Field
The present disclosure relates generally to a content-centric network (CCN). More specifically, the present disclosure relates to a system and method for parallel and secure retrieval of content along with information needed for consumption of the content in content-centric networks (CCNs).
Related Art
The proliferation of the Internet and e-commerce continues to fuel revolutionary changes in the network industry. Today, a significant number of information exchanges, from online movie viewing to daily news delivery, retail sales, and instant messaging, are conducted online. An increasing number of Internet applications are also becoming mobile. However, the current Internet operates on a largely location-based addressing scheme. The two most ubiquitous protocols, the Internet Protocol (IP) and Ethernet protocol, are both based on end-host addresses. That is, a consumer of content can only receive the content by explicitly requesting the content from an address (e.g., IP address or Ethernet media access control (MAC) address) that is typically associated with a physical object or location. This restrictive addressing scheme is becoming progressively more inadequate for meeting the ever-changing network demands.
Recently, information-centric network (ICN) architectures have been proposed in the industry where content is directly named and addressed. Content-centric Networking (CCN), an exemplary ICN architecture, brings a new approach to content transport. Instead of having network traffic viewed at the application level as end-to-end conversations over which content travels, content is requested or returned based on its unique name, and the network is responsible for routing content from the provider to the consumer. Note that content includes data that can be transported in the communication system, including any form of data such as text, images, video, and/or audio. A consumer and a provider can be a person at a computer or an automated process inside or outside the CCN. A piece of content can refer to the entire content or a respective portion of the content. For example, a newspaper article might be represented by multiple pieces of content embodied as data packets. A piece of content can also be associated with metadata describing or augmenting the piece of content with information such as authentication data, creation date, content owner, etc.
In CCN, content objects are signed and potentially encrypted. In order to authenticate and access the content of a file, the content consumer may need to retrieve a number of Content Objects and additionally information about the encryption keys and identities of the publisher. Sequential downloading of each Content Object and the additional key information may need multiple round trips to complete. Hence, before a content consumer can start the consumption of a content piece (which may span multiple Content Objects), the content consumer needs to download the metadata, which sometimes is attached to the end of all consumable content. This means that the content consumer may have to wait until all portions of the content are downloaded to download the decryption key, and hence cannot start consuming the already downloaded content portions.
One embodiment of the present invention provides a system for retrieving a content collection over a network. During operation, the system determines additional information associated with the piece of content that is needed for consumption of the content collection; generates a plurality of Interests, which includes at least one Interest for a catalog of the content collection and at least one Interest for the additional information; and forwards, concurrently, the plurality of Interests, thereby facilitating parallel retrieval of the content collection and the additional information.
In a variation on this embodiment, the additional information includes one or more of: authentication and/or decryption information associated with the catalog, authentication and/or decryption information associated with the content collection, and authentication revocation information.
In a variation on this embodiment, the plurality of Interests includes at least one Interest for the content collection.
In a further variation, generating the at least one Interest for the content collection involves including one or more of: user credential information and payment information.
In a variation on this embodiment, forwarding the Interests involves at least one of: forwarding one or more Interests to a trust authority and forwarding one or more Interests to a node that caches the content collection.
In a variation on this embodiment, the network is a content-centric network, and the Interests are CCN Interests.
In a variation on this embodiment, the system further receives responses to the plurality of Interests and caches the received responses.
In the figures, like reference numerals refer to the same figure elements.
Overview
Embodiments of the present invention provide a system and method for parallel retrieval of content and information needed for consumption of the content. More specifically, during operation, when a requester requests a named piece of content (such as a file) over the network, the system determines what kinds of information is needed to consume the content, and retrieves the piece of content and the needed information in parallel. In other words, the process of retrieving the authentication and decryption information is bootstrapped to the content-downloading process.
In general, CCN uses two types of messages: Interests and Content Objects. An Interest carries the hierarchically structured variable-length identifier (HSVLI), also called the “name,” of a Content Object and serves as a request for that object. If a network element (e.g., router) receives multiple Interests for the same name, it may aggregate those Interests. A network element along the path of the Interest with a matching Content Object may cache and return that object, satisfying the Interest. The Content Object follows the reverse path of the Interest to the origin(s) of the Interest. A Content Object contains, among other information, the same HSVLI, the object's payload, and cryptographic information used to bind the HSVLI to the payload.
The terms used in the present disclosure are generally defined as follows (but their interpretation is not limited to such):
As mentioned before, an HSVLI indicates a piece of content, is hierarchically structured, and includes contiguous components ordered from a most general level to a most specific level. The length of a respective HSVLI is not fixed. In content-centric networks, unlike a conventional IP network, a packet may be identified by an HSVLI. For example, “abcd/bob/papers/ccn/news” could be the name of the content and identifies the corresponding packet(s), i.e., the “news” article from the “ccn” collection of papers for a user named “Bob” at the organization named “ABCD.” To request a piece of content, a node expresses (e.g., broadcasts) an Interest in that content by the content's name. An Interest in a piece of content can be a query for the content according to the content's name or identifier. The content, if available in the network, is sent back from any node that stores the content to the requesting node. The routing infrastructure intelligently propagates the Interest to the prospective nodes that are likely to have the information and then carries available content back along the reverse path traversed by the Interest message. Essentially the Content Object follows the breadcrumbs left by the Interest message and thus reaches the requesting node.
In accordance with an embodiment of the present invention, a consumer can generate an Interest for a piece of content and forward that Interest to a node in network 180. The piece of content can be stored at a node in network 180 by a publisher or content provider, who can be located inside or outside the network. For example, in
In network 180, any number of intermediate nodes (nodes 100-145) in the path between a content holder (node 130) and the Interest generation node (node 105) can participate in caching local copies of the content as it travels across the network. Caching reduces the network load for a second subscriber located in proximity to other subscribers by implicitly sharing access to the locally cached content.
The Manifest
In CCN, a manifest (also known as a catalog) is used to represent a collection of data. For example, a CCN node may contain a video collection that includes a large number of video files, and the manifest of the video collection can be an ordered list identifying the Content Objects corresponding to the video files. Note that, due to the size limit of a Content Object, a video file may span multiple Content Objects. Moreover, a CCN node may store content for a webpage, and the manifest for the web page identifies the different components of the webpage, such as the markup document and embedded objects (including Java scripts, image files, audio files, video files, etc.).
In the manifest, each Content Object is identified by its name and corresponding digest, where the digest is the hash value (often computed using a cryptographic hash function, such as hash function SHA-256) of the Content Object. In some embodiments, each Content Object is also identified by a modified time indicating the time that the content was modified.
In
As shown in
In some embodiments, to download a file collection, a requester may need to first download the manifest. In certain situations, the manifest itself is protected, and before reading the manifest, the requester or content consumer needs to authenticate the manifest, and may also need to decrypt the manifest as well.
Parallel Content Retrieval
In CCN, every Content Object is signed and potentially encrypted.
In some embodiments, Content Object 300 may be encrypted, and Content Object 300 may include an additional component that specifies the decryption key. In some further embodiments, an entire content component, which can be a file of any type, such as audio, video, JavaScript files, etc., may be encrypted and signed as a whole. For example, a large video file may span many Content Objects, and to ensure that the content of the file remain confidential, the entire video file, and hence the many Content Objects are encrypted. To guarantee the authenticity of each chunk of the file (or each Content Object), the publisher may sign each Content Object. Moreover, to bind all the chunks (Content Objects) together, the publisher may also sign all chunks of a content component as a whole. An identifier of the encryption key and the signature for the entire component may be inserted into the last chunk (Content Object) or be included in a separate Content Object.
Upon receiving the Content Objects, in order to authenticate the received Content Objects, the requester needs to verify the signing key. In some embodiments, the key-verification process involves contacting a trust authority to verify whether the key (specified by the key information included in the received Content Objects) is actually authorized to sign the content, and computing and verifying the signatures included in the received Content Objects. In addition, in order to access the encrypted content, the requester needs to obtain the decryption key. In certain situations, the keys that are required to decrypt the content (such as a movie) are generated based on the user trying to consume the content (such as a user viewing the movie). For example, when a user is downloading a movie, there might be session keys generated specifically for the user. The user needs to obtain those session keys. Moreover, in situations where the manifest is encrypted, the requester also needs to obtain the decryption key for the manifest. In conventional systems, the requester needs to download the manifest, the content, the authentication information for the manifest and the content, the decryption information (in order to obtain the decryption key) for the manifest and the content, and any possible revocation information for authentication, often in a sequential order. This means many round trips will be needed before the requester obtains all information needed for the consumption of the content.
From
To solve the problem of delayed content consumption, in some embodiments, when requesting a content collection, the requester sends out Interests for retrieving the content chunks and Interests for retrieving information needed for consumption of the content in parallel. Therefore, information, including authentication information and decryption information, that is needed for the consumption of the content can be retrieved in parallel with the content itself, and the user no longer needs to wait until all content chunks are downloaded before starting to consume the content. In the example of movie downloading, while downloading the first portion of a movie, the user may simultaneously obtain the session key and verify the authenticity of the received first portion. Subsequently, the user can start viewing the movie (after decryption) as the remaining portions of the movie are being downloaded. Similarly, if the content collection is a file library, the user may start to consume the already downloaded files while other files are still being downloaded.
Instead of requesting manifest 512, content chunks 514, and decryption information 516 one by one, requester 502 may send out Interests for them all at once. In other words, requester 502 can request the manifest, the content chunks, and the decryption information using a lump sum set of Interests. Note that, in some embodiments, the content chunks may include embedded objects whose names or hash values are not known to requester 502. In such a situation, requester 502 may need to first download and read the manifest before sending out a large set of Interests to request the content chunks along with the decryption information. In certain situations, the manifest and the embedded objects may be placed in a single content stream under one chunked namespace, and requester 502 can send out Interest sets in that chunked namespace to request, simultaneously, manifest 512 and content chunks 514.
Moreover, to authenticate manifest 512 and content chunks 514, requester 502 may also need to send a set of Interests to trust authority 506 to inquire about the signing keys. In some embodiments, requester 502 can send such an inquiry at the same time requester 502 is sending the initial set of Interests. In such a situation, because requester 502 has not yet downloaded manifest 512 or content chunks 514, requester 502 has no knowledge of what key or keys are used to sign manifest 512 and content chunks 514. However, even without such knowledge, requester 502 can send a request to trust authority 506, requesting a list of signing keys that are authorized to sign manifest 512 and/or content chunks 514. For example, if content collection 510 is under the namespace “/foo/abc,” requester 502 may send a request to trust authority 506, requesting a list of signing keys authorized to sign under the namespace “/foo/abc.”
In some embodiments, requester 502 may include, in the lump sum set of Interests, additional information that may be needed by responders 504 in order for responders 504 to send back Content Objects corresponding to the Interests. This additional information can include, but is not limited to: user information (such as user credentials) and certain payment information, or any other information required by the content provider.
In some embodiments, the parallel downloading of content and information needed for consumption of the content may be triggered by the initial set of Interests sent out by the requester for the content. For example, the requester may broadcast, over the network, a set of Interests under the namespace “/foo/abc/video/video_1.” The Interests reach an intermediate system or node, such as a router, a gateway, a proxy server, or a cache server, which in turn determines that content chunks under the namespace “/foo/abc/video/video_1” are individually (or collectively) signed and encrypted. In some embodiments, the intermediate node may indicate to the requester that signature information and decryption information will be needed to consume the content. In further embodiments, the intermediate node may simultaneously issue, on behalf of the content requester, Interests for downloading the content, Interests for verifying the signatures (sent to the trust authority), and Interests for obtaining decryption information. The intermediate node may also issue an Interest to the trust authority to obtain possible revocation information for authentication.
In addition to issuing Interests for parallel downloading of content and other related information, the intermediate node may also be responsible for processing the responses to the Interests. For example, the intermediate node may receive a list of authorized signing keys, compare the list with signatures included in the content chunks to determine the authenticity of the content chunks, and then forward the authentication result to the content requester. Moreover, if the response indicates the type of decryption key needed for decrypting the content chunks, the intermediate node may obtain (via certain computation) the decryption key and forward it to the requester. Note that the process of determining what information is needed and generating parallel requests (Interests) to download the content along with related information may be transparent to an application that requests the content. In some embodiments, the application only needs to send one Interest to request a content collection, and processes running on other layers are handling the generation of additional Interests for the parallel downloading.
Information-gathering module 606 is responsible for gathering, from the requester, additional information that is required before the content can be delivered. For example, information-gathering module 606 may collect user credential and/or payment information from the requester. Request-generation module 608 is responsible for generating sets of parallel Interests that can be used to request the content chunks as well as information (such as authentication information and decryption information) needed for the consumption of the content. In some embodiments, request-generation module 608 generates the sets of parallel Interests based on the analysis outcome of analysis module 604 and the information gathered by information-gathering module 606. For example, if authentication is needed, request-generation module 608 generates requests that can be sent to a trust authority for authentication purposes. Moreover, if payment information is needed, request-generation module 608 generates content requests that include the payment information. Forwarding module 610 is responsible for forwarding the generated set of requests in parallel to the trust authority and to the content provider.
The system then simultaneously forwards the generated Interests or sets of Interests to their intended destinations, which can include a trust authority and a node that has cached copies of the content chunks (operation 708). Once the Interests are forwarded, the system may start to receive responses, which can include content chunks or authentication results (operation 710). In some embodiments, authentication responses may include a list identifying signing keys that are authorized to sign Content Objects under a particular namespace. The system optionally caches the received responses, including authentication responses, such that subsequent requests can be served faster (operation 712).
Note that all-at-once content-requesting module 600 shown in
Also note that the purpose for issuing multiple Interests or sets of Interests in parallel is to reduce the number of round trips needed before a content requester can start consuming the requested content. Ideally, a requester may start to consume the content within one or even less than one round trip, because the Interests for content chunks and the related authentication or decryption information are sent out simultaneously. In practice, however, more than one round trip or more than one message exchange may be needed before the requester receives the content chunks and the additional information needed for consumption of the content. For example, in the event of some Content Objects including external links, the requester may need to first resolve the external link, and then issue Interests following the links.
Computer and Communication System
In some embodiments, modules 832, 834, and 836 can be partially or entirely implemented in hardware and can be part of processor 810. Further, in some embodiments, the system may not include a separate processor and memory. Instead, in addition to performing their specific tasks, modules 832, 834, and 836, either separately or in concert, may be part of general- or special-purpose computation engines.
Storage 830 stores programs to be executed by processor 810. Specifically, storage 830 stores a program that implements a system (application) for facilitating parallel content retrieval. During operation, the application program can be loaded from storage 830 into memory 820 and executed by processor 810. As a result, system 800 can perform the functions described above. System 800 can be coupled to an optional display 880 (which can be a touch screen display), keyboard 860, and pointing device 870; system 800 can also be coupled via one or more network interfaces to network 882.
The data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any device or medium that can store code and/or data for use by a computer system. The computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-readable media now known or later developed.
The methods and processes described in the detailed description section can be embodied as code and/or data, which can be stored in a computer-readable storage medium as described above. When a computer system reads and executes the code and/or data stored on the computer-readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the computer-readable storage medium.
Furthermore, methods and processes described herein can be included in hardware modules or apparatus. These modules or apparatus may include, but are not limited to, an application-specific integrated circuit (ASIC) chip, a field-programmable gate array (FPGA), a dedicated or shared processor that executes a particular software module or a piece of code at a particular time, and/or other programmable-logic devices now known or later developed. When the hardware modules or apparatus are activated, they perform the methods and processes included within them.
The above description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
| Number | Name | Date | Kind |
|---|---|---|---|
| 817441 | Niesz | Apr 1906 | A |
| 4309569 | Merkle | Jan 1982 | A |
| 4921898 | Lenney | May 1990 | A |
| 5070134 | Oyamada | Dec 1991 | A |
| 5110856 | Oyamada | May 1992 | A |
| 5214702 | Fischer | May 1993 | A |
| 5377354 | Scannell | Dec 1994 | A |
| 5506844 | Rao | Apr 1996 | A |
| 5629370 | Freidzon | May 1997 | A |
| 5845207 | Amin | Dec 1998 | A |
| 5870605 | Bracho | Feb 1999 | A |
| 6047331 | Medard | Apr 2000 | A |
| 6052683 | Irwin | Apr 2000 | A |
| 6085320 | Kaliski, Jr. | Jul 2000 | A |
| 6091724 | Chandra | Jul 2000 | A |
| 6128623 | Mattis | Oct 2000 | A |
| 6128627 | Mattis | Oct 2000 | A |
| 6173364 | Zenchelsky | Jan 2001 | B1 |
| 6209003 | Mattis | Mar 2001 | B1 |
| 6226618 | Downs | May 2001 | B1 |
| 6233617 | Rothwein | May 2001 | B1 |
| 6233646 | Hahm | May 2001 | B1 |
| 6289358 | Mattis | Sep 2001 | B1 |
| 6292880 | Mattis | Sep 2001 | B1 |
| 6332158 | Risley | Dec 2001 | B1 |
| 6363067 | Chung | Mar 2002 | B1 |
| 6366988 | Skiba | Apr 2002 | B1 |
| 6574377 | Cahill | Jun 2003 | B1 |
| 6654792 | Verma | Nov 2003 | B1 |
| 6667957 | Corson | Dec 2003 | B1 |
| 6681220 | Kaplan | Jan 2004 | B1 |
| 6681326 | Son | Jan 2004 | B2 |
| 6732273 | Byers | May 2004 | B1 |
| 6769066 | Botros | Jul 2004 | B1 |
| 6772333 | Brendel | Aug 2004 | B1 |
| 6775258 | vanValkenburg | Aug 2004 | B1 |
| 6862280 | Bertagna | Mar 2005 | B1 |
| 6901452 | Bertagna | May 2005 | B1 |
| 6915307 | Mattis | Jul 2005 | B1 |
| 6917985 | Madruga | Jul 2005 | B2 |
| 6957228 | Graser | Oct 2005 | B1 |
| 6968393 | Chen | Nov 2005 | B1 |
| 6981029 | Menditto | Dec 2005 | B1 |
| 7007024 | Zelenka | Feb 2006 | B2 |
| 7013389 | Srivastava | Mar 2006 | B1 |
| 7031308 | Garcia-Luna-Aceves | Apr 2006 | B2 |
| 7043637 | Bolosky | May 2006 | B2 |
| 7061877 | Gummalla | Jun 2006 | B1 |
| 7080073 | Jiang | Jul 2006 | B1 |
| RE39360 | Aziz | Oct 2006 | E |
| 7149750 | Chadwick | Dec 2006 | B2 |
| 7152094 | Jannu | Dec 2006 | B1 |
| 7177646 | ONeill | Feb 2007 | B2 |
| 7206860 | Murakami | Apr 2007 | B2 |
| 7206861 | Callon | Apr 2007 | B1 |
| 7210326 | Kawamoto | May 2007 | B2 |
| 7246159 | Aggarwal | Jul 2007 | B2 |
| 7257837 | Xu | Aug 2007 | B2 |
| 7287275 | Moskowitz | Oct 2007 | B2 |
| 7315541 | Housel | Jan 2008 | B1 |
| 7339929 | Zelig | Mar 2008 | B2 |
| 7350229 | Lander | Mar 2008 | B1 |
| 7362727 | ONeill | Apr 2008 | B1 |
| 7382787 | Barnes | Jun 2008 | B1 |
| 7395507 | Robarts | Jul 2008 | B2 |
| 7430755 | Hughes | Sep 2008 | B1 |
| 7444251 | Nikovski | Oct 2008 | B2 |
| 7466703 | Arunachalam | Dec 2008 | B1 |
| 7472422 | Agbabian | Dec 2008 | B1 |
| 7496668 | Hawkinson | Feb 2009 | B2 |
| 7509425 | Rosenberg | Mar 2009 | B1 |
| 7523016 | Surdulescu | Apr 2009 | B1 |
| 7542471 | Samuels | Jun 2009 | B2 |
| 7543064 | Juncker | Jun 2009 | B2 |
| 7552233 | Raju | Jun 2009 | B2 |
| 7555482 | Korkus | Jun 2009 | B2 |
| 7555563 | Ott | Jun 2009 | B2 |
| 7564812 | Elliott | Jul 2009 | B1 |
| 7567547 | Mosko | Jul 2009 | B2 |
| 7567946 | Andreoli | Jul 2009 | B2 |
| 7580971 | Gollapudi | Aug 2009 | B1 |
| 7623535 | Guichard | Nov 2009 | B2 |
| 7636767 | Lev-Ran | Dec 2009 | B2 |
| 7647507 | Feng | Jan 2010 | B1 |
| 7660324 | Oguchi | Feb 2010 | B2 |
| 7685290 | Satapati | Mar 2010 | B2 |
| 7698463 | Ogier | Apr 2010 | B2 |
| 7698559 | Chaudhury | Apr 2010 | B1 |
| 7769887 | Bhattacharyya | Aug 2010 | B1 |
| 7779467 | Choi | Aug 2010 | B2 |
| 7801069 | Cheung | Sep 2010 | B2 |
| 7801177 | Luss | Sep 2010 | B2 |
| 7816441 | Elizalde | Oct 2010 | B2 |
| 7831733 | Sultan | Nov 2010 | B2 |
| 7873619 | Faibish | Jan 2011 | B1 |
| 7908337 | Garcia-Luna-Aceves | Mar 2011 | B2 |
| 7924837 | Shabtay | Apr 2011 | B1 |
| 7953014 | Toda | May 2011 | B2 |
| 7953885 | Devireddy | May 2011 | B1 |
| 7979912 | Roka | Jul 2011 | B1 |
| 8000267 | Solis | Aug 2011 | B2 |
| 8010691 | Kollmansberger | Aug 2011 | B2 |
| 8069023 | Frailong | Nov 2011 | B1 |
| 8074289 | Carpentier | Dec 2011 | B1 |
| 8117441 | Kurien | Feb 2012 | B2 |
| 8160069 | Jacobson | Apr 2012 | B2 |
| 8204060 | Jacobson | Jun 2012 | B2 |
| 8214364 | Bigus | Jul 2012 | B2 |
| 8224985 | Takeda | Jul 2012 | B2 |
| 8225057 | Zheng | Jul 2012 | B1 |
| 8271578 | Sheffi | Sep 2012 | B2 |
| 8271687 | Turner | Sep 2012 | B2 |
| 8312064 | Gauvin | Nov 2012 | B1 |
| 8332357 | Chung | Dec 2012 | B1 |
| 8386622 | Jacobson | Feb 2013 | B2 |
| 8447851 | Anderson | May 2013 | B1 |
| 8462781 | McGhee | Jun 2013 | B2 |
| 8467297 | Liu | Jun 2013 | B2 |
| 8473633 | Eardley | Jun 2013 | B2 |
| 8553562 | Allan | Oct 2013 | B2 |
| 8572214 | Garcia-Luna-Aceves | Oct 2013 | B2 |
| 8654649 | Vasseur | Feb 2014 | B2 |
| 8665757 | Kling | Mar 2014 | B2 |
| 8667172 | Ravindran | Mar 2014 | B2 |
| 8677451 | Bhimaraju | Mar 2014 | B1 |
| 8688619 | Ezick | Apr 2014 | B1 |
| 8699350 | Kumar | Apr 2014 | B1 |
| 8718055 | Vasseur | May 2014 | B2 |
| 8750820 | Allan | Jun 2014 | B2 |
| 8761022 | Chiabaut | Jun 2014 | B2 |
| 8762477 | Xie | Jun 2014 | B2 |
| 8762570 | Qian | Jun 2014 | B2 |
| 8762707 | Killian | Jun 2014 | B2 |
| 8767627 | Ezure | Jul 2014 | B2 |
| 8817594 | Gero | Aug 2014 | B2 |
| 8826381 | Kim | Sep 2014 | B2 |
| 8832302 | Bradford | Sep 2014 | B1 |
| 8836536 | Marwah | Sep 2014 | B2 |
| 8861356 | Kozat | Oct 2014 | B2 |
| 8862774 | Vasseur | Oct 2014 | B2 |
| 8868779 | ONeill | Oct 2014 | B2 |
| 8874842 | Kimmel | Oct 2014 | B1 |
| 8880682 | Bishop | Nov 2014 | B2 |
| 8903756 | Zhao | Dec 2014 | B2 |
| 8923293 | Jacobson | Dec 2014 | B2 |
| 8934496 | Vasseur | Jan 2015 | B2 |
| 8937865 | Kumar | Jan 2015 | B1 |
| 8972969 | Gaither | Mar 2015 | B2 |
| 8977596 | Montulli | Mar 2015 | B2 |
| 9002921 | Westphal | Apr 2015 | B2 |
| 9032095 | Traina | May 2015 | B1 |
| 9071498 | Beser | Jun 2015 | B2 |
| 9112895 | Lin | Aug 2015 | B1 |
| 9137152 | Xie | Sep 2015 | B2 |
| 9253087 | Zhang | Feb 2016 | B2 |
| 9270598 | Oran | Feb 2016 | B1 |
| 9280610 | Gruber | Mar 2016 | B2 |
| 20020002680 | Carbajal | Jan 2002 | A1 |
| 20020010795 | Brown | Jan 2002 | A1 |
| 20020038296 | Margolus | Mar 2002 | A1 |
| 20020048269 | Hong | Apr 2002 | A1 |
| 20020054593 | Morohashi | May 2002 | A1 |
| 20020077988 | Sasaki | Jun 2002 | A1 |
| 20020078066 | Robinson | Jun 2002 | A1 |
| 20020138551 | Erickson | Sep 2002 | A1 |
| 20020152305 | Jackson | Oct 2002 | A1 |
| 20020176404 | Girard | Nov 2002 | A1 |
| 20020188605 | Adya | Dec 2002 | A1 |
| 20020199014 | Yang | Dec 2002 | A1 |
| 20030004621 | Bousquet | Jan 2003 | A1 |
| 20030009365 | Tynan | Jan 2003 | A1 |
| 20030033394 | Stine | Feb 2003 | A1 |
| 20030046396 | Richter | Mar 2003 | A1 |
| 20030046421 | Horvitz | Mar 2003 | A1 |
| 20030046437 | Eytchison | Mar 2003 | A1 |
| 20030048793 | Pochon | Mar 2003 | A1 |
| 20030051100 | Patel | Mar 2003 | A1 |
| 20030061384 | Nakatani | Mar 2003 | A1 |
| 20030074472 | Lucco | Apr 2003 | A1 |
| 20030088696 | McCanne | May 2003 | A1 |
| 20030097447 | Johnston | May 2003 | A1 |
| 20030099237 | Mitra | May 2003 | A1 |
| 20030140257 | Peterka | Jul 2003 | A1 |
| 20030229892 | Sardera | Dec 2003 | A1 |
| 20040024879 | Dingman | Feb 2004 | A1 |
| 20040030602 | Rosenquist | Feb 2004 | A1 |
| 20040064737 | Milliken | Apr 2004 | A1 |
| 20040071140 | Jason | Apr 2004 | A1 |
| 20040073617 | Milliken | Apr 2004 | A1 |
| 20040073715 | Folkes | Apr 2004 | A1 |
| 20040139230 | Kim | Jul 2004 | A1 |
| 20040196783 | Shinomiya | Oct 2004 | A1 |
| 20040218548 | Kennedy | Nov 2004 | A1 |
| 20040221047 | Grover | Nov 2004 | A1 |
| 20040225627 | Botros | Nov 2004 | A1 |
| 20040233916 | Takeuchi | Nov 2004 | A1 |
| 20040246902 | Weinstein | Dec 2004 | A1 |
| 20040252683 | Kennedy | Dec 2004 | A1 |
| 20050003832 | Osafune | Jan 2005 | A1 |
| 20050028156 | Hammond | Feb 2005 | A1 |
| 20050043060 | Brandenberg | Feb 2005 | A1 |
| 20050050211 | Kaul | Mar 2005 | A1 |
| 20050074001 | Mattes | Apr 2005 | A1 |
| 20050132207 | Mourad | Jun 2005 | A1 |
| 20050149508 | Deshpande | Jul 2005 | A1 |
| 20050159823 | Hayes | Jul 2005 | A1 |
| 20050198351 | Nog | Sep 2005 | A1 |
| 20050249196 | Ansari | Nov 2005 | A1 |
| 20050259637 | Chu | Nov 2005 | A1 |
| 20050262217 | Nonaka | Nov 2005 | A1 |
| 20050281288 | Banerjee | Dec 2005 | A1 |
| 20050286535 | Shrum | Dec 2005 | A1 |
| 20050289222 | Sahim | Dec 2005 | A1 |
| 20060010249 | Sabesan | Jan 2006 | A1 |
| 20060029102 | Abe | Feb 2006 | A1 |
| 20060039379 | Abe | Feb 2006 | A1 |
| 20060051055 | Ohkawa | Mar 2006 | A1 |
| 20060072523 | Richardson | Apr 2006 | A1 |
| 20060099973 | Nair | May 2006 | A1 |
| 20060129514 | Watanabe | Jun 2006 | A1 |
| 20060133343 | Huang | Jun 2006 | A1 |
| 20060146686 | Kim | Jul 2006 | A1 |
| 20060173831 | Basso | Aug 2006 | A1 |
| 20060193295 | White | Aug 2006 | A1 |
| 20060203804 | Whitmore | Sep 2006 | A1 |
| 20060206445 | Andreoli | Sep 2006 | A1 |
| 20060215684 | Capone | Sep 2006 | A1 |
| 20060223504 | Ishak | Oct 2006 | A1 |
| 20060242155 | Moore | Oct 2006 | A1 |
| 20060256767 | Suzuki | Nov 2006 | A1 |
| 20060268792 | Belcea | Nov 2006 | A1 |
| 20070019619 | Foster | Jan 2007 | A1 |
| 20070073888 | Madhok | Mar 2007 | A1 |
| 20070094265 | Korkus | Apr 2007 | A1 |
| 20070112880 | Yang | May 2007 | A1 |
| 20070124412 | Narayanaswami | May 2007 | A1 |
| 20070127457 | Mirtorabi | Jun 2007 | A1 |
| 20070160062 | Morishita | Jul 2007 | A1 |
| 20070162394 | Zager | Jul 2007 | A1 |
| 20070171828 | Dalal | Jul 2007 | A1 |
| 20070189284 | Kecskemeti | Aug 2007 | A1 |
| 20070195765 | Heissenbuttel | Aug 2007 | A1 |
| 20070204011 | Shaver | Aug 2007 | A1 |
| 20070209067 | Fogel | Sep 2007 | A1 |
| 20070239892 | Ott | Oct 2007 | A1 |
| 20070240207 | Belakhdar | Oct 2007 | A1 |
| 20070245034 | Retana | Oct 2007 | A1 |
| 20070253418 | Shiri | Nov 2007 | A1 |
| 20070255677 | Alexander | Nov 2007 | A1 |
| 20070255699 | Sreenivas | Nov 2007 | A1 |
| 20070255781 | Li | Nov 2007 | A1 |
| 20070274504 | Maes | Nov 2007 | A1 |
| 20070275701 | Jonker | Nov 2007 | A1 |
| 20070276907 | Maes | Nov 2007 | A1 |
| 20070283158 | Danseglio | Dec 2007 | A1 |
| 20070294187 | Scherrer | Dec 2007 | A1 |
| 20080005056 | Stelzig | Jan 2008 | A1 |
| 20080005223 | Flake | Jan 2008 | A1 |
| 20080010366 | Duggan | Jan 2008 | A1 |
| 20080037420 | Tang | Feb 2008 | A1 |
| 20080043989 | Furutono | Feb 2008 | A1 |
| 20080046340 | Brown | Feb 2008 | A1 |
| 20080059631 | Bergstrom | Mar 2008 | A1 |
| 20080080440 | Yarvis | Apr 2008 | A1 |
| 20080082662 | Dandliker | Apr 2008 | A1 |
| 20080095159 | Suzuki | Apr 2008 | A1 |
| 20080101357 | Iovanna | May 2008 | A1 |
| 20080107034 | Jetcheva | May 2008 | A1 |
| 20080107259 | Satou | May 2008 | A1 |
| 20080123862 | Rowley | May 2008 | A1 |
| 20080133583 | Artan | Jun 2008 | A1 |
| 20080133755 | Pollack | Jun 2008 | A1 |
| 20080151755 | Nishioka | Jun 2008 | A1 |
| 20080159271 | Kutt | Jul 2008 | A1 |
| 20080165775 | Das | Jul 2008 | A1 |
| 20080186901 | Itagaki | Aug 2008 | A1 |
| 20080200153 | Fitzpatrick | Aug 2008 | A1 |
| 20080215669 | Gaddy | Sep 2008 | A1 |
| 20080216086 | Tanaka | Sep 2008 | A1 |
| 20080243992 | Jardetzky | Oct 2008 | A1 |
| 20080250006 | Dettinger | Oct 2008 | A1 |
| 20080256138 | Sim-Tang | Oct 2008 | A1 |
| 20080256359 | Kahn | Oct 2008 | A1 |
| 20080270618 | Rosenberg | Oct 2008 | A1 |
| 20080271143 | Stephens | Oct 2008 | A1 |
| 20080287142 | Keighran | Nov 2008 | A1 |
| 20080288580 | Wang | Nov 2008 | A1 |
| 20080291923 | Back | Nov 2008 | A1 |
| 20080298376 | Takeda | Dec 2008 | A1 |
| 20080320148 | Capuozzo | Dec 2008 | A1 |
| 20090006659 | Collins | Jan 2009 | A1 |
| 20090013324 | Gobara | Jan 2009 | A1 |
| 20090022154 | Kiribe | Jan 2009 | A1 |
| 20090024641 | Quigley | Jan 2009 | A1 |
| 20090030978 | Johnson | Jan 2009 | A1 |
| 20090037763 | Adhya | Feb 2009 | A1 |
| 20090052660 | Chen | Feb 2009 | A1 |
| 20090067429 | Nagai | Mar 2009 | A1 |
| 20090077184 | Brewer | Mar 2009 | A1 |
| 20090092043 | Lapuh | Apr 2009 | A1 |
| 20090097631 | Gisby | Apr 2009 | A1 |
| 20090103515 | Pointer | Apr 2009 | A1 |
| 20090113068 | Fujihira | Apr 2009 | A1 |
| 20090116393 | Hughes | May 2009 | A1 |
| 20090117922 | Bell | May 2009 | A1 |
| 20090132662 | Sheridan | May 2009 | A1 |
| 20090135728 | Shen | May 2009 | A1 |
| 20090144300 | Chatley | Jun 2009 | A1 |
| 20090157887 | Froment | Jun 2009 | A1 |
| 20090185745 | Momosaki | Jul 2009 | A1 |
| 20090193101 | Munetsugu | Jul 2009 | A1 |
| 20090198832 | Shah | Aug 2009 | A1 |
| 20090222344 | Greene | Sep 2009 | A1 |
| 20090228593 | Takeda | Sep 2009 | A1 |
| 20090254572 | Redlich | Oct 2009 | A1 |
| 20090268905 | Matsushima | Oct 2009 | A1 |
| 20090274158 | Sharp | Nov 2009 | A1 |
| 20090276396 | Gorman | Nov 2009 | A1 |
| 20090285209 | Stewart | Nov 2009 | A1 |
| 20090287835 | Jacobson | Nov 2009 | A1 |
| 20090287853 | Carson | Nov 2009 | A1 |
| 20090288076 | Johnson | Nov 2009 | A1 |
| 20090288143 | Stebila | Nov 2009 | A1 |
| 20090288163 | Jacobson | Nov 2009 | A1 |
| 20090292743 | Bigus | Nov 2009 | A1 |
| 20090293121 | Bigus | Nov 2009 | A1 |
| 20090296719 | Maier | Dec 2009 | A1 |
| 20090300079 | Shitomi | Dec 2009 | A1 |
| 20090300407 | Kamath | Dec 2009 | A1 |
| 20090300512 | Ahn | Dec 2009 | A1 |
| 20090307333 | Welingkar | Dec 2009 | A1 |
| 20090323632 | Nix | Dec 2009 | A1 |
| 20100005061 | Basco | Jan 2010 | A1 |
| 20100027539 | Beverly | Feb 2010 | A1 |
| 20100046546 | Ram | Feb 2010 | A1 |
| 20100057929 | Merat | Mar 2010 | A1 |
| 20100058346 | Narang | Mar 2010 | A1 |
| 20100088370 | Wu | Apr 2010 | A1 |
| 20100094767 | Miltonberger | Apr 2010 | A1 |
| 20100094876 | Huang | Apr 2010 | A1 |
| 20100098093 | Ejzak | Apr 2010 | A1 |
| 20100100465 | Cooke | Apr 2010 | A1 |
| 20100103870 | Garcia-Luna-Aceves | Apr 2010 | A1 |
| 20100124191 | Vos | May 2010 | A1 |
| 20100125911 | Bhaskaran | May 2010 | A1 |
| 20100131660 | Dec | May 2010 | A1 |
| 20100150155 | Napierala | Jun 2010 | A1 |
| 20100165976 | Khan | Jul 2010 | A1 |
| 20100169478 | Saha | Jul 2010 | A1 |
| 20100169503 | Kollmansberger | Jul 2010 | A1 |
| 20100180332 | Ben-Yochanan | Jul 2010 | A1 |
| 20100182995 | Hwang | Jul 2010 | A1 |
| 20100185753 | Liu | Jul 2010 | A1 |
| 20100195653 | Jacobson | Aug 2010 | A1 |
| 20100195654 | Jacobson | Aug 2010 | A1 |
| 20100195655 | Jacobson | Aug 2010 | A1 |
| 20100217874 | Anantharaman | Aug 2010 | A1 |
| 20100217985 | Fahrny | Aug 2010 | A1 |
| 20100232402 | Przybysz | Sep 2010 | A1 |
| 20100232439 | Dham | Sep 2010 | A1 |
| 20100235516 | Nakamura | Sep 2010 | A1 |
| 20100246549 | Zhang | Sep 2010 | A1 |
| 20100250497 | Redlich | Sep 2010 | A1 |
| 20100250939 | Adams | Sep 2010 | A1 |
| 20100257149 | Cognigni | Oct 2010 | A1 |
| 20100268782 | Zombek | Oct 2010 | A1 |
| 20100272107 | Papp | Oct 2010 | A1 |
| 20100281263 | Ugawa | Nov 2010 | A1 |
| 20100284309 | Allan | Nov 2010 | A1 |
| 20100284404 | Gopinath | Nov 2010 | A1 |
| 20100293293 | Beser | Nov 2010 | A1 |
| 20100322249 | Thathapudi | Dec 2010 | A1 |
| 20110013637 | Xue | Jan 2011 | A1 |
| 20110019674 | Iovanna | Jan 2011 | A1 |
| 20110022812 | vanderLinden | Jan 2011 | A1 |
| 20110029952 | Harrington | Feb 2011 | A1 |
| 20110055392 | Shen | Mar 2011 | A1 |
| 20110055921 | Narayanaswamy | Mar 2011 | A1 |
| 20110060716 | Forman | Mar 2011 | A1 |
| 20110060717 | Forman | Mar 2011 | A1 |
| 20110090908 | Jacobson | Apr 2011 | A1 |
| 20110106755 | Hao | May 2011 | A1 |
| 20110131308 | Eriksson | Jun 2011 | A1 |
| 20110137919 | Ryu | Jun 2011 | A1 |
| 20110145597 | Yamaguchi | Jun 2011 | A1 |
| 20110145858 | Philpott | Jun 2011 | A1 |
| 20110149858 | Hwang | Jun 2011 | A1 |
| 20110153840 | Narayana | Jun 2011 | A1 |
| 20110158122 | Murphy | Jun 2011 | A1 |
| 20110161408 | Kim | Jun 2011 | A1 |
| 20110202609 | Chaturvedi | Aug 2011 | A1 |
| 20110219093 | Ragunathan | Sep 2011 | A1 |
| 20110219427 | Hito | Sep 2011 | A1 |
| 20110219727 | May | Sep 2011 | A1 |
| 20110225293 | Rathod | Sep 2011 | A1 |
| 20110231578 | Nagappan | Sep 2011 | A1 |
| 20110239256 | Gholmieh | Sep 2011 | A1 |
| 20110258049 | Ramer | Oct 2011 | A1 |
| 20110264824 | Venkata Subramanian | Oct 2011 | A1 |
| 20110265159 | Ronda | Oct 2011 | A1 |
| 20110265174 | Thornton | Oct 2011 | A1 |
| 20110271007 | Wang | Nov 2011 | A1 |
| 20110280214 | Lee | Nov 2011 | A1 |
| 20110286457 | Ee | Nov 2011 | A1 |
| 20110286459 | Rembarz | Nov 2011 | A1 |
| 20110295783 | Zhao | Dec 2011 | A1 |
| 20110299454 | Krishnaswamy | Dec 2011 | A1 |
| 20120011170 | Elad | Jan 2012 | A1 |
| 20120011551 | Levy | Jan 2012 | A1 |
| 20120023113 | Ferren | Jan 2012 | A1 |
| 20120036180 | Thornton | Feb 2012 | A1 |
| 20120045064 | Rembarz | Feb 2012 | A1 |
| 20120047361 | Erdmann | Feb 2012 | A1 |
| 20120066727 | Nozoe | Mar 2012 | A1 |
| 20120106339 | Mishra | May 2012 | A1 |
| 20120110159 | Richardson | May 2012 | A1 |
| 20120114313 | Phillips | May 2012 | A1 |
| 20120120803 | Farkas | May 2012 | A1 |
| 20120127994 | Ko | May 2012 | A1 |
| 20120136676 | Goodall | May 2012 | A1 |
| 20120136936 | Quintuna | May 2012 | A1 |
| 20120136945 | Lee | May 2012 | A1 |
| 20120137367 | Dupont | May 2012 | A1 |
| 20120141093 | Yamaguchi | Jun 2012 | A1 |
| 20120155464 | Kim | Jun 2012 | A1 |
| 20120158973 | Jacobson | Jun 2012 | A1 |
| 20120163373 | Lo | Jun 2012 | A1 |
| 20120166433 | Tseng | Jun 2012 | A1 |
| 20120170913 | Isozaki | Jul 2012 | A1 |
| 20120179653 | Araki | Jul 2012 | A1 |
| 20120197690 | Agulnek | Aug 2012 | A1 |
| 20120198048 | Ioffe | Aug 2012 | A1 |
| 20120221150 | Arensmeier | Aug 2012 | A1 |
| 20120224487 | Hui | Sep 2012 | A1 |
| 20120226902 | Kim | Sep 2012 | A1 |
| 20120257500 | Lynch | Oct 2012 | A1 |
| 20120284791 | Miller | Nov 2012 | A1 |
| 20120290669 | Parks | Nov 2012 | A1 |
| 20120290919 | Melnyk | Nov 2012 | A1 |
| 20120291102 | Cohen | Nov 2012 | A1 |
| 20120300669 | Zahavi | Nov 2012 | A1 |
| 20120307629 | Vasseur | Dec 2012 | A1 |
| 20120314580 | Hong | Dec 2012 | A1 |
| 20120317307 | Ravindran | Dec 2012 | A1 |
| 20120322422 | Frecks | Dec 2012 | A1 |
| 20120323933 | He | Dec 2012 | A1 |
| 20120331112 | Chatani | Dec 2012 | A1 |
| 20130024560 | Vasseur | Jan 2013 | A1 |
| 20130041982 | Shi | Feb 2013 | A1 |
| 20130051392 | Filsfils | Feb 2013 | A1 |
| 20130054971 | Yamaguchi | Feb 2013 | A1 |
| 20130060962 | Wang | Mar 2013 | A1 |
| 20130061084 | Barton | Mar 2013 | A1 |
| 20130066823 | Sweeney | Mar 2013 | A1 |
| 20130073552 | Rangwala | Mar 2013 | A1 |
| 20130073882 | Inbaraj | Mar 2013 | A1 |
| 20130074155 | Huh | Mar 2013 | A1 |
| 20130090942 | Robinson | Apr 2013 | A1 |
| 20130091539 | Khurana | Apr 2013 | A1 |
| 20130110987 | Kim | May 2013 | A1 |
| 20130111063 | Lee | May 2013 | A1 |
| 20130128786 | Sultan | May 2013 | A1 |
| 20130132719 | Kobayashi | May 2013 | A1 |
| 20130139245 | Thomas | May 2013 | A1 |
| 20130151584 | Westphal | Jun 2013 | A1 |
| 20130151646 | Chidambaram | Jun 2013 | A1 |
| 20130152070 | Bhullar | Jun 2013 | A1 |
| 20130163426 | Beliveau | Jun 2013 | A1 |
| 20130166668 | Byun | Jun 2013 | A1 |
| 20130173822 | Hong | Jul 2013 | A1 |
| 20130182568 | Lee | Jul 2013 | A1 |
| 20130182931 | Fan | Jul 2013 | A1 |
| 20130185406 | Choi | Jul 2013 | A1 |
| 20130191412 | Kitamura | Jul 2013 | A1 |
| 20130197698 | Shah | Aug 2013 | A1 |
| 20130198119 | Eberhardt, III | Aug 2013 | A1 |
| 20130212185 | Pasquero | Aug 2013 | A1 |
| 20130219038 | Lee | Aug 2013 | A1 |
| 20130219081 | Qian | Aug 2013 | A1 |
| 20130219478 | Mahamuni | Aug 2013 | A1 |
| 20130223237 | Hui | Aug 2013 | A1 |
| 20130227048 | Xie | Aug 2013 | A1 |
| 20130227114 | Vasseur | Aug 2013 | A1 |
| 20130227166 | Ravindran | Aug 2013 | A1 |
| 20130242996 | Varvello | Sep 2013 | A1 |
| 20130250809 | Hui | Sep 2013 | A1 |
| 20130262365 | Dolbear | Oct 2013 | A1 |
| 20130262698 | Schwan | Oct 2013 | A1 |
| 20130282854 | Jang | Oct 2013 | A1 |
| 20130282860 | Zhang | Oct 2013 | A1 |
| 20130282920 | Zhang | Oct 2013 | A1 |
| 20130304758 | Gruber | Nov 2013 | A1 |
| 20130304937 | Lee | Nov 2013 | A1 |
| 20130325888 | Oneppo | Dec 2013 | A1 |
| 20130329696 | Xu | Dec 2013 | A1 |
| 20130332971 | Fisher | Dec 2013 | A1 |
| 20130336103 | Vasseur | Dec 2013 | A1 |
| 20130336323 | Srinivasan | Dec 2013 | A1 |
| 20130339481 | Hong | Dec 2013 | A1 |
| 20130343408 | Cook | Dec 2013 | A1 |
| 20140003232 | Guichard | Jan 2014 | A1 |
| 20140003424 | Matsuhira | Jan 2014 | A1 |
| 20140006354 | Parkison | Jan 2014 | A1 |
| 20140006565 | Muscariello | Jan 2014 | A1 |
| 20140029445 | Hui | Jan 2014 | A1 |
| 20140032714 | Liu | Jan 2014 | A1 |
| 20140033193 | Palaniappan | Jan 2014 | A1 |
| 20140040505 | Barton | Feb 2014 | A1 |
| 20140040628 | Fort | Feb 2014 | A1 |
| 20140043987 | Watve | Feb 2014 | A1 |
| 20140047513 | vantNoordende | Feb 2014 | A1 |
| 20140074730 | Arensmeier | Mar 2014 | A1 |
| 20140075567 | Raleigh | Mar 2014 | A1 |
| 20140082135 | Jung | Mar 2014 | A1 |
| 20140082661 | Krahnstoever | Mar 2014 | A1 |
| 20140089454 | Jeon | Mar 2014 | A1 |
| 20140096249 | Dupont | Apr 2014 | A1 |
| 20140098685 | Shattil | Apr 2014 | A1 |
| 20140108313 | Heidasch | Apr 2014 | A1 |
| 20140108474 | David | Apr 2014 | A1 |
| 20140115037 | Liu | Apr 2014 | A1 |
| 20140122587 | Petker | May 2014 | A1 |
| 20140129736 | Yu | May 2014 | A1 |
| 20140136814 | Stark | May 2014 | A1 |
| 20140140348 | Perlman | May 2014 | A1 |
| 20140143370 | Vilenski | May 2014 | A1 |
| 20140146819 | Bae | May 2014 | A1 |
| 20140149733 | Kim | May 2014 | A1 |
| 20140156396 | deKozan | Jun 2014 | A1 |
| 20140165207 | Engel | Jun 2014 | A1 |
| 20140172783 | Suzuki | Jun 2014 | A1 |
| 20140172981 | Kim | Jun 2014 | A1 |
| 20140173034 | Liu | Jun 2014 | A1 |
| 20140173076 | Ravindran | Jun 2014 | A1 |
| 20140181140 | Kim | Jun 2014 | A1 |
| 20140192677 | Chew | Jul 2014 | A1 |
| 20140192717 | Liu | Jul 2014 | A1 |
| 20140195328 | Ferens | Jul 2014 | A1 |
| 20140195641 | Wang | Jul 2014 | A1 |
| 20140195666 | Dumitriu | Jul 2014 | A1 |
| 20140204945 | Byun | Jul 2014 | A1 |
| 20140214942 | Ozonat | Jul 2014 | A1 |
| 20140233575 | Xie | Aug 2014 | A1 |
| 20140237085 | Park | Aug 2014 | A1 |
| 20140237095 | Bevilacqua-Linn | Aug 2014 | A1 |
| 20140245359 | DeFoy | Aug 2014 | A1 |
| 20140254595 | Luo | Sep 2014 | A1 |
| 20140280823 | Varvello | Sep 2014 | A1 |
| 20140281489 | Peterka | Sep 2014 | A1 |
| 20140281505 | Zhang | Sep 2014 | A1 |
| 20140282816 | Xie | Sep 2014 | A1 |
| 20140289325 | Solis | Sep 2014 | A1 |
| 20140289790 | Wilson | Sep 2014 | A1 |
| 20140298248 | Kang | Oct 2014 | A1 |
| 20140314093 | You | Oct 2014 | A1 |
| 20140337276 | Iordanov | Nov 2014 | A1 |
| 20140365550 | Jang | Dec 2014 | A1 |
| 20150006896 | Franck | Jan 2015 | A1 |
| 20150018770 | Baran | Jan 2015 | A1 |
| 20150032892 | Narayanan | Jan 2015 | A1 |
| 20150033365 | Mellor | Jan 2015 | A1 |
| 20150039890 | Khosravi | Feb 2015 | A1 |
| 20150063802 | Bahadur | Mar 2015 | A1 |
| 20150089081 | Thubert | Mar 2015 | A1 |
| 20150095481 | Ohnishi | Apr 2015 | A1 |
| 20150095514 | Yu | Apr 2015 | A1 |
| 20150120663 | LeScouarnec | Apr 2015 | A1 |
| 20150169758 | Assom | Jun 2015 | A1 |
| 20150188770 | Naiksatam | Jul 2015 | A1 |
| 20150195149 | Vasseur | Jul 2015 | A1 |
| 20150207633 | Ravindran | Jul 2015 | A1 |
| 20150207864 | Wilson | Jul 2015 | A1 |
| 20150279348 | Cao | Oct 2015 | A1 |
| 20150288755 | Mosko | Oct 2015 | A1 |
| 20150312300 | Mosko | Oct 2015 | A1 |
| 20150349961 | Mosko | Dec 2015 | A1 |
| 20150372903 | Hui | Dec 2015 | A1 |
| 20150381546 | Mahadevan | Dec 2015 | A1 |
| 20160019275 | Mosko | Jan 2016 | A1 |
| 20160021172 | Mahadevan | Jan 2016 | A1 |
| 20160062840 | Scott | Mar 2016 | A1 |
| 20160110466 | Uzun | Apr 2016 | A1 |
| 20160171184 | Solis | Jun 2016 | A1 |
| Number | Date | Country |
|---|---|---|
| 103873371 | Jun 2014 | CN |
| 1720277 | Jun 1967 | DE |
| 19620817 | Nov 1997 | DE |
| 0295727 | Dec 1988 | EP |
| 0757065 | Jul 1996 | EP |
| 1077422 | Feb 2001 | EP |
| 1383265 | Jan 2004 | EP |
| 1384729 | Jan 2004 | EP |
| 1473889 | Nov 2004 | EP |
| 2120402 | Nov 2009 | EP |
| 2120419 | Nov 2009 | EP |
| 2120419 | Nov 2009 | EP |
| 2124415 | Nov 2009 | EP |
| 2214357 | Aug 2010 | EP |
| 2299754 | Mar 2011 | EP |
| 2323346 | May 2011 | EP |
| 2552083 | Jan 2013 | EP |
| 2214356 | May 2016 | EP |
| 03005288 | Jan 2003 | WO |
| 03042254 | May 2003 | WO |
| 03049369 | Jun 2003 | WO |
| 03091297 | Nov 2003 | WO |
| 2007113180 | Oct 2007 | WO |
| 2007122620 | Nov 2007 | WO |
| 2007144388 | Dec 2007 | WO |
| 2011049890 | Apr 2011 | WO |
| 2012077073 | Jun 2012 | WO |
| 2013123410 | Aug 2013 | WO |
| 2015084327 | Jun 2015 | WO |
| Entry |
|---|
| Ao-Jan Su, David R. Choffnes, Aleksandar Kuzmanovic, and Fabian E. Bustamante. Drafting Behind Akamai: Inferring Network Conditions Based on CDN Redirections. IEEE/ACM Transactions on Networking {Feb. 2009). |
| B. Lynn$2E. |
| C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography. Advances in Cryptology—ASIACRYPT 2002. Springer Berlin Heidelberg (2002). |
| D. Boneh, C. Gentry, and B. Waters, 'Collusi. |
| D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. Advances in Cryptology—CRYPTO 2001, vol. 2139, Springer Berlin Heidelberg (2001). |
| G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved Proxy Reencryption Schemes with Applications to Secure Distributed Storage. In the 12th Annual Network and Distributed System Security Sympo. |
| H. Xiong, X. Zhang, W. Zhu, and D. Yao. CloudSeal: End-to$2. |
| J. Bethencourt, A, Sahai, and B. Waters, ‘Ciphertext-policy attribute-based encryption,’ in Proc. IEEE Security & Privacy 2007, Berkeley, CA, USA, May 2007, pp. 321-334. |
| J. Lotspiech, S. Nusser, and F. Pestoni. Anonymous Trust: Digital Rights Management using Broadcast Encryption. Proceedings of the IEEE 92.6 (2004). |
| J. Shao and Z. Cao. CCA-Secure Proxy Re-Encryption without Pairings. Public Key Cryptography. Springer Lecture Notes in Computer ScienceVolume 5443 (2009). |
| M. Blaze, G. Bleumer, and M. Strauss, ‘Divertible protocols and atomic prosy cryptography,’ in Proc. Eurocrypt 1998, Espoo, Finland, May-Jun. 1998, pp. 127-144. |
| R. H. Deng, J. Weng, S. Liu, and K. Chen. Chosen-Ciphertext Secure Proxy Re-Encryption without Pairings. CANS. Spring Lecture Notes in Computer Science vol. 5339 (2008). |
| RTMP (2009). Available online at http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/rtmp/ pdf/rtmp specification 1.0.pdf. |
| S. Chow, J. Weng, Y. Yang, and R. Deng. Efficient Unidirectional Proxy Re-Encryption. Progress in Cryptology—AFRICACRYPT 2010. Springer Berlin Heidelberg (2010). |
| S. Kamara and K. Lauter. Cryptographic Cloud Storage. Financial Cryptography and Data Security. Springer Berlin Heidelberg (2010). |
| Sandvine, Global Internet Phenomena Report—Spring 2012. Located online at http://www.sandvine.com/downloads/ documents/Phenomenal H 2012/Sandvine Global Internet Phenomena Report 1H 2012.pdf. |
| The Despotify Project (2012). Available online at http://despotify.sourceforge.net/. |
| V. K. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang. Vivisecting Youtube:An Active Measurement Study. In INFOCOM12 Mini-conference (2012). |
| Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker Hilt, Moritz Steiner, and Zhi-Li Zhang. Unreeling Netflix: Understanding and Improving Multi-CDN Movie Delivery. In the Proceedings of IEEE INFOCOM 2012 (2012). |
| Jacobson, Van et al. ‘VoCCN: Voice Over Content-Centric Networks.’ Dec. 1, 2009. ACM ReArch'09. |
| Rosenberg, J. “Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols”, Apr. 2010, pp. 1-117. |
| Shih, Eugene et al., ‘Wake on Wireless: An Event Driven Energy Saving Strategy for Battery Operated Devices’, Sep. 23, 2002, pp. 160-171. |
| Fall, K. et al., “DTN: an architectural retrospective”, Selected areas in communications, IEEE Journal on, vol. 28, No. 5, Jun. 1, 2008, pp. 828-835. |
| Gritter, M. et al., ‘An Architecture for content routing support in the Internet’, Proceedings of 3rd Usenix Symposium on Internet Technologies and Systems, 2001, pp. 37-48. |
| “CCNx,” http://ccnx.org/. downloaded Mar. 11, 2015. |
| “Content Delivery Network”, Wikipedia, Dec. 10, 2011, http://en.wikipedia.org/w/index.php?title=Content—delivery—network&oldid=465077460. |
| “Digital Signature” archived on Aug. 31, 2009 at http://web.archive.org/web/20090831170721/http://en.wikipedia.org/wiki/Digital—signature. |
| “Introducing JSON,” http://www.json.org/. downloaded Mar. 11, 2015. |
| “Microsoft PlayReady,” http://www.microsoft.com/playready/.downloaded Mar. 11, 2015. |
| “Pursuing a pub/sub internet (PURSUIT),” http://www.fp7-pursuit.ew/PursuitWeb/. downloaded Mar. 11, 2015. |
| “The FP7 4WARD project,” http://www.4ward-project.eu/. downloaded Mar. 11, 2015. |
| A. Broder and A. Karlin, “Multilevel Adaptive Hashing”, Jan. 1990, pp. 43-53. |
| Detti, Andrea, et al. “CONET: a content centric inter-networking architecture.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011. |
| A. Wolman, M. Voelker, N. Sharma N. Cardwell, A. Karlin, and H.M. Levy, “On the scale and performance of cooperative web proxy caching,” ACM SIGHOPS Operating Systems Review, vol. 33, No. 5, pp. 16-31, Dec. 1999. |
| Afanasyev, Alexander, et al. “Interest flooding attack and countermeasures in Named Data Networking.” IFIP Networking Conference, 2013. IEEE, 2013. |
| B. Ahlgren et al., ‘A Survey of Information-centric Networking’ IEEE Commun. Magazine, Jul. 2012, pp. 26-36. |
| Bari, MdFaizul, et al. ‘A survey of naming and routing in information-centric networks.’ Communications Magazine, IEEE 50.12 (2012): 44-53. |
| Baugher, Mark et al., “Self-Verifying Names for Read-Only Named Data”, 2012 IEEE Conference on Computer Communications Workshops (Infocom Wkshps), Mar. 2012, pp. 274-279. |
| Brambley, Michael, A novel, low-cost, reduced-sensor approach for providing smart remote monitoring and diagnostics for packaged air conditioners and heat pumps. Pacific Northwest National Laboratory, 2009. |
| C.A. Wood and E. Uzun, “Flexible end-to-end content security in CCN,” in Proc. IEEE CCNC 2014, Las Vegas, CA, USA, Jan. 2014. |
| Carzaniga, Antonio, Matthew J. Rutherford, and Alexander L. Wolf. ‘A routing scheme for content-based networking.’ Infocom 2004. Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies. vol. 2. IEEE, 2004. |
| Cho, Jin-Hee, Ananthram Swami, and Ray Chen. “A survey on trust management for mobile ad hoc networks.” Communications Surveys & Tutorials, IEEE 13.4 (2011): 562-583. |
| Compagno, Alberto, et al. “Poseidon: Mitigating interest flooding DDoS attacks in named data networking.” Local Computer Networks (LCN), 2013 IEEE 38th Conference on. IEEE, 2013. |
| Conner, William, et al. “A trust management framework for service-oriented environments.” Proceedings of the 18th international conference on World wide web. ACM, 2009. |
| Content Centric Networking Project (CCN) [online], http://ccnx.org/releases/latest/doc/technical/, Downloaded Mar. 9, 2015. |
| Content Mediator Architecture for Content-aware Networks (COMET) Project [online], http://www.comet-project.org/, Downloaded Mar. 9, 2015. |
| D.K. Smetters, P. Golle, and J.D. Thornton, “CCNx access control specifications,” PARC, Tech. Rep., Jul. 2010. |
| Dabirmoghaddam, Ali, Maziar Mirzazad Barijough, and J. J. Garcia-Luna-Aceves. ‘Understanding optimal caching and opportunistic caching at the edge of information-centric networks.’ Proceedings of the 1st international conference on Information-centric networking. ACM, 2014. |
| Detti et al., “Supporting the Web with an information centric network that routes by name”, Aug. 2012, Computer Networks 56, pp. 3705-3702. |
| Dijkstra, Edsger W., and Carel S. Scholten. ‘Termination detection for diffusing computations.’ Information Processing Letters 11.1 (1980): 1-4. |
| Dijkstra, Edsger W., Wim Hj Feijen, and A—J M. Van Gasteren. “Derivation of a termination detection algorithm for distributed computations.” Control Flow and Data Flow: concepts of distributed programming. Springer Berlin Heidelberg, 1986. 507-512. |
| E. Rescorla and N. Modadugu, “Datagram transport layer security,” IETF RFC 4347, Apr. 2006. |
| E.W. Dijkstra, W. Feijen, and A.J.M. Van Gasteren, “Derivation of a Termination Detection Algorithm for Distributed Computations,” Information Processing Letter, vol. 16, No. 5, 1983. |
| Fayazbakhsh, S. K., Lin, Y., Tootoonchian, A., Ghodsi, A., Koponen, T., Maggs, B., & Shenker, S. {Aug. 2013). Less pain, most of the gain: Incrementally deployable ICN. In ACM SIGCOMM Computer Communication Review (vol. 43, No. 4, pp. 147-158). ACM. |
| G. Tyson, S. Kaune, S. Miles, Y. El-Khatib, A. Mauthe, and A. Taweel, “A trace-driven analysis of caching in content-centric networks,” in Proc. IEEE ICCCN 2012, Munich, Germany, Jul.-Aug. 2012, pp. 1-7. |
| G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption for fine-grained access control in cloud storage services,” in Proc. ACM CCS 2010, Chicago, IL, USA, Oct. 2010, pp. 735-737. |
| G. Xylomenos et al., “A Survey of Information-centric Networking Research,” IEEE Communication Surveys and Tutorials, Jul. 2013. |
| Garcia, Humberto E., Wen-Chiao Lin, and Semyon M. Meerkov. “A resilient condition assessment monitoring system.” Resilient Control Systems (ISRCS), 2012 5th International Symposium on. IEEE, 2012. |
| Garcia-Luna-Aceves, Jose J. ‘A unified approach to loop-free routing using distance vectors or link states.’ ACM SIGCOMM Computer Communication Review. vol. 19. No. 4. ACM, 1989. |
| Garcia-Luna-Aceves, Jose J. ‘Name-Based Content Routing in Information Centric Networks Using Distance Information’ Proc ACM ICN 2014, Sep. 2014. |
| Ghali, Cesar, GeneTsudik, and Ersin Uzun. “Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking.” Proceedings of NDSS Workshop on Security of Emerging Networking Technologies (SENT). 2014. |
| Ghodsi, Ali, et al. “Information-centric networking: seeing the forest for the trees.” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011. |
| Ghodsi, Ali, et al. “Naming in content-oriented architectures.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011. |
| Gupta, Anjali, Barbara Liskov, and Rodrigo Rodrigues. “Efficient Routing for Peer-to-Peer Overlays.” NSDI. vol. 4. 2004. |
| Heckerman, David, John S. Breese, and Koos Rommelse. “Decision-Theoretic Troubleshooting.” Communications of the ACM. 1995. |
| Heinemeier, Kristin, et al. “Uncertainties in Achieving Energy Savings from HVAC Maintenance Measures in the Field.” ASHRAE Transactions 118.Part 2 {2012). |
| Herlich, Matthias et al., “Optimizing Energy Efficiency for Bulk Transfer Networks”, Apr. 13, 2010, pp. 1-3, retrieved for the Internet: URL:http://www.cs.uni-paderborn.de/fileadmin/informationik/ag-karl/publications/miscellaneous/optimizing.pdf (retrieved on Mar. 9, 2012). |
| Hogue et al., ‘NLSR: Named-data Link State Routing Protocol’, Aug. 12, 2013, ICN 2013, pp. 15-20. |
| https://code.google.com/p/ccnx-trace/. |
| I. Psaras, R.G. Clegg, R. Landa, W.K. Chai, and G. Pavlou, “Modelling and evaluation of CCN-caching trees,” in Proc. IFIP Networking 2011, Valencia, Spain, May 2011, pp. 78-91. |
| Intanagonwiwat, Chalermek, Ramesh Govindan, and Deborah Estrin. ‘Directed diffusion: a scalable and robust communication paradigm for sensor networks.’ Proceedings of the 6th annual international conference on Mobile computing and networking. ACM, 2000. |
| J. Aumasson and D. Bernstein, “SipHash: a fast short-input PRF”, Sep. 18, 2012. |
| J. Hur, “Improving security and efficiency in attribute-based data sharing,” IEEE Trans. Knowledge Data Eng., vol. 25, No. 10, pp. 2271-2282, Oct. 2013. |
| V. Jacobson et al., ‘Networking Named Content,’ Proc. IEEE CoNEXT '09, Dec. 2009. |
| Jacobson, Van et al., “Content-Centric Networking, Whitepaper Describing Future Assurable Global Networks”, Palo Alto Research Center, Inc., Jan. 30, 2007, pp. 1-9. |
| Jacobson et al., “Custodian-Based Information Sharing,” Jul. 2012, IEEE Communications Magazine: vol. 50 Issue 7 (p. 3843). |
| Ji, Kun, et al. “Prognostics enabled resilient control for model-based building automation systems.” Proceedings of the 12th Conference of International Building Performance Simulation Association. 2011. |
| K. Liang, L. Fang, W. Susilo, and D.S. Wong, “A Ciphertext-policy attribute-based proxy re-encryption with chosen-ciphertext security,” in Proc. INCoS 2013, Xian, China, Sep. 2013, pp. 552-559. |
| Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part I.” HVAC&R Research 11.1 (2005): 3-25. |
| Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part II.” HVAC&R Research 11.2 (2005): 169-187. |
| Koponen, Teemu et al., “A Data-Oriented (and Beyond) Network Architecture”, SIGCOMM '07, Aug. 27-31, 2007, Kyoto, Japan, XP-002579021, p. 181-192. |
| L. Wang et al., ‘OSPFN: An OSPF Based Routing Protocol for Named Data Networking,’ Technical Report NDN-0003, 2012. |
| L. Zhou, V. Varadharajan, and M. Hitchens, “Achieving secure role-based access control on encrypted data in cloud storage,” IEEE Trans. Inf. Forensics Security, vol. 8, No. 12, pp. 1947-1960, Dec. 2013. |
| Li, Wenjia, Anupam Joshi, and Tim Finin. “Coping with node misbehaviors in ad hoc networks: a multi-dimensional trust management approach.” Mobile Data Management (MDM), 2010 Eleventh International Conference on. IEEE, 2010. |
| Lopez, Javier, et al. “Trust management systems for wireless sensor networks: Best practices.” Computer Communications 33.9 (2010): 1086-1093. |
| M. Green and G. Ateniese, “Identity-based proxy re-encryption,” in Proc. ACNS 2007, Zhuhai, China, Jun. 2007, pp. 288-306. |
| M. Ion, J. Zhang, and E.M. Schooler, “Toward content-centric privacy in ICN: Attribute-based encryption and routing,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 39-40. |
| M. Naor and B. Pinkas “Efficient trace and revoke schemes,” in Proc. FC 2000, Anguilla, British West Indies, Feb. 2000, pp. 1-20. |
| M. Nystrom, S. Parkinson, A. Rusch, and M. Scott, “Pkcs#12: Personal information exchange syntax v. 1.1,” IETF RFC 7292, K. Moriarty, Ed., Jul 2014. |
| M. Parsa and J.J. Garcia-Luna-Aceves, “A Protocol for Scalable Loop-free Multicast Routing.” IEEE JSAC, Apr. 1997. |
| M. Walfish, H. Balakrishnan, and S. Shenker, “Untangling the web from DNS,” in Proc. USENIX NSDI 2004, Oct. 2010, pp. 735-737. |
| Mahadevan, Priya, et al. “Orbis: rescaling degree correlations to generate annotated internet topologies.” ACM SIGCOMM Computer Communication Review. vol. 37. No. 4. ACM, 2007. |
| Mahadevan, Priya, et al. “Systematic topology analysis and generation using degree correlations.” ACM SIGCOMM Computer Communication Review. vol. 36. No. 4. ACM, 2006. |
| Matocha, Jeff, and Tracy Camp. ‘A taxonomy of distributed termination detection algorithms.’ Journal of Systems and Software 43.3 (1998): 207-221. |
| Matted Varvello et al., “Caesar: A Content Router for High Speed Forwarding”, ICN 2012, Second Edition on Information-Centric Networking, New York, Aug. 2012. |
| McWilliams, Jennifer A., and Iain S. Walker. “Home Energy Article: A Systems Approach to Retrofitting Residential HVAC Systems.” Lawrence Berkeley National Laboratory (2005). |
| Merindol et al., “An efficient algorithm to enable path diversity in link state routing networks”, Jan. 2010, Computer Networks 55 (2011), pp. 1132-1140. |
| Mobility First Project [online], http://mobilityfirst.winlab.rutgers.edu/, Downloaded Mar. 9, 2015. |
| Narasimhan, Sriram, and Lee Brownston. “HyDE-A General Framework for Stochastic and Hybrid Modelbased Diagnosis.” Proc. DX 7 (2007): 162-169. |
| NDN Project [online], http://www.named-data.net/, Downloaded Mar. 9, 2015. |
| Omar, Mawloud, Yacine Challal, and Abdelmadjid Bouabdallah. “Certification-based trust models in mobile ad hoc networks: A survey and taxonomy.” Journal of Network and Computer Applications 35.1 (2012): 268-286. |
| P. Mahadevan, E.Uzun, S. Sevilla, and J. Garcia-Luna-Aceves, “CCN-krs: A key resolution service for ccn,” in Proceedings of the 1st International Conference on Information-centric Networking, Ser. INC 14 New York, NY, USA: ACM, 2014, pp. 97-106. [Online]. Available: http://doi.acm.org/10.1145/2660129.2660154. |
| S. Deering, “Multicast Routing in Internetworks and Extended LANs,” Proc. ACM SIGCOMM '88, Aug. 1988. |
| S. Deering et al., “The PIM architecture for wide-area multicast routing,” IEEE/ ACM Trans, on Networking, vol. 4, No. 2, Apr. 1996. |
| S. Jahid, P. Mittal, and N. Borisov, “EASiER: Encryption-based access control in social network with efficient revocation,” in Proc. ACM ASIACCS 2011, Hong Kong, China, Mar. 2011, pp. 411-415. |
| S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Proc. FC 2010, Tenerife, Canary Islands, Spain, Jan. 2010, pp. 136-149. |
| S. Kumar et al. “Peacock Hashing: Deterministic and Updatable Hashing for High Performance Networking,” 2008, pp. 556-564. |
| S. Misra, R. Tourani, and N.E. Majd, “Secure content delivery in information-centric networks: Design, implementation, and analyses,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 73-78. |
| S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-grained data access control in cloud computing,” in Proc. IEEE INFOCOM 2010, San Diego, CA, USA, Mar. 2010, pp. 1-9. |
| S.J. Lee, M. Gerla, and C. Chiang, “On-demand Multicast Routing Protocol in Multihop Wireless Mobile Networks,” Mobile Networks and Applications, vol. 7, No. 6, 2002. |
| Scalable and Adaptive Internet Solutions (SAIL) Project [online], http://sailproject.eu/ Downloaded Mar. 8, 2015. |
| Schein, Jeffrey, and Steven T. Bushby. A Simulation Study of a Hierarchical, Rule-Based Method for System-Level Fault Detection and Diagnostics in HVAC Systems. US Department of Commerce,[Technology Administration], National Institute of Standards and Technology, 2005. |
| Shani, Guy, Joelle Pineau, and Robert Kaplow. “A survey of point-based POMDP solvers.” Autonomous Agents and Multi-Agent Systems 27.1 (2013): 1-51. |
| Sheppard, John W., and Stephyn GW Butcher. “A formal analysis of fault diagnosis with d-matrices.” Journal of Electronic Testing 23.4 (2007): 309-322. |
| Shneyderman, Alex et al., ‘Mobile VPN: Delivering Advanced Services in Next Generation Wireless Systems’, Jan. 1, 2003, pp. 3-29. |
| Solis, Ignacio, and J. J. Garcia-Luna-Aceves. ‘Robust content dissemination in disrupted environments.’ proceedings of the third ACM workshop on Challenged networks. ACM, 2008. |
| Sun, Ying, and Daniel S. Weld. “A framework for model-based repair.” AAAI. 1993. |
| T. Ballardie, P. Francis, and J. Crowcroft, “Core Based Trees (CBT),” Proc. ACM SIGCOMM '88, Aug. 1988. |
| T. Dierts, “The transport layer security (TLS) protocol version 1.2,” IETF RFC 5246, 2008. |
| T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K.H. Kim, S. Shenker, and I. Stoica, ‘A data-oriented (and beyond) network architecture,’ ACM SIGCOMM Computer Communication Review, vol. 37, No. 4, pp. 181-192, Oct. 2007. |
| V. Goyal, 0. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-grained access control of encrypted data,” in Proc. ACM CCS 2006, Alexandria, VA, USA, Oct.-Nov. 2006, pp. 89-98. |
| V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, and R.L. Braynard, ‘Networking named content,’ in Proc. ACM CoNEXT 2009, Rome, Italy, Dec. 2009, pp. 1-12. |
| Verma, Vandi, Joquin Fernandez, and Reid Simmons. “Probabilistic models for monitoring and fault diagnosis.” The Second IARP and IEEE/RAS Joint Workshop on Technical Challenges for Dependable Robots in Human Environments. Ed. Raja Chatila. Oct. 2002. |
| Vutukury, Srinivas, and J. J. Garcia-Luna-Aceves. A simple approximation to minimum-delay routing. vol. 29. No. 4. ACM, 1999. |
| W.-G. Tzeng and Z.-J. Tzeng, “A public-key traitor tracing scheme with revocation using dynamic shares,” in Proc. PKC 2001, Cheju Island, Korea, Feb. 2001, pp. 207-224. |
| Waldvogel, Marcel “Fast Longest Prefix Matching: Algorithms, Analysis, and Applications”, A dissertation submitted to the Swiss Federal Institute of Technology Zurich, 2002. |
| Walker, Iain S. Best practices guide for residential HVAC Retrofits. No. LBNL-53592. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US), 2003. |
| Wang, Jiangzhe et al., “DMND: Collecting Data from Mobiles Using Named Data”, Vehicular Networking Conference, 2010 IEEE, pp. 49-56. |
| Xylomenos, George, et al. “A survey of information-centric networking research.” Communications Surveys & Tutorials, IEEE 16.2 (2014): 1024-1049. |
| Yi, Cheng, et al. ‘A case for stateful forwarding plane.’ Computer Communications 36.7 (2013): 779-791. |
| Yi, Cheng, et al. ‘Adaptive forwarding in named data networking.’ ACM SIGCOMM computer communication review 42.3 (2012): 62-67. |
| Zahariadis, Theodore, et al. “Trust management in wireless sensor networks.” European Transactions on Telecommunications 21.4 (2010): 386-395. |
| Zhang, et al., “Named Data Networking (NDN) Project”, http://www.parc.com/publication/2709/named-data-networking-ndn-project.html, Oct. 2010, NDN-0001, Parc Tech Report. |
| Zhang, Lixia, et al. ‘Named data networking.’ ACM SIGCOMM Computer Communication Review 44.3 {2014): 66-73. |
| Soh et al., “Efficient Prefix Updates for IP Router Using Lexicographic Ordering and Updateable Address Set”, Jan. 2008, IEEE Transactions on Computers, vol. 57, No. 1. |
| Beben et al., “Content Aware Network based on Virtual Infrastructure”, 2012 13th ACIS International Conference on Software Engineering. |
| Biradar et al., “Review of multicast routing mechanisms in mobile ad hoc networks”, Aug. 16, Journal of Network$. |
| D. Trossen and G. Parisis, “Designing and realizing and information-centric Internet,” IEEE Communications Magazing, vol. 50, No. 7, pp. 60-67, Jul. 2012. |
| Garcia-Luna-Aceves et al., “Automatic Routing Using Multiple Prefix Labels”, 2012, IEEE, Ad Hoc and Sensor Networking Symposium. |
| Gasti, Paolo et al., 'DoS & DDoS in Named Data Networking', 2013 22nd International Conference on Computer Communications and Networks (ICCCN), Aug. 2013, pp. 1-7. |
| Ishiyama, “On the Effectiveness of Diffusive Content Caching in Content-Centric Networking”, Nov. 5, 2012, IEEE, Information and Telecommunication Technologies (APSITT), 2012 9th Asia-Pacific Symposium. |
| J. Hur and D.K. Noh, “Attribute-based access control with efficient revocation in data outsourcing systers,” IEEE Trans. Parallel Distrib. Syst, vol. 22, No. 7, pp. 1214-1221, Jul. 2011. |
| Kaya et al., “A Low Power Lookup Technique for Multi-Hashing Network Applications”, 2006 IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures, Mar. 2006. |
| Hogue et al., “NLSR: Named-data Link State Routing Protocol”, Aug. 12,2013, ICN'13. |
| Nadeem Javaid, “Analysis and design of quality link metrics for routing protocols in Wireless Networks”, PhD Thesis Defense, Dec. 15, 2010, Universete Paris-Est. |
| Wetherall, David, “Active Network vision and reality: Lessons form a capsule-based system”, ACM Symposium on Operating Systems Principles, Dec. 1, 1999. pp. 64-79. |
| Wetherell, David, “Active Network vision and reality: Lessons form a capsule-based system”, ACM Symposium on Operating Systems Principles, Dec. 1, 1999. pp. 64-79. |
| Kulkarni A.B. et al., “Implementation of a prototype active network”, IEEE, Open Architectures and Network Programming, Apr. 3, 1998, pp. 130-142. |
| Xie et al. “Collaborative Forwarding and Caching in Content Centric Networks”, Networking 2012. |
| Lui et al. (A TLV-Structured Data Naming Scheme for Content-Oriented Networking, pp. 5822-5827, International Workshop on the Network of the Future, Communications (ICC), 2012 IEEE International Conference on Jun. 10-15, 2012). |
| Peter Dely et al. “OpenFlow for Wireless Mesh Networks” Computer Communications and Networks, 2011 Proceedings of 20th International Conference on, IEEE, Jul. 31, 2011 (Jul. 31, 2011), pp. 1-6. |
| Garnepudi Parimala et al “Proactive, reactive and hybrid multicast routing protocols for Wireless Mesh Networks”, 2013 IEEE International Conference on Computational Intelligence and Computing Research, IEEE, Dec. 26, 2013, pp. 1-7. |
| Tiancheng Zhuang et al. “Managing Ad Hoc Networks of Smartphones”, International Journal of Information and Education Technology, Oct. 1, 2013. |
| Amadeo et al. “Design and Analysis of a Transport-Level Solution for Content-Centric Centric VANETs”, University “Mediterranea” of Reggio Calabria, Jun. 15, 2013. |
| Marc Mosko: “CCNx 1.0 Protocol Introduction” Apr. 2, 2014 [Retrieved from the Internet Jun. 8, 2016] http://www.ccnx.org/pubs/hhg/1.1%20CCNx%201.0%Protocol%Introduction.pdf *paragraphs [01.3], [002], [02.1], [0003]. |
| Akash Baid et al: “Comparing alternative approaches for networking of named objects in the future Internet”, Computer Communications Workshops (Infocom Wkshps), 2012 IEEE Conference on, IEEE, Mar. 25, 2012, pp. 298-303, *Paragraph [002]* *figure 1*. |
| Priya Mahadevan: “CCNx 1.0 Tutorial”, Mar. 16, 2014, pp. 1-11, Retrieved from the Internet: http://www.ccnx.org/pubs/hhg/1.2%2OCCNx%201.0%20Tutorial.pdf [retrieved on Jun. 8, 2016] *paragraphs [003]-[006], [0011], [0013]* figures 1,2*. |
| Marc Mosko et al “All-In-One Streams for Content Centric Networks”, May 24, 2015, retrieved from the Internet: http://www.ccnx.org/pubs/AllinOne.pdf [downloaded Jun. 9, 2016] *the whole document*. |
| Cesar Ghali et al. “Elements of Trust in Named-Data Networking”, Feb. 13, 2014 Retrieved from the internet Jun. 17, 2016 http://arxiv.org/pdf/1402.3332v5.pdf *p. 5, col. 1* *p. 2, col. 1-2* * Section 4.1; p. 4, col. 2* *Section 4.2; p. 4, col. 2*. |
| Priya Mahadevan et al. “CCN-KRS”, Proceedings of the 1st International Conference on Information-Centric Networking, Inc. '14, Sep. 24, 2014. |
| Flavio Roberto Santos Et al. “Funnel: Choking Polluters in BitTorrent File Sharing Communities”, IEEE Transactions on Network and Service Management, IEEE vol. 8, No. 4, Dec. 1, 2011. |
| Liu Wai-Xi et al: “Multisource Dissemination in content-centric networking”, 2013 Fourth International conference on the network of the future (NOF), IEEE, Oct. 23, 2013, pp. 1-5. |
| Marie-Jose Montpetit et al.: “Network coding meets information-centric networking”, Proceedings of the 1st ACM workshop on emerging Name-Oriented mobile networking design, architecture, algorithms, and applications, NOM '12, Jun. 11, 2012, pp. 31-36. |
| Asokan et al.: “Server-Supported Signatures”, Computer Security Esorics 96, Sep. 25, 1996, pp. 131-143, Section 3. |
| Mandl et al.: “A Fast FPGA Based Coprocessor Supporting Hard Real-Time Search”, New Frontiers of Information Technology, Proceedings of the 23rd Euromicro Conference Budapest, Sep. 1, 1997, pp. 499-506 *The Whole Document*. |
| Sun et al.: “Content-Based Route Lookup Using CAMs”, Global Communications Conference, IEEE, Dec. 3, 2012 *The Whole Document*. |
| Number | Date | Country | |
|---|---|---|---|
| 20160006747 A1 | Jan 2016 | US |