The technology described herein relates generally to gas turbine engines, and more particularly, to a system and method for cooling engine control components for such engines.
At least one known gas turbine engine assembly includes a fan assembly that is mounted upstream from a core gas turbine engine. During operation, a portion of the airflow discharged from the fan assembly is channeled downstream to the core gas turbine engine wherein the airflow is further compressed. The compressed airflow is then channeled into a combustor, mixed with fuel, and ignited to generate hot combustion gases. The combustion gases are then channeled to a turbine, which extracts energy from the combustion gases for powering the compressor, as well as producing useful work to propel an aircraft in flight. The other portion of the airflow discharged from the fan assembly exits the engine through a fan stream nozzle.
A variety of different control systems and methods are available for controlling the operation and performance of such aircraft gas turbine engines. One type of control system is commonly referred to as a FADEC (Full Authority Digital Engine Control), which is a generic name for a system for electronically controlling an aviation engine. A FADEC system includes a central computer system (often referred to as the FADEC) which receives information regarding the position of a throttle lever and other engine control devices operated by a pilot, as well as various information from various sensors fitted to the engine, and controls the engine so as to provide the required levels of performance such as engine thrust, fuel economy, etc. Engine control components such as FADEC units often include a number of small wires and electronic components such as computer chips and printed circuit boards.
In service, gas turbine aircraft engines are subject to a wide range of operating conditions such as high and low altitudes, high and low temperatures, and high and low speed airflows over, around, and through the engine. Even during a single flight, the aircraft, its engine(s), and engine control components may experience low speed, low altitude, and high temperature conditions during taxi, takeoff, and landing operations, as well as high speed, high altitude, and low temperature conditions during the cruise portion of the flight.
Engine control components such as FADEC units are normally housed within the engine cowling or nacelle, where it is protected from precipitation, dirt, debris, and other contaminants which may pass over, around, or through the engine. However, housing the engine control components in close proximity to the engine itself exposes them to potentially high temperatures generated during normal engine operation. Additionally, because of the electrical connections and components, as well as operating computer components which may be inside the engine control component, the engine control components may themselves generate heat which in a confined space tends to expose the unit to higher than desired operating temperatures.
To manage the operating temperatures of the engine control components, ventilation is often provided to direct air which is cooler than the components onto the components to carry heat away and maintain the temperature of the component at a satisfactory operating level. However, cooling needs often vary greatly during the course of a flight or operating session. For example, a much greater degree of cooling may be needed on a hot day during ground operations at engine idle power settings than at high altitude during cruise conditions and high power settings.
Due to the increased weight and complexity which would be required to modulate cooling air flow with conventional systems, such systems normally are configured to operate in a fixed operating condition to provide the maximum level of cooling air volume required during the foreseeable operating environment. However, such a configuration may result in over-cooling or chilling of the engine control components due to greater-than-necessary airflow of low temperature air, thereby inducing thermal fatigue stress and cyclic strain and potentially leading to cracks in sensitive internal elements such as printed circuit boards.
Accordingly, there remains a need for a system and method for cooling gas turbine engine control components as needed while maintaining a satisfactory temperature range for operation of the components.
In one aspect, a system for cooling a gas turbine engine control component is described. The system comprises a control component, at least one duct in fluid communication with the component and the atmosphere, and a valve assembly located with the duct for modulating airflow to the component.
In another aspect, a method for cooling a gas turbine engine control component is described. The method comprises the steps of: a) providing a system for cooling the component, the system comprising at least one duct in fluid communication with the component and the atmosphere and a valve assembly located with the duct for modulating airflow to the component; b) exposing the system to a first condition where cooling of the component is required; c) opening the valve assembly in response to the first condition; d) exposing the system to a second condition where cooling of the component is not required; and e) closing the valve assembly in response to the second condition.
Exemplary embodiments of the present invention will now be described with regard to the accompanying drawing figures, in which like numerals refer to like elements throughout the drawing figures.
Fan assembly 14 includes an array of fan blades extending radially outward from a rotor disk, the forward portion of which is enclosed by a streamlined spinner. Gas turbine engine assembly 10 has an intake side 11 and an exhaust side 13. Fan assembly 14, booster 16, and turbine 24 are coupled together by a first rotor shaft 28, and compressor 18 and turbine 22 are coupled together by a second rotor shaft 26.
In operation, incoming air 42 flows through fan assembly 14 and a first portion of the airflow is channeled through booster 16 and onward through internal flowpath 50 of core gas turbine engine 15. The compressed air that is discharged from booster 16 is channeled through compressor 18 wherein the airflow is further compressed and delivered to combustor 20. Hot products of combustion (not shown in
A second portion of the incoming airflow 42 discharged from fan assembly 14 is channeled through a bypass duct 40 to bypass a portion of the airflow from fan assembly 14 around the core cowl 36 which encloses the core gas turbine engine 15. More specifically, bypass duct 40 extends between a fan casing or shroud, which forms a first or inner surface 31 of the engine nacelle 32 and the core cowl 36 which has a leading edge formed by splitter 17. Air flowing through bypass duct 40 exits the trailing edge 34 of the nacelle 32. Nacelle 32 encloses the major portion of the aircraft engine 10 and is secured to the aircraft by appropriate mounting apparatus. In the embodiment shown in
Accordingly, a first portion of the airflow from fan assembly 14 is channeled through booster 16 and then into compressor 18 as described above, and a second portion of the airflow from fan assembly 14 is channeled through bypass duct 40 to provide thrust for an aircraft, for example. Splitter 17 divides the incoming airflow into first and second portions. Gas turbine engine assembly 10 also includes a fan frame assembly 46 to provide structural support for fan assembly 14 and is also utilized to couple fan assembly 14 to core gas turbine engine 15.
Fan frame assembly 46 includes a plurality of outlet guide vanes that extend substantially radially between a radially outer mounting flange and a radially inner mounting flange and are circumferentially-spaced within bypass duct 40. Fan frame assembly 46 may also include a plurality of struts that are coupled between a radially outer mounting flange and a radially inner mounting flange. In one embodiment, fan frame assembly 46 is fabricated in arcuate segments in which flanges are coupled to outlet guide vanes and struts. In one embodiment, outlet guide vanes and struts are coupled coaxially within bypass duct 40. Optionally, outlet guide vanes may be coupled downstream from struts within bypass duct 40.
Fan frame assembly 46 is one of various frame and support assemblies of gas turbine engine assembly 10 that are used to facilitate maintaining an orientation of various components within gas turbine engine assembly 10. More specifically, such frame and support assemblies interconnect stationary components and provide rotor bearing supports. Fan frame assembly 46 is coupled downstream from fan assembly 14 within bypass duct 40 such that outlet guide vanes and struts are circumferentially-spaced around the outlet of fan assembly 14 and extend across the airflow path discharged from fan assembly 14.
In the embodiment shown in
In the exemplary embodiment depicted in
The elements of the compartment 62, controller casing 61, and ducts 63 and 64 are sized, shaped, adapted, and otherwise configured to suit the characteristics of the particular engine application desired.
As shown in
As shown in
Operating the system described herein with minimal or no airflow (mass flow) through the system during aircraft cruise conditions also reduces drag experienced by the aircraft, thereby reducing fuel consumption (often in terms of Specific Fuel Consumption (SFC)).
Other placements of the valve assembly 67 in either duct 63 or duct 64 may be chosen, depending upon the characteristics of the particular application. However, orienting the valve assembly 67 so as to take advantage of gravity as the biasing force to bias the valve to an open position eliminates the need for springs, solenoids, or other actuators being necessary so as to maintain a simple, reliable, lightweight design which operates automatically or passively in response to operating conditions without manual or system intervention.
The ducts, casing, and valve assembly are sized and configured to provide particular flow characteristics needed to ensure proper temperature operation of the engine control component.
In the exemplary embodiment, the ducts and casing may be a fiberglass material, a graphite material, a carbon material, a ceramic material, an aromatic polyamid material such as KEVLAR, a thin metallic material such as, but not limited to, titanium, aluminum, and/or a Metal Matrix Composite (MMC) material, and/or mixtures thereof. Any suitable thermosetting polymeric resin can be used in forming the ducts and casing, for example, vinyl ester resin, polyester resins, acrylic resins, epoxy resins, polyurethane resins, bismalimide resin, and mixtures thereof. Materials should be selected based on the temperature, vibration, and flexure considerations to which the components may be exposed.
Likewise, the elements of the valve assembly may be constructed from a wide variety of suitable materials, including metals and plastics, particularly those of relatively light weight.
While much of the foregoing discussion has focused on engine control components (such as FADEC units), the systems and method described herein could be applied to other compartments requiring cooling and ventilation under similar conditions and circumstances.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make and use the invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/967,904 filed Dec. 31, 2007.
Number | Date | Country | |
---|---|---|---|
Parent | 11967904 | Dec 2007 | US |
Child | 12040126 | US |