The present invention relates to a system and method for wireless communications, and, in particular embodiments, to a system and method for orthogonal frequency division multiple access (OFDMA).
Next generation Wireless Local Area Networks (WLANs) will be deployed in high-density environments that include multiple access points providing wireless access to large numbers of mobile stations in the same geographical area. Next-generation WLANs will also need to simultaneously support various traffic types having diverse quality of service (QoS) requirements, as mobile devices are increasingly used to access streaming video, mobile gaming, and other services. Institute of Electrical and Electronics Engineers (IEEE) 802.11ax is being developed to address these challenges, and is expected to provide up to four times the throughput of IEEE 802.11ac networks.
Technical advantages are generally achieved, by embodiments of this disclosure which describe system and method for orthogonal frequency division multiple access.
In accordance with an embodiment, a method for transmitting data in a wireless network is provided. In this example, the method includes transmitting an orthogonal frequency division multiple access (OFDMA) frame to one or more mobile devices over a 20 megahertz (MHz) frequency channel. The OFDMA frame comprises a frame header that includes a first signal (SIG) field and a second SIG field. The first SIG field is encoded at a different sampling rate than the second SIG field. An apparatus for performing this method is also provided.
In accordance with another embodiment, a method for receiving data in a wireless network is provided. In this example, the method includes receiving an orthogonal frequency division multiple access (OFDMA) frame from an access point over a 20 megahertz (MHz) frequency channel. The OFDMA frame comprising a frame header that includes a first signal (SIG) field and a second SIG field. The first SIG field is encoded at a different sampling rate than the second SIG field. The method further includes decoding the first SIG field to obtain parameters for decoding the second SIG field, and decoding the second SIG field in accordance with the parameters carried by the first SIG field to obtain scheduling information for a payload of the OFDMA frame. An apparatus for performing this method is also provided.
In accordance with yet another embodiment, a method for requesting uplink resource units in an Institute of Electrical and Electronics Engineers (IEEE) 802.11 network is provided. In this example, the method comprises transmitting a request frame in a contentious time window of an IEEE 802.11 channel. The request frame requests that uplink resources in a scheduled time window of the 802.11 channel be allocated to the STA. An apparatus for performing this method is also provided.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated. The figures are drawn to clearly illustrate the relevant aspects of the embodiments and are not necessarily drawn to scale.
The structure, manufacture and use of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention. OFDMA tone allocations are discussed in U.S. Non-Provisional application Ser. No. 14/738,411, which is incorporated by reference herein as if reproduced in its entirety.
Aspects of this disclosure communicate an embodiment OFDMA frame comprising a header with signal (SIG) fields that are encoded at different sampling rates than one another. In some embodiments, a first SIG field is encoded at sampling rate that is capable of being decoded by legacy mobile devices, while a second SIG field is encoded at sampling rate that is capable of being decoded by next-generation devices. In this way, the second SIG field may carry more information (per resource), while the first SIG field may allow the OFDMA frame to be decoded by legacy mobile devices. In one embodiment, the first signal field is encoded at a 64 point fast frequency transform (FFT) sampling rate, and the second SIG field is encoded at a 256 point FFT sampling rate. In some embodiments, the first SIG field may carry parameters for decoding the second SIG field, and the second SIG field may carry resource allocation information for a payload of the OFDMA frame. The SIG fields may also carry identifiers associated with an access point and/or mobile stations. In some embodiments, a given FFT sampling rates refer to encoding a field at the sampling rate in a 20 MHz frequency channel. For instance, encoding a field at a 64 point FFT sampling rate may refer encoding the field at 64 FFT per 20 MHz frequency channel, while encoding a field at a 256 point FFT sampling rate may refer encoding the field at 256 FFT per 20 MHz frequency channel.
Aspects of this disclosure also provide an embodiment technique for requesting uplink resources. In an embodiment, an AP may periodically allocate a contentious time window of an IEEE 802.11 channel to STAs in the coverage area of the AP. Those STAs may request uplink resources by sending a request frame in the contentious time window. Each request frame may be transmitted using a code division multiple access (CDMA) code assigned to, or selected by, the co-responding STA, thereby avoiding collisions between request frames communicated over the same time-frequency resources by different STAs. This CDMA-based uplink transmission request scheme may allow the AP to isolate the request frames in the code domain. These and other details are described in greater detail below.
The legacy preamble field 202 may be backward compatible with IEEE 802.11a/n networks. The legacy preamble field 202 may be used to synchronize the data payload field 210 and avoid interference with other neighboring STAs in a cell. In one embodiment, the legacy preamble field 202 and the SIGA field 204 are encoded at one sampling rate (e.g., a 64 point FFT sampling rate), while the SIGB field 206, the Preamble field 208, and the data payload field 210 are encoded at another sampling rate (e.g., a 256 point FFT sampling rate). In another embodiment, the legacy preamble field 202, the SIGA field 204, the SIGB field 206, and the Preamble field 208 may be encoded at 64 FFT per 20 MHz frequency channel, while the data payload field 210 may be encoded at 256 FFT per 20 MHz frequency channel. The Preamble field 208 may be used to synchronize the data payload field 210 and avoid interference with other neighboring STAs in the cell.
In one embodiment, three RUs in an OFDMA frame tone allocation may be processed together for a channel encoding and an interleaving operation in order to accommodate a number of data (or coded) bits per RU in an integer number for the modulation and coding scheme 9 (MCS-9). In such an embodiment, the channel encoding and the interleaving operation may be achieved as the case of 80 MHz frequency channel defined in IEEE 802.11ac standard specifications. This allows backward compatibility for IEEE 802.11 networks performing RU basis encoding and interleaving operation. Table 1 shows an MCS level based on bit size per RU or a symbol for the case of 256 FFT per 20 MHz frequency channel.
In some embodiments, the processing system 1000 is included in a network device that is accessing, or part otherwise of, a telecommunications network. In one example, the processing system 1000 is in a network-side device in a wireless or wireline telecommunications network, such as a base station, a relay station, a scheduler, a controller, a gateway, a router, an applications server, or any other device in the telecommunications network. In other embodiments, the processing system 1000 is in a user-side device accessing a wireless or wireline telecommunications network, such as a mobile station, a user equipment (UE), a personal computer (PC), a tablet, a wearable communications device (e.g., a smartwatch, etc.), or any other device adapted to access a telecommunications network.
In some embodiments, one or more of the interfaces 1010, 1012, 1014 connects the processing system 1000 to a transceiver adapted to transmit and receive signaling over the telecommunications network.
The transceiver 1100 may transmit and receive signaling over any type of communications medium. In some embodiments, the transceiver 1100 transmits and receives signaling over a wireless medium. For example, the transceiver 1100 may be a wireless transceiver adapted to communicate in accordance with a wireless telecommunications protocol, such as a cellular protocol (e.g., long-term evolution (LTE), etc.), a wireless local area network (WLAN) protocol (e.g., Wi-Fi, etc.), or any other type of wireless protocol (e.g., Bluetooth, near field communication (NFC), etc.). In such embodiments, the network-side interface 1102 comprises one or more antenna/radiating elements. For example, the network-side interface 1102 may include a single antenna, multiple separate antennas, or a multi-antenna array configured for multi-layer communication, e.g., single input multiple output (SIMO), multiple input single output (MISO), multiple input multiple output (MIMO), etc. In other embodiments, the transceiver 1100 transmits and receives signaling over a wireline medium, e.g., twisted-pair cable, coaxial cable, optical fiber, etc. Specific processing systems and/or transceivers may utilize all of the components shown, or only a subset of the components, and levels of integration may vary from device to device.
The following references are related to subject matter of the present application. Each of these references is incorporated herein by reference in its entirety: [1] U.S. Provisional Patent Application Ser. No. 61/974,282, entitled “UL OFDMA Frame Format and Input/Output Configuration for IFFT module for OFDM(A) Numerologies,” filed Apr. 2, 2014; [2] U.S. Provisional Patent Application Ser. No. 62/001,394, entitled “System and Method for Utilizing Unused Tones in Tone-Interleaved Long Training Field,” filed May 21, 2014. While this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.
This patent application claims priority to U.S. Provisional Patent Application No. 62/011,475, filed on Jun. 12, 2014 and entitled “System and Method for OFDMA Tone Allocation in Next Generation Wi-Fi Networks,” to U.S. Provisional Application No. 62/020,902, filed on Jul. 3, 2014 and entitled “System and Method for Orthogonal Frequency Division Multiple Access,” and to U.S. Provisional Application No. 62/028,208, filed on Jul. 23, 2014 and entitled “System and Method for OFDMA Resource Allocation,” each of which are hereby incorporated by reference herein as if reproduced in its entirety.
Number | Date | Country | |
---|---|---|---|
62011475 | Jun 2014 | US | |
62020902 | Jul 2014 | US | |
62028208 | Jul 2014 | US |