1. Field of the Invention
The present invention relates generally to the field of optical data storage and, more particularly, to a system and method for parallel selection and retrieval of data stored in a holographic data storage medium.
2. Background of the Invention
Data readout from an optical recording medium is implemented by an optical pick-up head. For optical disk drives, for example, CD or DVD disk drives, the optical pick-up head conveys and focuses a single laser beam on the surface of the optical recording medium for reading data from and writing data to the optical recording medium.
The data is usually recorded on an optical disk along or between spiral or circular tracks each having a series of spatially separated marks. The length of and interval between the marks is typically used to encode the data. During readout, the focused laser beam is reflected off of the optical disk. As the disk is rotated, the reflected signal is modulated due to the difference in reflectivity from the marks to the alternating intervals between the marks; and the data is retrieved by detecting and decoding the modulated reflected signal.
In a single beam readout system, the data transfer rate can be increased by increasing the rotational speed of the disk. Data transfer rate can also be increased by reading a plurality of tracks simultaneously using a multiple beam optical pickup.
The principle of a multiple beam optical pickup consists in generating multiple beams each of which illuminates a separate data track. U.S. Pat. No. 6,449,225 proposes an exemplary scheme for multiple beam optical pickup. The disclosed system utilizes a diffraction grating in the path of a light source to split light from the light source into multiple illumination beams with angularly separated directions of propagation. The multiple illumination beams are subsequently collected and focused on multiple adjacent tracks of an optical disk.
U.S. Pat. No. 6,369,377 describes another scheme for multiple beam optical pickup which uses a combination of a polarized multiple-beam grating and a polarized holographic diffractive element. The grating splits light from a light source into multiple incident beams which are each reflected from adjacent tracks situated on the optical disk, and the reflected beams are, in turn, diffracted and deflected by the holographic diffractive element onto a photo-detector array.
Another form of optical data storage is holographic data storage. Holographic recording is achieved by illuminating a photosensitive medium with intersecting reference and object light beams. The spatial modulation of light intensity produced by interference of the beams is recorded in a holographic data storage medium by modification of the dielectric properties of the medium, either in the form of periodic spatial modulation of the refractive index of the medium or of the absorption of the medium, to constitute a grating or a hologram.
Volumetric digital page holographic storage allows a large amount of data to be recorded in parallel in the form of a 2-dimensional bit array or data page. This is accomplished by placing a spatial light modulator in the optical path of the object light beam. The spatial light modulator imparts a data page on the object light beam by modulating the spatial profile of the object beam.
Each stored data page typically comprises thousands to millions of data bits which are written and read in a single step. In a high density data storage scheme, the object beam is focused by a focusing lens within the recording medium and recorded as a volume hologram. Volumetric holographic data storage processes, commonly designated as “multiplexing”, can achieve high storage density by recording a large number of page holograms within the same area of the data storage medium. The multiplexing can be achieved by various methods, one of which is angle multiplexing, in which the angle of incidence of the reference beam is changed between successive hologram recordings. By illuminating the holographic data storage medium with an appropriate reference beam, a single associated data page stored in the data storage medium can be reconstructed.
Object beam 108 transmitted by polarizing beam splitter 106 impinges on spatial light modulator (SLM) 110, comprising a 2-Dimensional pixel array, which inscribes a data page on object beam 108 by amplitude modulation of the spatial profile of the object beam. Lens 112 focuses the modulated object beam inside holographic data storage medium 114.
Reference beam 116 reflected by PBS 106 is directed by mirrors 118 and 120 onto scanning mirror 122. Lenses 124 and 126 function as a telescope to adjust the size of the reference beam. Scanning mirror 122 deflects the reference beam which then passes through a lens system comprised of lenses 130 and 132. Lenses 130 and 132 keep the reference beam incident on the same location of holographic data storage medium 114 as object beam 108 but with a different angle of incidence determined by the deflection angle of scanning mirror 122.
As shown in
A volumetric holographic data storage medium is organized into a plurality of spatially separate data sites with each data site having a plurality of superimposed data units. A data unit represents the fundamental element used to organize and record data in a physical volume element, which in the case of page-based holographic storage is a 2 dimensional array of data bits also designated as a data page. For other types of media, the data unit may be a single bit. The multiple data sites can be organized in a grid-like fashion for a cubic holographic memory; or in the case of a holographic disk, along multiple concentric tracks.
Due to the multiplexed nature of the data storage in a volumetric holographic data storage medium, an optical pick-up for a holographic disk readout system is intrinsically different from an optical pick-up for a CD or DVD because the optical pick-up for a holographic disk readout system requires additional control of the readout beam in order to achieve selective data page retrieval. In addition to a mechanism for positioning the optical pick-up adjacent to the data area to be accessed, the readout beam properties (for example, its angle of incidence) must also be configured so that it matches the hologram from which the data is to be retrieved.
Typically, holographic data storage systems, irrespective of the application and of the format of the detection medium, are based on an illumination architecture comprised of a single pair of light beams such as used in the data storage and retrieval system illustrated in
As described above, data transfer rate can be increased in an optical disk data storage system by reading multiple tracks simultaneously. In a page-based holographic data storage system, simultaneous readout of a plurality of data pages stored at a plurality of data sites can also provide an increase in data transfer rate.
It would, accordingly, be desirable to provide a system and method for parallel selection and retrieval of data stored in a holographic data storage medium that enables the simultaneous retrieval of data units stored at a plurality of data sites of the holographic data storage medium. Furthermore, it would be desirable to provide a system and method to enable independent selection of any one data unit among a plurality of data units stored at each data site.
The present invention provides a system and method for parallel selection and retrieval of data stored in an optical data storage medium. A holographic data storage medium has a plurality of data sites, each data site containing a plurality of data units recorded as multiplexed holograms. A plurality of light beams are independently controlled to illuminate a different one of the plurality of data sites for selecting and retrieving any one data unit stored at each of the plurality of data sites. The invention enables the simultaneous retrieval of data units stored at a plurality of data sites of the holographic data storage medium, and permits an increase in optical data transfer rate.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as a preferred mode of use, further objectives and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
With reference to the drawings,
Optical power distribution apparatus 202 can be implemented in several ways. According to a preferred embodiment of the present invention, optical power distribution apparatus 202 can comprise one or more optical power sources and an arrangement of one or more optical couplers for coupling the output power of at least one output of the one or more optical power sources to a plurality of optical inputs forming a plurality of light beams 201a-201n. Preferably, the one or more optical couplers are tunable fiber-optic couplers, which allow adjustment of the coupling ratio of the optical power to each one of multiple fiber outputs (or respective fiber inputs of the multi-beam array). If the tunable couplers have a tuning range down to a virtually zero output level, redistribution of the available optical power among any of the up to N multiple inputs is permitted based on the number of required inputs among the N available inputs. Co-pending application entitled “OPTICAL POWER DISTRIBUTION MANAGEMENT AND APPARATUS”, Ser. No. 10/749,427, attorney docket no. 2003-074-DSK, filed on Dec. 31, 2003, assigned to the same assignee as the present invention and incorporated herein by reference, discloses a preferred implementation for delivering optical power to multiple optical inputs.
Returning to
When using a reflective SLM, a quarter wave plate 210 oriented at 45 degrees with respect to the direction of polarization of the plurality of input light beams is placed between PBS 204 and SLM 206. Quarter wave plate 210 transforms the incident linear polarized beams 201a-201n into circular polarized beams, the handedness of the circular polarization depending on the relative orientation of incident polarization with respect to the fast axis of quarter wave plate 210, whereas the effect of the reflective elements of SLM 206 is to change the handedness of the circular polarization. The backward propagating beams deflected by SLM 206 are thus circularly polarized with the opposite handedness, and are thus transformed by quarter wave plate 210 into linear polarized beams, but with orthogonal polarization with respect to the direction of linear polarization of the incident beams. The deflected backward-propagating light beams are then transmitted through PBS 204.
According to an alternative embodiment of the present invention, SLM 206 can be implemented as a liquid crystal spatial light modulator (LC-SLM). An LC-SLM comprises a rectangular array of P×Q individually controllable pixels, which can be organized into N regions comprising P×Q/N pixels. In a suitable configuration, each pixel can impart a controllable relative phase to the light incident thereupon. The individual pixels forming each region can be configured to form a reconfigurable phase grating, which diffracts incident light. Changing the periodicity of the phase diffraction grating results in a change in the deflection angle imparted to an individual beam. In this manner, the N individual input beams can be individually deflected by the SLM based on a liquid crystal array in a manner equivalent to a MEMS-based mirror array. An LC-SLM can be used both in a reflective configuration or a transmissive configuration.
According to the preferred embodiment of
System 200 provides a mechanism for independently varying the angles of incidence of the individual light beams that illuminate the plurality of data sites 221a-221n in holographic data storage medium 220; and, accordingly, is suitable for the parallel readout of a plurality of angle multiplexed data pages or units stored at the plurality of data sites. By controlling the angles of incidence of the plurality of light beams at each data site, system 200 further includes the capability of independently selecting and retrieving any data unit among the plurality of angle multiplexed data units recorded at each data site of data storage medium 200. By controlling the number of light beams to which optical power is distributed among the plurality of available light beams, each light beam illuminating a different one of the plurality of data sites, system 200 further includes the capability of selectively accessing only the data sites among the plurality of accessible data sites which contain data to be retrieved.
The present invention thus provides a system and method for parallel selection and retrieval of data stored in a holographic data storage medium, for example, an angularly multiplexed holographic data storage medium. The angularly multiplexed holographic data storage medium preferably has a plurality of data sites, each data site holographically storing at least one data unit with at least one of a plurality of different angular addresses. Each of a plurality of light beams illuminate, with any one of a plurality of angles of incidence, a different one of the plurality of data sites for retrieving any one of the at least one data unit stored at each of the plurality of data sites. The invention enables the simultaneous independent selection and retrieval of data units stored at a plurality of data sites of a holographic data storage medium, and permits an increase in optical data transfer rate. The invention also includes the capability of selectively accessing only the data sites among a plurality of accessible data sites which contains data to be retrieved. However the invention is not restricted to providing simultaneous access to multiple data sites of a holographic data storage medium. The invention can also be used for accessing multiple data sites of any optical data storage medium, for example by providing access to multiple tracks of an optical disk. The additional capability of control of the incident angle makes it compatible with any angular multiplexing technique employed for the recording or readout of data.
The invention also provides a method for simultaneous multi-beam illumination of multiple locations on the surface of a medium, and/or within the medium. The invention can be used to simultaneously illuminate an optical medium with spatially separate beams which enables parallel optical processing. Other applications of the invention include:—an illumination system for multiple beam photolithography on a medium;—an illumination system for machine vision systems, to perform large surface inspection of a medium, where the medium can include semiconductor wafers, printed circuit boards, or any type of medium or packaging which requires inspection through optical means;—an illumination system for detail profilometry of a physical surface or feature of a medium.
It is important to note that while the present invention has been described in the context of a fully functioning data processing system, those of ordinary skill in the art will appreciate that the processes of the present invention are capable of being distributed in the form of a computer readable medium of instructions and a variety of forms and that the present invention applies equally regardless of the particular type of signal bearing media actually used to carry out the distribution. Examples of computer readable media include recordable-type media such a floppy disc, a hard disk drive, a RAM, CD-ROMs, and transmission-type media such as digital and analog communications links.
The description of the present invention has been presented for purposes of illustration and description, and is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. The embodiment was chosen and described in order to best explain the principles of the invention, the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
The present application is related to co-pending applications entitled “SYSTEM AND METHOD FOR PARALLEL SELECTIVE REPLICATION AND ANGULAR ADDRESS REMAPPING OF DATA CONTENT STORED IN A HOLOGRAPHIC DATA STORAGE MEDIUM”, Ser. No. ______, attorney docket no. 2004-067-MIS, “SYSTEM AND METHOD FOR PARALLEL SELECTIVE REPLICATION AND DATA ADDRESS REMAPPING OF DATA CONTENT STORED IN A HOLOGRAPHIC DATA STORAGE MEDIUM, Ser. No. ______, attorney docket no. 2004-074-MIS, and “SYSTEM AND METHOD FOR PROVIDING GAIN AND THRESHOLDING TO A HOLOGRAPHIC DATA PARALLEL RECORDING AND REPLICATION SYSTEM INCORPORATING INDEPENDENT ANGULAR ADDRESS ASSIGNMENT” Ser. No. ______, attorney docket no. 2004-068-MIS, all filed on even date herewith. All the above applications are assigned to the same assignee and are incorporated herein by reference.