This disclosure relates generally paving apparatuses and more specifically to a system and method for controlling the height and attack angle of the endgates of a paving apparatus screed.
In conventional asphalt paving operations, a self-propelled vehicle, known as a tractor, is used having a hopper on the front end thereof. The hopper receives asphalt paving material, typically from a dump truck. The asphalt material is transferred from the hopper to the roadbed or other surface being paved in front of transversely extending screw augers. A roadbed or other surface to be paved will be referred to the “reference surface” herein. The augers transport the asphalt material laterally in front of an elongated plate, or “screed”, which compresses and compacts the asphalt downwardly to form a “mat” of paving material, ideally of uniform thickness and surface finish.
The screed is typically pulled behind the tractor by tow bars that may allow the screed to may move upwardly or downwardly with respect to the tractor. The tow bars may be pivotally connected to the tractor and may pivot about an axis, or “tow points”. This arrangement effectively allows the screed to “float” with respect to the tractor as the screed is towed behind the tractor.
A conventional screed is of a set width. However, in certain paving applications, such as driveways, parking lots, and the like, varying the asphalt mat width is required. As a result, width-adjustable or extendable screed arrangements have become common for varying the width of the asphalt mat without interrupting the paving process. Typically, extendable screeds consist of a main screed section of a fixed width and hydraulically extendable “screed extenders” that are capable of extending from each end of the main screed section. Both extendable and non-extendable screeds may be equipped with endgates that act to maintain the asphalt material between the endgates and in front of the screed and screed extenders and not allow the asphalt material to migrate laterally past the endgates.
In a normal operation of an asphalt paver, an operator makes adjustments in the attack angle of the screed to affect the depth of the asphalt mat being laid. To maintain the asphalt material between the endgates as the screed attack angle is adjusted, the endgates may be extended or retracted with motorized or manually operated jacks. Further, many paving machines include two jacks coupled to each endgate for more accurately maintaining the correct positions of the endgates with respect to the screed extenders or screed, if no screed extenders are provided. The correct position of the endgate is a sliding contact with the reference surface, or the surface being paved. Also, an endgate may need to be extended to ride on top of a curb, while the surface next to the curb is paved.
When the asphalt mat thickness changes incrementally, the endgates, which are typically coupled to springs, may automatically adjust to float at the new paving depth. Because the endgate springs provide only a limited range of vertical motion to the endgates, operators of screeds must continually adjust the endgate height to maintain the endgate springs at or near the spring setpoint by rotating the endgate jacks, which controls the compression and extension of the endgate springs.
By keeping the endgate springs at or near their setpoint, the endgates can “float” as the main screed and the screed extenders come in to contact with various surface grades. If the mat being laid becomes too thick, the endgate springs may reach full extension, resulting in the endgates being lifted off the reference surface. If the mat being laid becomes too thin, the endgate springs may reach full compression which may limit the ability of the screed to float on the thinner mat.
Accordingly, there exists a need for a reliable and easy to use system and method for adjusting the heights of endgates of paving apparatuses.
A height adjustment system for a paving screed apparatus is disclosed. The height adjustment system includes an endgate coupled to a first spring. The first spring is coupled to a first actuator. The first actuator is linked to a controller. The controller includes a memory. The first spring and endgate are moveable between a compressed position and an extended position with a first setpoint range disposed therebetween. The first setpoint range is stored in the memory of the controller. At least one of the first spring and the endgate are linked to a first sensor. The first sensor is linked to the controller. The first sensor detects an actual position of the first spring and the endgate and communicates the actual position of the first spring and endgate to the controller. The controller is programmed to cause the first actuator to extend the first spring when the first spring and endgate are compressed beyond a first setpoint range. And, the controller is programmed to cause the first actuator to compress the first spring when the first spring and endgate are extended beyond the first setpoint range.
A paving apparatus is also disclosed. The disclosed paving apparatus includes a main screed including a main screed plate disposed between a right extender and a left extender. The right extender is disposed between the main screed plate and a right endgate. The right endgate is coupled to a right spring. The right spring is coupled to a right actuator. The left extender is disposed between the main screed plate and a left endgate. The left endgate is coupled to a left spring. The left spring is coupled to a left actuator. The right and left actuators are linked to a controller. The right spring is moveable between extended and compressed positions with a right setpoint range disposed therebetween. The left spring is moveable between extended and compressed positions with a left setpoint range disposed therebetween. The right spring is linked to a right sensor for measuring displacement of the right spring with respect to the right setpoint range. The left spring is linked to a left sensor for measuring displacement of the left spring with respect to the left setpoint range. The right and left sensors are linked to the controller. The controller is programmed to cause the right actuator to extend the right spring when the right spring is compressed beyond the right setpoint range and the controller is also programmed to cause the right actuator to compress the right spring when the right spring is extended beyond the right setpoint range. The controller is further programmed to cause the left actuator to extend the left spring when the left spring is compressed beyond the left setpoint range and the controller is also programmed to cause the left actuator to compress the left spring when the left spring is extended beyond the left setpoint range.
A method for operating a paving apparatus is also disclosed. The paving apparatus includes a right endgate and a left endgate. Each endgate is coupled to at least one spring. Each of said at least one springs are coupled to a sensor and an actuator. Each actuator and each sensor are linked to a controller. The method includes determining a setpoint range for each spring, receiving signals from each sensor and determining whether each spring is above or below its setpoint range, if at least one of the springs is compressed below its setpoint range, activating its respective actuator and extending said at least one of the springs to adjust said at least one of the springs to a position within its setpoint range, and if at least one of the springs is extended above its setpoint range, activating its respective actuator and compressing said at least one of the springs to adjust said at least one of the springs to a position within its setpoint range.
In any one or more of the embodiments described above, the first setpoint range includes a first setpoint and a first deadband ranging from about +/−5% to about +/−20% of the first setpoint. In anyone or more of the embodiments described above, the controller is further programmed to delay extending the first spring when the first spring is compressed beyond the first setpoint range. Further, the controller is programmed to delay compressing the first spring when the first spring is extended to a position beyond the first setpoint range. In any one or more of the embodiments described above, the first sensor is selected from the group consisting of a linear variable differential transducer, a pressure sensor, a load cell and a sonic sensor. In any one or more of the embodiments described above, the first actuator is selected from the group consisting of an electric motor coupled to a threaded shaft that is coupled to a first spring, a hydraulic control valve coupled to a hydraulic cylinder with an extendable and compressible first shaft that is coupled to the first spring, and a hydraulic control valve coupled to an accumulator that is coupled to a hydraulic cylinder with an extendable and compressible first shaft that is coupled to the first spring. In any one or more of the embodiments described above, the endgate includes a shoe. The shoe has a front end and a rear end. The bottom of the shoe is coupled to the first spring and a second spring that is disposed between the first spring and the rear end of the shoe. The second spring is coupled to a second actuator. The second actuator is linked to the controller. The second spring is moveable between a compressed position and an extended position with a second setpoint range disposed between the compressed and extended positions. The second setpoint range is stored in the memory of the controller. The system also includes a second sensor for detecting an actual position of the second spring. The second sensor is linked to the controller. The controller is programmed to cause the second actuator to extend the second spring when the second spring and endgate are compressed beyond the second setpoint range. Further, the controller is programmed to compress the second actuator when the second spring and endgate are extended beyond the second setpoint range.
In any one or more of the embodiments described above, the second setpoint range may include a second setpoint and a second deadband ranging from about +/−5% to about +/−20% of the second setpoint.
In any one or more of the embodiments described above, the controller is further programmed to delay extending the second spring when the second spring and endgate are compressed beyond the second setpoint range. Further, the controller is programmed to delay compressing the second spring when the second spring is extended to a position beyond the second setpoint range. In any one or more of the embodiments described above, the second sensor is selected from the group consisting of a linear variable differential transducer, a pressure sensor, a load cell and a sonic sensor. In any one or more of the embodiments described above, the second actuator is selected from the group consisting of an electric motor coupled to a threaded second shaft that is coupled to a second spring, a hydraulic control valve coupled to a hydraulic cylinder that includes a second shaft that is coupled to a second spring and a hydraulic control valve coupled to an accumulator that is coupled to a hydraulic cylinder that includes a second shaft that is coupled to the second spring. In any one or more of the embodiments described above, the first actuator and first spring include a first hydraulic cylinder that accommodates a piston connected to a first shaft that retractably extends out of the first cylinder and is coupled to the first endgate.
In any one or more of the described methods, the methods may include delaying for a period of time after receiving the signals from the sensors and before extending or compressing the springs. In any one or more of the methods described above, the method may further including extending and compressing each spring independent of the extending and compressing of the other springs. Finally, in any one or more of the method claims described above, the method may further include providing a grade sensor in front of the endgates that is linked to the controller, receiving at least one signal from the grade sensor at the controller identifying an obstruction and a size of the obstruction in front of the paving apparatus and adjusting the setpoint ranges for each of the springs based on the size of the obstruction.
For purposes of this disclosure, the term “coupled” means a direct or indirect connection between two elements. For example, the term coupled can mean that two elements are directly connected together and it can also mean that two elements are connected together through one or more additional elements.
For purposes of this disclosure, the term “linked” means that two electronic components are in communication with each other via hard wiring or a wireless connection.
For purposes of this disclosure, the term “spring” means a biasing element such as a coiled spring, a hydraulic cylinder/piston/shaft combination or other device that may be compressed and extended.
Turning to
In
If the mat gets too thick, the springs 35, 36 will fully extend downward towards the surface 17, but without action by the operator, the endgate 26 may max out its vertical stroke and may actually lift above and off the reference surface 17, allowing asphalt material to spill laterally outward through the gap G between the endgate 26 and the reference surface 17. In contrast, if the mat suddenly gets too thin, without action by the operator, the springs 35, 36 will reach their maximum compression, causing the endgate 26 to be pushed upward into the screed frame, which may prevent the screeds 21-23 from paving such a thin layer. To eliminate the need for the constant manual manipulation of the jacks 28, 29, as well as the jacks disposed at the other side of the screed 114 (not shown in
Turning to
A top view of the disclosed screed system 214 is provided in
Various methods and algorithms for controlling the height of the endgates 226, 227 are illustrated in
A similar algorithm is presented in
Turning to
Further, sonic sensor 342a may be employed at a front end 326a of the endgate 326 or the employment of an extension 326b to the endgate 326. An additional placement for the sonic sensor is also shown at 342b at a distal end 337a of the tow arm 337. The purpose of the sonic sensors 342a, 342b is to maintain the shoe 375 of the endgate 326 relative vertically or with respect to the angle of attach to the grade of the surface 17. Sonic sensors 342a, 342b in front of the screed system 314 allow the system 314 to have a proactive slower adjustment, steadier operation and smoother actuation.
The extension or compression of the springs 333, 334 is provided by the hydraulic actuators 340, 341. The actuators 340, 341 may also be electric actuators, such as electric motors. In such an embodiment, the springs 333, 334 may be threaded springs coupled to electric motors that service the actuators 340, 341. The actuators 340, 341 are linked to the controller 344. Dual actuators 340, 341 are utilized to control the height of the endgate 326, the angle of attack of the endgate 326 and to maintain contact between the shoe 375 and the surface 17 or base material.
In operation, the LVDTs or pressure sensors 342, 343 or 349, 350 communicate the position of the shoe 375 to the controller 344. The controller 344 determines the actual position of the springs 333, 334 and the difference between the actual position of the springs 333, 334 and the desired setpoint range of the springs 333, 334. The controller 344 then calculates a delta value between the value or values transmitted by the sensor or sensors 342, 343 or 349, 350 and the desired setpoint ranges for purposes of generating control signals transmitted to the actuators 340, 341 to increase or decrease the extension or compression of the springs 333, 334. If the actuators 340, 341 are hydraulic actuators, they may be in the form of a hydraulic control valve that increases or decreases the pressure within the cylinders 373, 373 for increasing or decreasing the extension of the springs 333, 334. Preferably, but not necessarily, each cylinder may have additional position sensing technology, such as the sensors 349, 350 that are linked to the controller 344 for accurately maintaining the desired position or desired setpoint range of the endgate 326.
Turning to
Turning to
Turning to
The control software is stored in the memory of the controller 544 may be defined so that the pressure acting on the cylinders 571, 573 be maintained at a targeted value that equates to the reaction force of the springs 535, 536 at a desired amount of spring compression. The amount of desired spring compression may be set by the operator prior to activating the height adjustment system 538, or the desired amount of spring compression may be preset at the factory.
The control of the cylinders 571, 573 may include a deadband ranging from about 5% to about 20% of the target pressure. The use of a deadband allows the shoe 575 to float naturally using the springs 535, 536. If the pressure changes by more than the deadband value, e.g. 12%, the cylinders 571, 573 would be individually activated automatically to bring the individual pressures back to the targeted values for the desired spring compressions. The deadband values may be optimized based on testing. The cylinders 571, 573 could also be used to run the endgate shoe 575 manually when the system 538 is not activated, thereby removing the need for hand crank operation of the endgate shoe 575 using jacks.
Turning to
Finally, yet another disclosed paving screed apparatus 714 is disclosed in
The load cells 742, 743 are part of the closed loop height adjustment control system 747 that utilizes the hydraulic cylinders 771, 773 for adjusting both the front end 775a and rear end 775b of the shoe 775 or, more generally, the front end 726a and rear end 726b of the endgate 726. The location of each spring 735, 736 may be equipped with a load cell 742, 743 as shown in
Accordingly, the operator may need the ability to vary the control parameters on the jobsite, depending on jobsite conditions. The control of the cylinders 771, 773 may include a deadband, ranging from about 5% to about 20% of the target force to minimize and/or optimize the frequency of adjustments made due to changes in the conditions of the grade or surface 17. If the compressive force changes by more than the deadband value, one or both of the cylinders 771, 773 would be actuated by the actuators 740, 741 respectively to bring the compressive forces back to the targeted values for the desired height of the springs 735, 736. The deadband value may be optimized based on testing and possibly made adjustable during operations by the operator. The cylinders 771, 773 also remove the need for hand crank operation of the endgate shoe 775 and may be operated without leaving the control station.
A screed system with an automated system for adjusting the endgate heights is disclosed. The endgates may include one or more springs. Each spring may be coupled to a spring which is coupled to an actuator. The actuators may be linked to a controller. Each spring may be coupled to a sensor, which may be a LVDT, a pressure sensor, a sonic sensor or a grade sensor. The sensor or sensors may also be linked to the controller. The operator may enter the desired angle of attack or endgate height or position. From this information, the controller calculates either the appropriate endgate position, spring position, piston position, shoe position, spring position or spring compressive force and thereafter determines the appropriate setpoints for the front and rear cylinders or the single cylinder for a system like that shown in
The disclosed system may be easily retrofitted into existing paving screed systems or may be offered as original equipment on new paving screed systems.
Number | Name | Date | Kind |
---|---|---|---|
3564986 | Burgin | Feb 1971 | A |
4802787 | Bays | Feb 1989 | A |
5362176 | Sovik | Nov 1994 | A |
5401115 | Musil et al. | Mar 1995 | A |
5568992 | Grembowicz et al. | Oct 1996 | A |
5752783 | Malone | May 1998 | A |
6056474 | Nolan | May 2000 | A |
6074129 | Nowak et al. | Jun 2000 | A |
6481925 | Olson | Nov 2002 | B1 |
6890125 | Calder et al. | May 2005 | B1 |
6981820 | Nelson | Jan 2006 | B2 |
7121763 | Young et al. | Oct 2006 | B1 |
7172363 | Olson et al. | Feb 2007 | B2 |
7217062 | Pisano et al. | May 2007 | B2 |
7427174 | Dearing | Sep 2008 | B2 |
7484911 | Frelich | Feb 2009 | B2 |
7497641 | Frelich | Mar 2009 | B1 |
7604433 | Face, III et al. | Oct 2009 | B2 |
7641419 | Nelson | Jan 2010 | B1 |
7651295 | Eppes et al. | Jan 2010 | B2 |
7856302 | Rasmussen | Dec 2010 | B2 |
7909534 | Comer et al. | Mar 2011 | B1 |
7946787 | Glee et al. | May 2011 | B2 |
20070150148 | Rasmussen | Jun 2007 | A1 |
20110085859 | Yost | Apr 2011 | A1 |
20110255918 | Worsley et al. | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
1994000260049 | May 1996 | JP |
Entry |
---|
“Linear Variable Differential Transformer”, Wikipedia, the free encyclopedia, Jul. 21, 2011. |
Number | Date | Country | |
---|---|---|---|
20130253780 A1 | Sep 2013 | US |