear target when attempting to illuminate along a length of the target.
By way of non-limiting example, prisms can be used to redirect the beam propagation and therefore shaping the output beam profile. The term “prism” here refers broadly to optics and micro-optics that have flat or curved facets that interact an incoming beam and change the beam profile (i.e. the power distribution). For example, a biconic lens that has four curved facets (with radii of curvature of 1 mm) on each side may be made to produce a linear illumination profile SOD when placed at a distance of 2 mm from a 0.2 NA Ø200 μm step-index optical fiber that is transmitting light captured from the Cree LED mentioned earlier. The distribution is shown in
By way of another non-limiting example, a Ø2 mm cylindrical lens can be used to convert a Gaussian beam into an elongated beam. A cylindrical lens has flat profile in one axis and curved surface in the orthogonal axis, thus comprising optical refractive power only in one direction. The irradiance profile achieved is shown in
In another non-limiting example, a diffractive optical element, such as a micrograting, may be configured as OE in
The diffraction order efficiencies and energy must be balanced to achieve a reasonable overall irradiance profile, as must the anomorphic magnification inherent in grating systems. This dependence is relatively small at small angles and a reasonably uniform overall pattern may be generated as long as the only a few orders are used. For example, the first 3 orders maybe used with an “echellette” grating, or alternately a few of the higher orders may be used with an “echelle” grating. These are diffraction gratings that have been optimized to work at low and high orders, respectively, by “blazing” the periodic corrugations that form the grating, as is well known in the art.
Alternately, a balance between relative diffraction order intensity and spectral bandwidth may be achieved by utilizing a Volume Holographic Grating (VHG) wherein diffraction occurs via phase interaction within a small range of wavelengths and angles around the Bragg-matching condition. This sensitivity may be beneficially exploited by including a plurality of VHGs in a single element such that the angular separation of the different VHGs is nominally balanced across the light source spectrum to provide a nominally uniform cumulative irradiance distribution at the target site, or at an intermediate location in optical communication with the target. The output spectra of light sources such as LEDs, or OLEDs range between 10-100 nm, unlike lasers that have a much narrower output spectrum.
The diffraction efficiency, η, for a VHG is defined as the ratio between the diffracted intensity and the incident intensity. Without considering absorption and Fresnel reflections at the interfaces when using a non-slanted transmission grating with index modulation n1 and thickness D, and when the Bragg condition is satisfied for wavelength λB, the diffraction efficiency ηB is given as:
where θn is the incident angle inside the medium of index n. Furthermore, the spectral and angular efficiencies, ηλ and ηθ, are further modulated with a sin c function dependence on the spectral and angular bandwidths.
where Δλ and Δθ are the deviations at the first spectral and angular nulls respectively.
For example, a VHG may be designed such that Δλ, with the additional condition that the λB be made 5 nm apart for each successive VHG in order to drive different portions of the LED output spectrum into a different location that ultimately spatially overlaps with that of another portion of the LED output spectrum. Because a VHG only functions strongly across a narrow spectral range (Δλ), this approach of spectrally shifting VHGs may be iterated across the LED output spectrum to nominally redistribute all of the LED optical output. Furthermore, the relative intensities of the predominant diffraction orders of different spectral bands that may be produced successive VHGs may be also made to provide a nominally more uniform irradiance distribution by spatially redistributing the diffracted light such that the superposition of all the orders of all the successive VHGs is power balanced across a spatial region. This must also be tailored to the spectral output power distribution to optimize the ultimate uniformity of the resultant irradiation distribution. A schematic representation of successive VHGs for a source with a spectral bandwidth of 25 nm, using the spectral null deviation mentioned above is shown in
Thus, it should be understood that the light source emission pattern may be converted into a more desirable pattern for a given target by applying beam shaping as taught herein, and not necessarily for creating a nominally uniform distribution.
When the emitter (light source) is located away from the target tissue, light waveguiding elements can be incorporated into the device to bring light to the proximity of the target. Furthermore, such waveguides may also be built into a monolithic structure to provide for optical power distribution within a single integrated device. An exemplary embodiment of this configuration is shown in
Alternately, along these lines of combining power and or spectra, a light pipe may be used to combine and/or deliver light to the target tissue. A light pipe is a subset of waveguides in that it is a relatively large device—being defined herein as ≧ about 0.5=2 in cross sectional area. In the exemplary configuration illustrated in
The concept of light guiding (or equivalently, waveguiding when used with smaller structures and/or devices) as it has been described herein is applicable both proximal and distal to the biological target. That is, such approaches may be utilized within the optical delivery device, or within the device's power supply and control housing (H), or in between that and the applicator(s), these system components have been described elsewhere herein. In the latter case, the waveguides (WG) may be made to provide for detaching the optical delivery segments (DS).
Optical elements may also be added to change beam width and divergence to help improve the irradiance of the light reaching the target plane. Micro lenses and micro reflectors (micro mirrors) are examples of optical elements that may be used to concentrate light.
One such embodiment utilizes a 3×3 microlens array that is matched to a 3×3 array of LED emitters. This is shown in
A similar concentrating effect can be obtained by utilizing a micro-reflector array.
In an alternate embodiment, a beam homogenization element can be added to improve illumination uniformity if the device generates a non-uniform illumination pattern due to factors such as a non-uniform emission profile from individual emitter, or low fill factors from the emitter array. A microlens array, and/or a microreflector array, and/or a diffractive element or array of elements, and/or a diffusive element or array of elements may be used as beam homogenizers. For example, a diffuser with a bulk scattering length of 40 um and scattering angle of 180° and thickness of 100 um may be placed above the emitter array to distribute the light from the individual emitters in order to create a more uniform illumination at the target surface.
Common path optics may also be utilized with an array of light sources to help improve light-tissue interaction rather than utilization of an array of individual optical element that each interacts with an individual emitter. For example, a lens, or Fresnel lens, as shown in
Further improvements maybe made by utilizing a reflective cover over the applicator, as has been described elsewhere herein and also illustrated schematically in
Any or all of the optical applicator and device embodiments described herein may be combined with adjunct technologies to form hybrid systems with enhanced functionality.
The sensor SEN or probe PROBE may be a temperature sensor. Passive devices such as thermistors and thermocouples may be used. Alternately, active digital or analog temperature sensors, such as the ultralow power STLM20 from STMicroelectronics may also be used. The sensor should be placed as close to the target tissue as possible to avoid thermal conduction delays that would occur should it placed well within a insulating polymeric encapsulation. Alternately, the temperature sensor as shown could be a switch that activates an interlock circuit to deactivate the light output once a maximum temperature is reached, and likewise reactivate it once a safe baseline temperature has been established.
Alternately, sensor SEN or probe PROBE may be a electrophysiological probe within or adjacent to the target tissue. Examples of such probes may be a single wire electrode (as shown), a coil located within the optical delivery device, or an array of electrodes to enable recording from multiple locations. These probe configurations are intended for electrophysiological monitoring of the target tissue. Alternately, such probes may be deployed to the ultimate biological target, if not the target tissue for irradiation. Examples of such configurations for measurement of the ultimate desired function rather than the optogenetic target include electromyography (EMG) probes placed in muscles that are innervated by a target motor nerve, or electroneurographic monitoring of a neuron or nerve, or groups/bundles of nerves. Rather than direct implantation of electrodes into the diagnostic target tissues, coils, or antennae may be placed in proximity to the diagnostic target tissues such that they are inductively coupled to them electrically or magnetically and thus able to sense activity.
Alternately, sensor SEN or probe PROBE may be an optical detector that captures remitted light from the target tissue, or its surroundings, including from the light sources LSx themselves. Such detection allows for at least relative or ratiometric measurements that provide information over time about the optical condition of the target and/or illumination device. Such information may be used to adjust the illumination level (light output power) to compensate for degradation of the light source, optical properties of the target and environment, etc.
Alternately, sensor SEN or probe PROBE may be an optical detector that detects fluorescence from the target tissue, and/or its environment. Such a signal may serve to provide information regarding the illumination efficacy, or target tissue condition. An example is background autofluorescence of the target tissue and/or its environment as a means to determine the health of the tissue, or the level of protein expression when a fluorescent probe is co-labeled along with the protein. Such spectrally sensitive detection would further require the use of optical filters to prevent background noise from the illumination light itself.
Alternately, probe PROBE may be an electrical stimulator that is packaged into the applicator, or adjacent to it. In some instances it is valuable to combine electrical stimulation with optical control. Electrical stimulation of a peripheral nerve results in propagation of action potentials in both directions along the nerve. In many cases, propagation of action potentials in only one direction is desired, and propagation in the other direction may produce undesired side effects. To avoid this problem with electrical stimulation, the electrical stimulation may be combined with illumination of an inhibitory opsin (such as NpHR or eARCH by way of non-limiting examples) such that the action potential propagates only in the desired direction along the nerve and is inhibited from propagating in the undesired direction. In other cases, optical stimulation of selective neurons within a neural network may be achieved with an excitatory opsin (such as ChR2 or C1V1 by way of non-limiting examples) and inhibition of this excitatory signal may be achieved with high frequency alternating current electrical stimulation. Other combinations are also possible.
It is often useful to control the temperature of neural tissue to protect the tissue or modulate its properties. Illumination of tissue may raise its temperature due to intrinsic heating and/or from heating of collateral chromophores such as blood and pigment. When the temperature rises it may damage the tissue; thus, it is desirable to control this rise in temperature using a closed loop control circuit in which the temperature of the tissue is measured and used to activate a nerve cooling device that keeps the temperature of the tissue within a specified range, such as the regulatory limit applied to the temperature rise due to electrical stimulation devices, defined as ΔT≦2.0° C. with respect to euthermia. Altering the temperature of the tissue may also change its properties to achieve a desired effect. For example, cooling of nerve tissue changes its conductive properties and can alter the effect of optical stimulation of nerve tissue. For example, at body temperature illumination of a peripheral nerve including ChR2 at 60 Hz causes stimulation of nerve impulses, whereas lowering the temperature of the nerve may cause inhibition of the nerve impulses. Thus, one may achieve activation and inhibition with the same opsin simply by controlling temperature. Rather than using more than one opsin and the requisite spectrally and/or spatially distinct illumination configurations, this allows stimulation and inhibition with a single excitatory opsin using a single illumination applicator by controlling the temperature of the target tissue in which it resides. For example, when ChR2 is expressed in motor neurons the inhibition effects are evident at lower temperatures with a high, whereas excitation would be achieved at physiological temperatures and lower illuminations rates. Temperature and illumination rate can also be manipulated independently to achieve this effect.
As described in the description of
Such a multi-zone device is illustrated in
In an exemplary embodiment, the system of
The control of target tissue temperature may be accomplished by utilizing thermometers such as thermocouples, RTDs, etc. in conjunction with a feedback loop and a controller, as shown in
In another alternate exemplary embodiment, Cooling Object CO may be contained within the Applicator A (not shown), as represented in
Alternately, a thermoelectric device may be used to provide the cooling directly to the tissue with out the use of coolant fluid, as is shown in
The system may be tested for utility at the time of implantation, or subsequent to it. The tests may provide for system configurations, such as which areas of the applicator are most effective, or efficacious, by triggering different light sources alone, or in combination, to ascertain their effect on the patient. Furthermore, the effect(s) of cooling may also be queried to discern efficacy via functional or other such testing. Such optical and thermal tests may also be done simultaneously, or in coordination, to determine efficacy and/or overall system efficiency. Such configurations may also utilized a multi-element system, such as an array of LEDs, for example, or a multiple output coupling method is used, as has been described herein by way of non-limiting example. Such diagnostic measurements may be achieved by using an implanted electrode that resides on, in or near the applicator, or one that was implanted elsewhere. Alternately, such measurements maybe made at the time of implantation using a local nerve electrode for induced stimulation, and/or an electrical probe to query the nerve impulses intraoperatively using a device such as the CHECKPOINT Stimulator from NDI and Checkpoint Surgical to provide electrical stimulation of exposed motor nerves or muscle tissue and in turn locate and identify nerves as well to test their excitability. Once obtained, therapeutic configuration may be programmed into the system for optimal clinical outcome using an external Programmer/Controller P/C via a Telemetry Module TM into the Controller, or Processor, CPU of the system Housing H, as has been described above in reference to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
There are two main approaches to light delivery to the target tissue. The first is Transcutaneous Light Delivery (TLD), in which the light source is extracorporeal and is delivered to the target tissue through the skin, or other epithelial tissue. The other is Somatic Light Delivery (SLD) in which the light source in implanted intracorporeally. A hybrid technique utilizing at least a single lightguide that is at least a partially implanted within the cutis that serves to carry the light it collects from an external light source towards the target tissue. We refer to this as “Percutaneous Light Delivery”, as it involves a configuration in which the otherwise intact skin is disrupted to accommodate the at least partially implanted lightguide(s).
Referring to
Specific examples for values at various wavelengths for light-skinned (light pigment at 2% melanosome) and darkly pigmented (dark pigment at 30% melanosome) are given in Tables 2 & 3.
It's clear that the exposure of cutaneous nerve endings in a variety of skin types is clinically feasible, even with Blue Light.
Such as is shown in
A block diagram is depicted in
Memory (MEM) may store instructions for execution by Processor CPU, optical and/or sensor data processed by sensing circuitry SC, and obtained from sensors both within the housing, such as battery level, discharge rate, etc., and those deployed outside of the Housing (H), possibly in Applicator A, such as optical and temperature sensors, and/or other information regarding therapy for the patient. Processor (CPU) may control Driving Circuitry DC to deliver power to the light source (not shown) according to a selected one or more of a plurality of programs or program groups stored in Memory (MEM). The Light Source may be internal to the housing H, or remotely located in or near the applicator (A), as previously described. Memory (MEM) may include any electronic data storage media, such as random access memory (RAM), read-only memory (ROM), electronically-erasable programmable ROM (EEPROM), flash memory, etc. Memory (MEM) may store program instructions that, when executed by Processor (CPU), cause Processor (CPU) to perform various functions ascribed to Processor (CPU) and its subsystems, such as dictate pulsing parameters for the light source, as described earlier.
In accordance with the techniques described in this disclosure, information stored in Memory (MEM) may include information regarding therapy that the patient had previously received. Storing such information may be useful for subsequent treatments such that, for example, a clinician may retrieve the stored information to determine the therapy applied to the patient during his/her last visit, in accordance with this disclosure. Processor CPU may include one or more microprocessors, digital signal processors (DSPs), application-specific integrated circuits (ASICs), field-programmable gate arrays (FPGAs), or other digital logic circuitry. Processor CPU controls operation of implantable stimulator, e.g., controls stimulation generator to deliver stimulation therapy according to a selected program or group of programs retrieved from memory (MEM). For example, processor (CPU) may control Driving Circuitry DC to deliver optical signals, e.g., as stimulation pulses, with intensities, wavelengths, pulse widths (if applicable), and rates specified by one or more stimulation programs. Processor (CPU) may also control Driving Circuitry (DC) to selectively deliver the stimulation via subsets of Delivery Segments (DSx), and with stimulation specified by one or more programs. Different delivery segments (DSx) may be directed to different target tissue sites, as was previously described.
Telemetry module (TM) may include a radio frequency (RF) transceiver to permit bi-directional communication between implantable stimulator and each of clinician programmer and patient programmer (C/P). Telemetry module (TM) may include an Antenna (ANT), of any of a variety of forms. For example, Antenna (ANT) may be formed by a conductive coil or wire embedded in a housing associated with medical device. Alternatively, antenna (ANT) may be mounted on a circuit board carrying other components of implantable stimulator or take the form of a circuit trace on the circuit board. In this way, telemetry module (TM) may permit communication with a controller/programmer (C/P). Given the energy demands and modest data-rate requirements, the Telemetry system may be configured to use inductive coupling to provide both telemetry communications and power for recharging, although a separate recharging circuit (RC) is shown in
External programming devices for patient and/or physician can be used to alter the settings and performance of the implanted housing. Similarly, the implanted apparatus may communicate with the external device to transfer information regarding system status and feedback information. This may be configured to be a PC-based system, or a stand-alone system. In either case, the system must communicate with the housing via the telemetry circuits of Telemetry Module (TM) and Antenna (ANT). Both patient and physician may utilize controller/programmers (C/P) to tailor stimulation parameters such as duration of treatment, optical intensity or amplitude, pulse width, pulse frequency, burst length, and burst rate, as is appropriate.
Once the communications link (CL) is established, data transfer between the MMN programmer/controller and the housing may begin. Examples of such data are:
By way of non-limiting examples, near field communications, either low power and/or low frequency; such as is produced by Zarlink/MicroSEMI may be employed for telemetry, as well as Bluetooth, Low Energy Bluetooth, Zigbee, etc.
In
In
As used herein, “handpiece” may also refer to any external transcutaneous optical delivery system.
Referring to
As used herein, the terms “surface intensity” and “intensity” may be used interchangeably, unless otherwise specified.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
These results demonstrate the biological activity and specificity of the present inventive therapy to robustly treat pain.
With regard to construct variations, one construct may comprise a coding sequence for the light activated protein (opsin, channel or pump) driven by a ubiquitous promoter (such as CMV or CAG) or a neuron specific promoter (such as hSyn or NF200) with or without regulatory elements (such as WPRE or beta globin intron) with a poly adenylation signal.
Various exemplary embodiments of the invention are described herein. Reference is made to these examples in a non-limiting sense. They are provided to illustrate more broadly applicable aspects of the invention. Various changes may be made to the invention described and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the present invention. Further, as will be appreciated by those with skill in the art that each of the individual variations described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present inventions. All such modifications are intended to be within the scope of claims associated with this disclosure.
Any of the devices described for carrying out the subject diagnostic or interventional procedures may be provided in packaged combination for use in executing such interventions. These supply “kits” may further include instructions for use and be packaged in sterile trays or containers as commonly employed for such purposes.
The invention includes methods that may be performed using the subject devices. The methods may comprise the act of providing such a suitable device. Such provision may be performed by the end user. In other words, the “providing” act merely requires the end user obtain, access, approach, position, set-up, activate, power-up or otherwise act to provide the requisite device in the subject method. Methods recited herein may be carried out in any order of the recited events which is logically possible, as well as in the recited order of events.
Exemplary aspects of the invention, together with details regarding material selection and manufacture have been set forth above. As for other details of the present invention, these may be appreciated in connection with the above-referenced patents and publications as well as generally known or appreciated by those with skill in the art. For example, one with skill in the art will appreciate that one or more lubricious coatings (e.g., hydrophilic polymers such as polyvinylpyrrolidone-based compositions, fluoropolymers such as tetrafluoroethylene, hydrophilic gel or silicones) may be used in connection with various portions of the devices, such as relatively large interfacial surfaces of movably coupled parts, if desired, for example, to facilitate low friction manipulation or advancement of such objects relative to other portions of the instrumentation or nearby tissue structures. The same may hold true with respect to method-based aspects of the invention in terms of additional acts as commonly or logically employed.
In addition, though the invention has been described in reference to several examples optionally incorporating various features, the invention is not to be limited to that which is described or indicated as contemplated with respect to each variation of the invention. Various changes may be made to the invention described and equivalents (whether recited herein or not included for the sake of some brevity) may be substituted without departing from the true spirit and scope of the invention. In addition, where a range of values is provided, it is understood that every intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention.
Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in claims associated hereto, the singular forms “a,” “an,” “said,” and “the” include plural referents unless the specifically stated otherwise. In other words, use of the articles allow for “at least one” of the subject item in the description above as well as claims associated with this disclosure. It is further noted that such claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.
Without the use of such exclusive terminology, the term “comprising” in claims associated with this disclosure shall allow for the inclusion of any additional element—irrespective of whether a given number of elements are enumerated in such claims, or the addition of a feature could be regarded as transforming the nature of an element set forth in such claims. Except as specifically defined herein, all technical and scientific terms used herein are to be given as broad a commonly understood meaning as possible while maintaining claim validity.
The breadth of the present invention is not to be limited to the examples provided and/or the subject specification, but rather only by the scope of claim language associated with this disclosure.
The present application claims priority to U.S. Provisional Application Ser. No. 62/030,467, filed Jul. 29, 2014. The foregoing application is hereby incorporated by reference into the present application in its entirety.
Number | Date | Country | |
---|---|---|---|
62030467 | Jul 2014 | US |