System and method for partially encrypted multimedia stream

Information

  • Patent Grant
  • 7215770
  • Patent Number
    7,215,770
  • Date Filed
    Monday, March 31, 2003
    21 years ago
  • Date Issued
    Tuesday, May 8, 2007
    17 years ago
Abstract
A multimedia stream head end includes a legacy conditional access (CA) device that fully encrypts the stream using legacy keys. A copy of the stream is sent to a secondary CA device that encrypts only critical packets in the stream using secondary keys to render a partially encrypted stream. The critical packets in the fully encrypted stream from the legacy CA device are obtained and inserted next to the corresponding critical packets in the partially encrypted stream. Thus, only critical packets are encrypted, with encrypted versions being generated by both the legacy CA and secondary CA without the legacy CA knowing which of the packets that it encrypts are “critical”.
Description
FIELD OF THE INVENTION

The present invention relates generally to encrypted multimedia streams.


BACKGROUND OF THE INVENTION

Multimedia streams that are sought to be protected (e.g., pay-per-view sporting events, movies, and the like) can be encrypted at the transmitter (colloquially referred to as the “head end”) with keys in a way that receiving television set-top boxes (STBs) that have complementary keys can decrypt the content for viewing. Accordingly, cable service providers must use head end conditional access (CA) devices that encrypt multimedia streams in accordance with the capabilities of the set-top boxes of the viewers. Many of these capabilities, including decryption capabilities, are proprietary to the makers of the set-top boxes.


It happens that only a very few “incumbent” companies sell most of the set-top boxes. Accordingly, competitors seeking to enter the cable television set-top box market must license the proprietary keys from the incumbents, often at high prices. This reduces competition.


A straightforward alternative way to permit competitive STB makers to enter the market without paying licensing fees to the incumbents would be to encourage the cable service providers, at their head ends, to completely encrypt each stream with as many CA devices (using respective sets of keys) as there are set-top box providers. This, however, would plainly undesirably multiply the amount of bandwidth necessary to carry a program. Accordingly, Sony has developed an encryption scheme whereby only “critical” portions, such as I-frames or headers, of a stream are encrypted, with the remainder of the stream being sent in the clear but being useless without being able to decrypt the “critical” portions. In this way, only the critical portions need be duplicated in encrypted form, not the entire stream. With more specificity, only the critical portions are encrypted both by the existing (“legacy”) CA devices using the incumbents' keys and by a secondary conditional access process using a competitor's keys. Published U.S. patent application Ser. No. 10/038,217, filed Jan. 2, 2002 and incorporated herein by reference, discloses such a scheme.


As understood herein, the legacy CA components that are made by the incumbent providers can be programmed by the incumbent providers to detect that the above-mentioned process is ongoing. Consequently, the legacy components might be programmed by the incumbents to defeat the process and, thus, to maintain a de facto monopoly. Having recognized this possibility, the solution below is provided.


SUMMARY OF THE INVENTION

A method for multimedia transmission includes generating a copy of a multimedia stream to render first and second clear streams having identical predetermined portions. The method also includes sending the first clear stream to a first conditional access (CA) component, which can be a legacy component provided by an incumbent, to encrypt the entire first clear stream to render a completely encrypted stream without the legacy component knowing about the second clear stream. Encrypted versions of the predetermined portions are obtained from the completely encrypted stream. The second clear stream is used to encrypt the predetermined portions using a second CA component to render a partially encrypted stream. The method then contemplates inserting the encrypted predetermined portions obtained from the completely encrypted stream into the partially encrypted stream for transmission thereof.


In a preferred embodiment, the partially encrypted stream with two encrypted versions of each critical packet is sent to plural set-top boxes over cable. Or, the partially encrypted stream can be wirelessly broadcast to plural receivers.


Preferably, the method includes determining locations of the predetermined portions using corresponding offsets from at least one packet identifier (PID). The offsets can be in integral numbers of packets from at least one PID. In a preferred embodiment, the offsets are used for identifying the locations of the encrypted predetermined portions in the completely encrypted stream for obtaining them and inserting them into the partially encrypted stream, e.g., adjacent to the predetermined portions that were generated by the second CA component.


In another aspect, a system for dual partial encryption of a digital data stream includes means for copying the stream to render first and second streams, and first conditional access (CA) means for encrypting only critical portions of the first stream to render a partially encrypted stream. Legacy CA means encrypt the entire second stream to render a substantially fully encrypted stream. Means are provided for combining only critical portions from the fully encrypted stream with the partially encrypted stream.


In still another aspect, a system for use in a digital stream transmitter head end having a legacy conditional access (CA) device includes a system CA device that encrypts at least predetermined portions, and preferably only the predetermined portions, of a first version of a stream. A reconstitution component combines, into a stream such as the first version of the stream, the predetermined portions from the system CA device with the predetermined portions obtained from a full encryption of a second version of the stream generated by the legacy CA device.


The details of the present invention, both as to its structure and operation, can best be understood in reference to the accompanying drawings, in which like reference numerals refer to like parts, and in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an architectural block diagram; and



FIG. 2 is a flow chart of the present logic.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring initially to FIG. 1, a system is shown, generally designated 10, that includes a source 12 of digital data streams, such as multimedia streams. The streams are sent to a critical packet locator and offset detector 14 which determines which packets in the stream are “critical”. The critical packet locator and offset detector 14 also determines the offset (in integer numbers of packets from one or more packet identifiers (PID)) of each critical packet from a reference packet, e.g., the start of frame packet. The above-referenced patent application discusses critical packet selection. For clarity and completeness, critical packets may be information frames (“I-frames”) in MPEG streams, or packetized elementary stream (PES) headers, or “action zones” of video, or other key packets that contain information which is essential to the successful recovery of picture and/or audio data. Preferably, packets containing references to program clock references (PCR) in the picture data (including presentation timestamp (PTS) and decoding timestamp (DTS) information) are never designated as “critical” packets.


As shown in FIG. 1, the offsets of the critical packets are stored in a critical packet offset table 16 or other data structure. Also, the stream is sent from the locator 14 to a stream copier 18 that makes a copy of the data stream. It is to be understood that the stream could be copied before critical packets and their offsets are identified.


As can be appreciated in reference to FIG. 1, one version of the stream is sent to a legacy conditional access (CA) device 20. The legacy CA device 20 can be considered to be a device provided by an incumbent that can process the stream by, e.g., encoding the stream with encryption keys, in accordance with the incumbent's proprietary CA scheme. The legacy CA device 20 completely encrypts the stream in accordance with conventional incumbent CA principles to render a fully encrypted stream.


Additionally, a version of the stream is sent from the stream copier to a buffer, preferably a circular first in first out (FIFO) buffer 22. The length of the buffer 22 should be of sufficient length (potentially a fixed length) to account for the delay caused by the processing time of the legacy CA device 20 in accordance with principles discussed below. The length of the FIFO buffer 22 may be established in increments of frame/picture or sequence/GOP for management purposes.



FIG. 1 shows that a secondary CA and reconstitution device 24 receives the clear stream from the FIFO buffer and the fully encrypted stream from the legacy CA device 20. The secondary CA and reconstitution device 24 includes a CA component, which encrypts only the critical packets in the clear stream received from the buffer 22, leaving the remaining portions of the stream unencrypted to render a partially encrypted stream. The secondary CA device 24 uses encryption keys that are different from those used by the legacy CA device 20. If desired, the pass through the secondary CA device 24 may slave to a new PCR value output by the legacy CA device 20, with the resulting corresponding value generated by the secondary CA device 24 differing by a fixed offset.


Also, the secondary CA and reconstitution device 24 includes a reconstitution component, which copies or strips or otherwise obtains only the now-encrypted critical packets from the fully encrypted stream received from the legacy CA device 20 and inserts the packets into the partially encrypted stream in accordance with principles below. The partially encrypted stream, now with two encrypted versions of each critical packet (one generated by the legacy CA device 20 and one generated by the secondary CA device 24) can be transmitted by a transmission system 26 over, e.g., cable, or terrestrial broadcast, or satellite broadcast.


It is to be understood that the functions of the secondary CA and reconstitution device 24 can be undertaken by separate components. It is to be further understood that the functions of the components 16, 18, 22, and 24 can be executed by a single secondary CA computing device or system or by separate devices/systems, and that the principles set forth herein apply to an overall system 10 that can have plural secondary CA systems.


The logic that is implemented by the system 10 shown in FIG. 1 can be seen in FIG. 2. Commencing at block 28, critical packets in the stream are identified, along with their offsets from a predetermined packet or packets, in accordance with principles set forth above. The offsets are stored (e.g., in the offset table 16) at block 30, and the stream is copied at block 32 by the stream copier 18.


A first clear version of the stream is sent to the legacy CA device 20 at block 34. At block 36, the legacy CA device 20 fully encrypts the stream in accordance with incumbent CA principles. In parallel, a second clear version of the stream is buffered at block 38 and then partially encrypted at block 40 by the secondary CA device 24. As mentioned above, the secondary CA device 24 encrypts only the critical packets.


Block 42 represents the reconstitution function. The encrypted critical packets from the legacy CA device 20 are obtained by accessing the critical packet offset table 16, obtaining the offsets, and counting through the fully encrypted stream using the offsets from the reference PID or PIDs. At each indicated critical packet offset location, the encrypted packet at that location is obtained by, e.g., copying the packet from the stream. The critical packets are then inserted into the partially encrypted stream immediately next to the corresponding preexisting critical packets in the stream that were generated by the secondary CA device 24. The partially encrypted stream with two encrypted versions of each critical packet, one from the legacy CA device 20 and one from the secondary CA device 24, is transmitted at block 44.


While the particular SYSTEM AND METHOD FOR PARTIALLY ENCRYPTED MULTIMEDIA STREAM as herein shown and described in detail is fully capable of attaining the above-described objects of the invention, it is to be understood that it is the presently preferred embodiment of the present invention and is thus representative of the subject matter which is broadly contemplated by the present invention. For example, in a less elegant solution, the secondary CA device 24 could completely encrypt the stream, and the critical packets from the fully encrypted versions from the legacy and secondary CA devices could be copied and inserted into a third clear version of the stream from which the unencrypted critical packets have been removed. The scope of the present invention thus fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the present invention is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more”. All structural and functional equivalents to the elements of the above-described preferred embodiment that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a device or method to address each and every problem sought to be solved by the present invention, for it to be encompassed by the present claims. Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. §112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited as a “step” instead of an “act”. Absent express definitions herein, claim terms are to be given all ordinary and accustomed meanings that are not irreconciliable with the present specification and file history.

Claims
  • 1. A method for multimedia transmission, comprising: generating a copy of a multimedia stream to render first and second clear streams having identical predetermined portions;sending the first clear stream to a first conditional access (CA) component to encrypt the entire first clear stream to render a completely encrypted stream;obtaining encrypted versions of the predetermined portions from the completely encrypted stream;using the second clear stream, encrypting substantially only the predetermined portions using a second CA component to render a partially encrypted stream; andinserting the encrypted predetermined portions obtained from the completely encrypted stream into the partially encrypted stream to render a transmission stream that is only partially encrypted for transmission thereof.
  • 2. The method of claim 1, comprising transmitting the transmission stream to plural set-top boxes over cable.
  • 3. The method of claim 1, comprising wirelessly broadcasting the transmission stream to plural receivers.
  • 4. The method of claim 1, wherein the first CA component is a legacy component provided by an incumbent.
  • 5. The method of claim 1, comprising determining locations of the predetermined portions at least in one of the streams using corresponding offsets from at least one packet identifier (PID).
  • 6. The method of claim 5, wherein the offsets are in integral numbers of packets from at least one PID.
  • 7. The method of claim 5, wherein the offsets are used for identifying the locations of the encrypted predetermined portions in the completely encrypted stream for obtaining them and inserting them into the partially encrypted stream to render the transmission stream.
  • 8. The method of claim 1, wherein the encrypted predetermined portions obtained from the completely encrypted stream are inserted adjacent to the predetermined portions encrypted using the second CA component in the partially encrypted stream to render the transmission stream.
  • 9. A system for use in a digital stream transmitter head end having a legacy conditional access (CA) device, comprising: at least a system CA device encrypting at least predetermined portions of a first version of a stream; anda reconstitution component combining, into a stream, the predetermined portions from the system CA device and the predetermined portions obtained from a full encryption of a second version of the stream to render a partially encrypted stream having a first encryped version of the predetermined portions and a second encrypted version of the predetermined portions and having substantially no other encrypted data therein, the full encryption being generated by the legacy CA device.
  • 10. The system of claim 9, wherein the predetermined portions obtained from the full encryption generated by the legacy CA device represent the same information as the predetermined portions encrypted by the system CA device, and the stream into which the predetermined portions are combined is the first version of the stream.
  • 11. The system of claim 10, wherein the head end transmits the partially encrypted stream over cable.
  • 12. The system of claim 10, wherein the head end wireless broadcasts the partially encrypted stream.
  • 13. The system of claim 10, comprising at least one critical packet locator determining offsets of at least some predetermined portions from at least one packet identifier (PID).
  • 14. The system of claim 13, wherein the offsets are in integral numbers of packets from at least one PID.
  • 15. The system of claim 13, wherein the reconstitution component uses the offsets to insert the predetermined portions obtained from the full encryption such that the predetermined portions obtained from the full encryption are adjacent to the predetermined portions of the first version in the partially encrypted stream.
  • 16. The system of claim 9, further comprising at least one buffer temporarily holding the first version of the stream.
  • 17. The system of claim 13, further comprising at least one data structure storing the offsets.
RELATED APPLICATIONS

This application is a continuation-in-part of patent application entitled “Critical Packet Partial Encryption” to Unger et al., Ser. No. 10/038,217; patent application entitled “Time Division Partial Encryption” to Candelore et al., Ser. No. 10/038,032; application entitled “Elementary Stream Partial Encryption” to Candelore, Ser. No. 10/037,914; application entitled “Partial Encryption and PID Mapping” to Unger et al., Ser. No. 10/037,499; and application entitled “Decoding and Decrypting of Partially Encrypted Information” to Unger et al., Ser. No. 10/037,498 all of which were filed on Jan. 2, 2002 and are hereby incorporated by reference herein; this application is also related to and claims priority benefit of U.S. Provisional patent application Ser. No. 60/429,011, filed Nov. 22, 2002, entitled “Critical Packet Selection in an Encrypted Transport Stream Through Referenced Offset”, to Pedlow; this application is also related to and claims priority benefit of U.S. Provisional patent application Ser. No. 60/409,675, filed Sep. 9, 2002, entitled “Generic PID Remapping for Content Replacement”, to Candelore; this application is also related to and claims priority benefit of U.S. Provisional patent application Ser. No. 60/372,870 filed Apr. 16, 2002, entitled “Generic PID Remapping for Content Replacement Applications”, to Candelore. This application is also related to U.S. patent applications Ser. No. 10/273,905, filed Oct. 18, 2002 to Candelore et al., entitled “Video Slice and Active Region Based Dual Partial Encryption”; Ser. No. 10/273,903, filed Oct. 18, 2002 to Candelore et al., entitled “Star Pattern Partial Encryption”; Ser. No. 10/274,084, filed Oct. 18, 2002 to Candelore et al., entitled “Slice Mask and Moat Pattern Partial Encryption”; and Ser. No. 10/274,019, filed Oct. 18, 2002 to Candelore et al., entitled “Video Scene Change Detection”. Each of the above applications are hereby incorporated by reference herein.

US Referenced Citations (309)
Number Name Date Kind
3852519 Court Dec 1974 A
4381519 Wilkinson et al. Apr 1983 A
4419693 Wilkinson Dec 1983 A
4521853 Guttag Jun 1985 A
4634808 Moerder Jan 1987 A
4700387 Hirata Oct 1987 A
4703351 Kondo Oct 1987 A
4703352 Kondo Oct 1987 A
4710811 Kondo Dec 1987 A
4712238 Gilhousen et al. Dec 1987 A
4722003 Kondo Jan 1988 A
4739510 Jeffers et al. Apr 1988 A
4772947 Kondo Sep 1988 A
4785361 Brotby Nov 1988 A
4788589 Kondo Nov 1988 A
4815078 Shimura Mar 1989 A
4845560 Kondo et al. Jul 1989 A
4887296 Horne Dec 1989 A
4890161 Kondo Dec 1989 A
4924310 von Brandt May 1990 A
4944006 Citta et al. Jul 1990 A
4953023 Kondo Aug 1990 A
4989245 Bennett Jan 1991 A
4995080 Bestler et al. Feb 1991 A
5018197 Jones et al. May 1991 A
5023710 Kondo et al. Jun 1991 A
5091936 Katznelson Feb 1992 A
5122873 Golin Jun 1992 A
5138659 Kelkar et al. Aug 1992 A
5142537 Kutner et al. Aug 1992 A
5144662 Welmer Sep 1992 A
5144664 Esserman et al. Sep 1992 A
5159452 Kinoshita et al. Oct 1992 A
5196931 Kondo Mar 1993 A
5208816 Seshardi et al. May 1993 A
5237424 Nishino et al. Aug 1993 A
5237610 Gammie et al. Aug 1993 A
5241381 Kondo Aug 1993 A
5247575 Sprague et al. Sep 1993 A
5258835 Kato Nov 1993 A
5319707 Wasilewski et al. Jun 1994 A
5319712 Finkelstein et al. Jun 1994 A
5325432 Gardeck et al. Jun 1994 A
5327502 Katata Jul 1994 A
5341425 Wasilewski et al. Aug 1994 A
5359694 Concordel Oct 1994 A
5379072 Kondo Jan 1995 A
5381481 Gammie et al. Jan 1995 A
5398078 Masuda et al. Mar 1995 A
5400401 Wasilewski et al. Mar 1995 A
5416651 Uetake et al. May 1995 A
5416847 Boze May 1995 A
5420866 Wasilewski May 1995 A
5428403 Andrew et al. Jun 1995 A
5434716 Sugiyama et al. Jul 1995 A
5438369 Citta et al. Aug 1995 A
5444491 Lim Aug 1995 A
5444782 Adams et al. Aug 1995 A
5455862 Hoskinson Oct 1995 A
5469216 Takahashi et al. Nov 1995 A
5471501 Parr et al. Nov 1995 A
5473692 Davis Dec 1995 A
5481554 Kondo Jan 1996 A
5481627 Kim Jan 1996 A
5485577 Eyer et al. Jan 1996 A
5491748 Auld, Jr. et al. Feb 1996 A
5528608 Shimizume Jun 1996 A
5535276 Ganesan Jul 1996 A
5539823 Martin et al. Jul 1996 A
5539828 Davis Jul 1996 A
5555305 Robinson et al. Sep 1996 A
5561713 Suh Oct 1996 A
5568552 Davis Oct 1996 A
5574787 Ryan Nov 1996 A
5582470 Yu Dec 1996 A
5583576 Perlman et al. Dec 1996 A
5583863 Darr, Jr. et al. Dec 1996 A
5590202 Bestler et al. Dec 1996 A
5598214 Kondo et al. Jan 1997 A
5600721 Kitazato Feb 1997 A
5606359 Youden et al. Feb 1997 A
5608448 Smoral et al. Mar 1997 A
5615265 Coutrot Mar 1997 A
5617333 Oyamada et al. Apr 1997 A
5625715 Trew et al. Apr 1997 A
5629981 Nerlikar May 1997 A
5652795 Eillon et al. Jul 1997 A
5663764 Kondo et al. Sep 1997 A
5666293 Metz et al. Sep 1997 A
5699429 Tamer et al. Dec 1997 A
5703889 Shimoda et al. Dec 1997 A
5717814 Abecassis Feb 1998 A
5726711 Boyce Mar 1998 A
5732346 Lazaridis et al. Mar 1998 A
5742680 Wilson Apr 1998 A
5742681 Giachetti et al. Apr 1998 A
5751280 Abbott et al. May 1998 A
5751743 Takizawa May 1998 A
5751813 Dorenbos May 1998 A
5754650 Katznelson May 1998 A
5754658 Aucsmith May 1998 A
5757417 Aras et al. May 1998 A
5757909 Park May 1998 A
5768539 Metz et al. Jun 1998 A
5796786 Lee Aug 1998 A
5796829 Newby et al. Aug 1998 A
5796840 Davis Aug 1998 A
5802176 Audebert Sep 1998 A
5805700 Nardone et al. Sep 1998 A
5805712 Davis Sep 1998 A
5805762 Boyce et al. Sep 1998 A
5809147 De Lange et al. Sep 1998 A
5815146 Youden et al. Sep 1998 A
5818934 Cuccia Oct 1998 A
5825879 Davis Oct 1998 A
5850218 LaJoie et al. Dec 1998 A
5852290 Chaney Dec 1998 A
5852470 Kondo et al. Dec 1998 A
5870474 Wasilewski et al. Feb 1999 A
5894320 Vancelette Apr 1999 A
5894516 Brandenburg Apr 1999 A
5915018 Aucsmith Jun 1999 A
5922048 Emura Jul 1999 A
5923755 Birch Jul 1999 A
5930361 Hayashi et al. Jul 1999 A
5933500 Blatter et al. Aug 1999 A
5949877 Traw et al. Sep 1999 A
5949881 Davis Sep 1999 A
5973679 Abbott et al. Oct 1999 A
5999622 Yasukawa et al. Dec 1999 A
5999698 Nakai et al. Dec 1999 A
6005561 Hawkins et al. Dec 1999 A
6011849 Orrin Jan 2000 A
6012144 Pickett Jan 2000 A
6021199 Ishibashi Feb 2000 A
6021201 Bakhle et al. Feb 2000 A
6026164 Sakamoto et al. Feb 2000 A
6028932 Park Feb 2000 A
6049613 Jakobsson Apr 2000 A
6055314 Spies et al. Apr 2000 A
6055315 Doyle et al. Apr 2000 A
6057872 Candelore May 2000 A
6058186 Enari May 2000 A
6058192 Guralnick et al. May 2000 A
6061451 Muratani et al. May 2000 A
6064748 Hogan May 2000 A
6065050 DeMoney May 2000 A
6069647 Sullivan et al. May 2000 A
6070245 Murphy, Jr. et al. May 2000 A
6072872 Chang et al. Jun 2000 A
6072873 Bewick Jun 2000 A
6073122 Wool Jun 2000 A
6088450 Davis et al. Jul 2000 A
6105134 Pinder et al. Aug 2000 A
6108422 Newby et al. Aug 2000 A
6115821 Newby et al. Sep 2000 A
6118873 Lotspiech et al. Sep 2000 A
6134551 Aucsmith Oct 2000 A
6148082 Slattery et al. Nov 2000 A
6154206 Ludtke Nov 2000 A
6157719 Wasilewski et al. Dec 2000 A
6181334 Freeman et al. Jan 2001 B1
6185369 Ko et al. Feb 2001 B1
6185546 Davis Feb 2001 B1
6189096 Haverty Feb 2001 B1
6192131 Geer et al. Feb 2001 B1
6199053 Herbert et al. Mar 2001 B1
6204843 Freeman et al. Mar 2001 B1
6209098 Davis Mar 2001 B1
6215484 Freeman et al. Apr 2001 B1
6226618 Downs May 2001 B1
6229895 Son et al. May 2001 B1
6230194 Frailong et al. May 2001 B1
6230266 Perlman et al. May 2001 B1
6236727 Ciacelli et al. May 2001 B1
6240553 Son et al. May 2001 B1
6246720 Kutner et al. Jun 2001 B1
6256747 Inohara et al. Jul 2001 B1
6263506 Ezaki et al. Jul 2001 B1
6266416 Sigbjornsen et al. Jul 2001 B1
6266480 Ezaki et al. Jul 2001 B1
6272538 Holden et al. Aug 2001 B1
6278783 Kocher et al. Aug 2001 B1
6289455 Kocher et al. Sep 2001 B1
6292568 Akins, III et al. Sep 2001 B1
6292892 Davis Sep 2001 B1
6307939 Vigarie Oct 2001 B1
6311012 Cho et al. Oct 2001 B1
6324288 Hoffman Nov 2001 B1
6351538 Uz Feb 2002 B1
6378130 Adams Apr 2002 B1
6389533 Davis et al. May 2002 B1
6389537 Davis et al. May 2002 B1
6415031 Colligan et al. Jul 2002 B1
6415101 deCarmo et al. Jul 2002 B1
6430361 Lee Aug 2002 B2
6445738 Zdepski et al. Sep 2002 B1
6449718 Rucklidge et al. Sep 2002 B1
6453115 Boyle Sep 2002 B1
6459427 Mao et al. Oct 2002 B1
6463152 Takahashi Oct 2002 B1
6466671 Maillard et al. Oct 2002 B1
6505032 McCorkle et al. Jan 2003 B1
6505299 Zeng et al. Jan 2003 B1
6510554 Gordon et al. Jan 2003 B1
6519693 Debey Feb 2003 B1
6529526 Schneidewend Mar 2003 B1
6543053 Li et al. Apr 2003 B1
6549229 Kirby et al. Apr 2003 B1
6557031 Mimura et al. Apr 2003 B1
6587561 Sered et al. Jul 2003 B1
6640145 Hoffberg et al. Oct 2003 B2
6650754 Akiyama et al. Nov 2003 B2
6654389 Brunheroto et al. Nov 2003 B1
6678740 Rakib et al. Jan 2004 B1
6681326 Son et al. Jan 2004 B2
6684250 Anderson et al. Jan 2004 B2
6697944 Jones et al. Feb 2004 B1
6754276 Harumoto et al. Jun 2004 B1
6772340 Peinado et al. Aug 2004 B1
6788690 Harri Sep 2004 B2
6826185 Montanaro et al. Nov 2004 B1
6859335 Lai et al. Feb 2005 B1
6891565 Dieterich May 2005 B1
6904520 Rosset et al. Jun 2005 B1
6976166 Herley et al. Dec 2005 B2
20010030959 Ozawa et al. Oct 2001 A1
20020026587 Talstra et al. Feb 2002 A1
20020046406 Chelehmal et al. Apr 2002 A1
20020047915 Misu Apr 2002 A1
20020059425 Belfiore et al. May 2002 A1
20020083317 Ohta et al. Jun 2002 A1
20020083438 So et a. Jun 2002 A1
20020097322 Monroe et al. Jul 2002 A1
20020108035 Herley et al. Aug 2002 A1
20020129243 Nanjundiah Sep 2002 A1
20020170053 Peterka et al. Nov 2002 A1
20020184506 Perlman Dec 2002 A1
20020194613 Unger Dec 2002 A1
20020196939 Unger et al. Dec 2002 A1
20030002854 Belknap et al. Jan 2003 A1
20030009669 White et al. Jan 2003 A1
20030021412 Candelore et al. Jan 2003 A1
20030026423 Unger Feb 2003 A1
20030031172 Grinfeld Feb 2003 A1
20030046686 Candelore et al. Mar 2003 A1
20030063615 Luoma et al. Apr 2003 A1
20030072555 Yap et al. Apr 2003 A1
20030077071 Lin et al. Apr 2003 A1
20030081630 Mowery et al. May 2003 A1
20030081776 Candelore May 2003 A1
20030084284 Ando et al. May 2003 A1
20030097662 Russ et al. May 2003 A1
20030112333 Chen et al. Jun 2003 A1
20030118243 Sezer et al. Jun 2003 A1
20030123664 Pedlow Jul 2003 A1
20030123849 Nallur et al. Jul 2003 A1
20030126086 Safadi Jul 2003 A1
20030133570 Candelore Jul 2003 A1
20030140257 Peterka et al. Jul 2003 A1
20030145329 Candelore Jul 2003 A1
20030152224 Candelore Aug 2003 A1
20030152226 Candelore Aug 2003 A1
20030156718 Candelore Aug 2003 A1
20030159139 Candelore Aug 2003 A1
20030159140 Candelore Aug 2003 A1
20030159152 Lin et al. Aug 2003 A1
20030174837 Candelore Sep 2003 A1
20030188154 Dallard Oct 2003 A1
20030193973 Takashimizu et al. Oct 2003 A1
20030198223 Mack et al. Oct 2003 A1
20030204717 Kuehnel Oct 2003 A1
20030226149 Chun et al. Dec 2003 A1
20030228018 Vince Dec 2003 A1
20040003008 Wasilewski et al. Jan 2004 A1
20040010717 Simec et al. Jan 2004 A1
20040028227 Yu Feb 2004 A1
20040047470 Candelore Mar 2004 A1
20040049688 Candelore Mar 2004 A1
20040049690 Candelore et al. Mar 2004 A1
20040049691 Candelore Mar 2004 A1
20040049694 Candelore Mar 2004 A1
20040078575 Morten et al. Apr 2004 A1
20040081333 Grab et al. Apr 2004 A1
20040091109 Son et al. May 2004 A1
20040123094 Sprunk Jun 2004 A1
20040139337 Pinder et al. Jul 2004 A1
20040165586 Read et al. Aug 2004 A1
20040187161 Cao Sep 2004 A1
20040193550 Siegal Sep 2004 A1
20040240668 Bonan Dec 2004 A1
20050004875 Kontio et al. Jan 2005 A1
20050028193 Candelore Feb 2005 A1
20050036067 Ryal Feb 2005 A1
20050066357 Ryal Mar 2005 A1
20050071669 Medvinsky et al. Mar 2005 A1
20050094808 Pedlow May 2005 A1
20050094809 Pedlow May 2005 A1
20050097596 Pedlow May 2005 A1
20050097597 Pedlow May 2005 A1
20050097598 Pedlow May 2005 A1
20050097614 Pedlow May 2005 A1
20050102702 Candelore May 2005 A1
20050129233 Pedlow Jun 2005 A1
20050169473 Candelore Aug 2005 A1
20050192904 Candelore Sep 2005 A1
20050259813 Wasilewski et al. Nov 2005 A1
20060115083 Candelore Jun 2006 A1
20060153379 Candelore Jul 2006 A1
Foreign Referenced Citations (18)
Number Date Country
0471373 Feb 1992 EP
0527611 Jul 1992 EP
0558016 Feb 1993 EP
0596826 Apr 1993 EP
0610587 Dec 1993 EP
0680209 Apr 1995 EP
0833517 Apr 1998 EP
0866615 Sep 1998 EP
1 187 483 Mar 2002 EP
1187483 Mar 2002 EP
7067028 Mar 1995 JP
11243534 Oct 2002 JP
WO 8607224 Dec 1986 WO
WO 9738530 Oct 1997 WO
WO 0031964 Jun 2000 WO
WO 0165762 Sep 2001 WO
WO 0178386 Oct 2001 WO
WO 0178386 Oct 2001 WO
Related Publications (1)
Number Date Country
20040073917 A1 Apr 2004 US
Provisional Applications (3)
Number Date Country
60429011 Nov 2002 US
60409675 Sep 2002 US
60372870 Apr 2002 US
Continuation in Parts (5)
Number Date Country
Parent 10038217 Jan 2002 US
Child 10403834 US
Parent 10038032 Jan 2002 US
Child 10038217 US
Parent 10037914 Jan 2002 US
Child 10038032 US
Parent 10037499 Jan 2002 US
Child 10037914 US
Parent 10037498 Jan 2002 US
Child 10037499 US