Current packet-based communication networks may be generally divided into peer-to-peer networks and client/server networks. Traditional peer-to-peer networks support direct communication between various endpoints without the use of an intermediary device (e.g., a host or server). Each endpoint may initiate requests directly to other endpoints and respond to requests from other endpoints using credential and address information stored on each endpoint. However, because traditional peer-to-peer networks include the distribution and storage of endpoint information (e.g., addresses and credentials) throughout the network on the various insecure endpoints, such networks inherently have an increased security risk. While a client/server model addresses the security problem inherent in the peer-to-peer model by localizing the storage of credentials and address information on a server, a disadvantage of client/server networks is that the server may be unable to adequately support the number of clients that are attempting to communicate with it. As all communications (even between two clients) must pass through the server, the server can rapidly become a bottleneck in the system.
Accordingly, what is needed are a system and method that addresses these issues.
For a more complete understanding, reference is now made to the following description taken in conjunction with the accompanying Drawings in which:
a illustrates one embodiment of an access server architecture that may be used within the system of
b illustrates one embodiment of an endpoint architecture that may be used within the system of
c illustrates one embodiment of components within the endpoint architecture of
d illustrates a traditional softswitch configuration with two endpoints.
e illustrates a traditional softswitch configuration with three endpoints and a media bridge.
f illustrates one embodiment of the present disclosure with two endpoints, each of which includes a softswitch.
g illustrates one embodiment of the present disclosure with three endpoints, each of which includes a softswitch.
a is a sequence diagram illustrating the interaction of various components of
b is a sequence diagram illustrating the interaction of various components of
The present disclosure is directed to a system and method for peer-to-peer hybrid communications. It is understood that the following disclosure provides many different embodiments or examples. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Referring to
Connections between the access server 102, endpoint 104, and endpoint 106 may include wireline and/or wireless communication channels. In the following description, it is understood that the term “direct” means that there is no endpoint or access server in the communication channel(s) between the endpoints 104 and 106, or between either endpoint and the access server. Accordingly, the access server 102, endpoint 104, and endpoint 106 are directly connected even if other devices (e.g., routers, firewalls, and other network elements) are positioned between them. In addition, connections to endpoints, locations, or services may be subscription based, with an endpoint only having access if the endpoint has a current subscription. Furthermore, the following description may use the terms “user” and “endpoint” interchangeably, although it is understood that a user may be using any of a plurality of endpoints. Accordingly, if an endpoint logs in to the network, it is understood that the user is logging in via the endpoint and that the endpoint represents the user on the network using the user's identity.
The access server 102 stores profile information for a user, a session table to track what users are currently online, and a routing table that matches the address of an endpoint to each online user. The profile information includes a “buddy list” for each user that identifies other users (“buddies”) that have previously agreed to communicate with the user. Online users on the buddy list will show up when a user logs in, and buddies who log in later will directly notify the user that they are online (as described with respect to
With additional reference to
In the present example, the architecture includes web services 202 (e.g., based on functionality provided by XML, SOAP, .NET, MONO), web server 204 (using, for example, Apache or IIS), and database 206 (using, for example, mySQL or SQLServer) for storing and retrieving routing tables 208, profiles 210, and one or more session tables 212. Functionality for a STUN (Simple Traversal of UDP through NATs (Network Address Translation)) server 214 is also present in the architecture 200. As is known, STUN is a protocol for assisting devices that are behind a NAT firewall or router with their packet routing. The architecture 200 may also include a redirect server 216 for handling requests originating outside of the system 100. One or both of the STUN server 214 and redirect server 216 may be incorporated into the access server 102 or may be a standalone device. In the present embodiment, both the server 204 and the redirect server 216 are coupled to the database 206.
Referring to
The endpoint engine 252 may include multiple components and layers that support the functionality required to perform the operations of the endpoint 104. For example, the endpoint engine 252 includes a softswitch 258, a management layer 260, an encryption/decryption module 262, a feature layer 264, a protocol layer 266, a speech-to-text engine 268, a text-to-speech engine 270, a language conversion engine 272, an out-of-network connectivity module 274, a connection from other networks module 276, a p-commerce (e.g., peer commerce) engine 278 that includes a p-commerce agent and a p-commerce broker, and a cellular network interface module 280.
Each of these components/layers may be further divided into multiple modules. For example, the softswitch 258 includes a call control module, an instant messaging (IM) control module, a resource control module, a CALEA (Communications Assistance to Law Enforcement Act) agent, a media control module, a peer control module, a signaling agent, a fax control module, and a routing module.
The management layer 260 includes modules for presence (i.e., network presence), peer management (detecting peers and notifying peers of being online), firewall management (navigation and management), media management, resource management, profile management, authentication, roaming, fax management, and media playback/recording management.
The encryption/decryption module 262 provides encryption for outgoing packets and decryption for incoming packets. In the present example, the encryption/decryption module 262 provides application level encryption at the source, rather than at the network. However, it is understood that the encryption/decryption module 262 may provide encryption at the network in some embodiments.
The feature layer 264 provides support for various features such as voice, video, IM, data, voicemail, file transfer, file sharing, class 5 features, short message service (SMS), interactive voice response (IVR), faxes, and other resources. The protocol layer 266 includes protocols supported by the endpoint, including SIP, HTTP, HTTPS, STUN, RTP, SRTP, and ICMP. It is understood that these are examples only, and that fewer or more protocols may be supported.
The speech-to-text engine 268 converts speech received by the endpoint (e.g., via a microphone or network) into text, the text-to-speech engine 270 converts text received by the endpoint into speech (e.g., for output via a speaker), and the language conversion engine 272 may be configured to convert inbound or outbound information (text or speech) from one language to another language. The out-of-network connectivity module 274 may be used to handle connections between the endpoint and external devices (as described with respect to
With additional reference to
Referring to
With additional reference to
Referring to
With additional reference to
Referring again to
Referring to
After the message is sent and prior to receiving a response, the call control module instructs the media control module (softswitch 258) to establish the needed near-end media in step 314. The media control module passes the instruction to the media manager (of the management layer 260) in step 316, which handles the establishment of the near-end media.
With additional reference to
In the present example, after the call control module passes the acceptance message to the SIP protocol layer, other steps may occur to prepare the endpoint 106 for the call. For example, the call control module instructs the media control module to establish near-end media in step 374, and the media control module instructs the media manager to start listening to incoming media in step 376. The call control module also instructs the media control module to establish far-end media (step 378), and the media control module instructs the media manager to start transmitting audio in step 380.
Returning to
The following figures are sequence diagrams that illustrate various exemplary functions and operations by which the access server 102 and the endpoints 104 and 106 may communicate. It is understood that these diagrams are not exhaustive and that various steps may be excluded from the diagrams to clarify the aspect being described.
Referring to
In step 402, the endpoint 104 sends a registration and/or authentication request message to the access server 102. If the endpoint 104 is not registered with the access server 102, the access server will receive the registration request (e.g., user ID, password, and email address) and will create a profile for the endpoint (not shown). The user ID and password will then be used to authenticate the endpoint 104 during later logins. It is understood that the user ID and password may enable the user to authenticate from any endpoint, rather than only the endpoint 104.
Upon authentication, the access server 102 updates a session table residing on the server to indicate that the user ID currently associated with the endpoint 104 is online. The access server 102 also retrieves a buddy list associated with the user ID currently used by the endpoint 104 and identifies which of the buddies (if any) are online using the session table. As the endpoint 106 is currently offline, the buddy list will reflect this status. The access server 102 then sends the profile information (e.g., the buddy list) and a routing table to the endpoint 104 in step 404. The routing table contains address information for online members of the buddy list. It is understood that steps 402 and 404 represent a make and break connection that is broken after the endpoint 104 receives the profile information and routing table.
In steps 406 and 408, the endpoint 106 and access server 102 repeat steps 402 and 404 as described for the endpoint 104. However, because the endpoint 104 is online when the endpoint 106 is authenticated, the profile information sent to the endpoint 106 will reflect the online status of the endpoint 104 and the routing table will identify how to directly contact it. Accordingly, in step 410, the endpoint 106 sends a message directly to the endpoint 104 to notify the endpoint 104 that the endpoint 106 is now online. This also provides the endpoint 104 with the address information needed to communicate directly with the endpoint 106. In step 412, one or more communication sessions may be established directly between the endpoints 104 and 106.
Referring to
In step 502, the endpoint 104 sends a request to the STUN server 214 of
In step 506, the endpoint 104 sends an authentication request to the access server 102. The request contains the information about endpoint 104 received from the STUN server 214. In step 508, the access server 102 responds to the request by sending the relevant profile and routing table to the endpoint 104. The profile contains the external IP address, port, and NAT type for each of the buddies that are online.
In step 510, the endpoint 104 sends a message to notify the endpoint 106 of its online status (as the endpoint 106 is already online) and, in step 512, the endpoint 104 waits for a response. After the expiration of a timeout period within which no response is received from the endpoint 106, the endpoint 104 will change the status of the endpoint 106 from “online” (as indicated by the downloaded profile information) to “unreachable.” The status of a buddy may be indicated on a visual buddy list by the color of an icon associated with each buddy. For example, when logging in, online buddies may be denoted by a blue icon and offline buddies may be denoted by a red icon. If a response to a notify message is received for a buddy, the icon representing that buddy may be changed from blue to green to denote the buddy's online status. If no response is received, the icon remains blue to indicate that the buddy is unreachable. Although not shown, a message sent from the endpoint 106 and received by the endpoint 104 after step 514 would indicate that the endpoint 106 is now reachable and would cause the endpoint 104 to change the status of the endpoint 106 to online. Similarly, if the endpoint 104 later sends a message to the endpoint 106 and receives a response, then the endpoint 104 would change the status of the endpoint 106 to online.
It is understood that other embodiments may implement alternate NAT traversal techniques. For example, a single payload technique may be used in which TCP/IP packets are used to traverse a UDP restricted firewall or router. Another example includes the use of a double payload in which a UDP packet is inserted into a TCP/IP packet. Furthermore, it is understood that protocols other than STUN may be used. For example, protocols such as Internet Connectivity Establishment (ICE) or Traversal Using Relay NAT (TURN) may be used.
Referring to
In step 602, the endpoint 106 sends a request to the STUN server 214 of
In steps 612 and 614, the endpoint 104 sends a STUN request to the STUN server 214 and the STUN server responds as previously described. In step 616, the endpoint 104 sends an authentication request to the access server 102. The access server 102 retrieves the buddy list for the endpoint 104 and identifies the endpoint 106 as being associated with a NAT type that will block communications from the endpoint 104. Accordingly, in step 618, the access server 102 sends an assist message to the endpoint 106. The assist message instructs the endpoint 106 to send a message to the endpoint 104, which opens a pinhole in the NAT device for the endpoint 104. For security purposes, as the access server 102 has the STUN information for the endpoint 104, the pinhole opened by the endpoint 106 may be specifically limited to the endpoint associated with the STUN information. Furthermore, the access server 102 may not request such a pinhole for an endpoint that is not on the buddy list of the endpoint 106.
The access server 104 sends the profile and routing table to the endpoint 104 in step 620. In step 622, the endpoint 106 sends a message (e.g., a ping packet) to the endpoint 104. The endpoint 104 may then respond to the message and notify the endpoint 106 that it is now online. If the endpoint 106 does not receive a reply from the endpoint 104 within a predefined period of time, it may close the pinhole (which may occur simply by not sending another message and letting the pinhole time out). Accordingly, the difficulty presented by the NAT device may be overcome using the assist message, and communications between the two endpoints may then occur without intervention by the access server 102.
Referring to
In step 702, the endpoint 104 sends a registration and/or authentication request message to the access server 102 as described previously. Upon authentication, the access server 102 updates a session table residing on the server to indicate that the user ID currently associated with the endpoint 104 is online. The access server 102 also retrieves a buddy list associated with the user ID currently used by the endpoint 104 and identifies which of the buddies (if any) are online using the session table. As the endpoint 106 is not currently on the buddy list, it will not be present. The access server 102 then sends the profile information and a routing table to the endpoint 104 in step 704.
In steps 706 and 708, the endpoint 106 and access server 102 repeat steps 702 and 704 as described for the endpoint 104. The profile information sent by the access server 102 to the endpoint 106 will not include the endpoint 104 because the two endpoints are not buddies.
In step 710, the endpoint 106 sends a message to the access server 102 requesting that the endpoint 104 be added to its buddy list. The access server 102 determines that the endpoint 104 is online (e.g., using the session table) in step 712 and sends the address for the endpoint 104 to the endpoint 106 in step 714. In step 716, the endpoint 106 sends a message directly to the endpoint 104 requesting that the endpoint 106 be added to its buddy list. The endpoint 104 responds to the endpoint 106 in step 718 with either permission or a denial, and the endpoint 104 also updates the access server 102 with the response in step 720. For example, if the response grants permission, then the endpoint 104 informs the access server 102 so that the access server can modify the profile of both endpoints to reflect the new relationship. It is understood that various other actions may be taken. For example, if the endpoint 104 denies the request, then the access server 102 may not respond to another request by the endpoint 106 (with respect to the endpoint 104) until a period of time has elapsed.
It is understood that many different operations may be performed with respect to a buddy list. For example, buddies may be deleted, blocked/unblocked, buddy status may be updated, and a buddy profile may be updated. For block/unblock, as well as status and profile updates, a message is first sent to the access server 102 by the endpoint requesting the action (e.g., the endpoint 104). Following the access server 102 update, the endpoint 104 sends a message to the peer being affected by the action (e.g., the endpoint 106).
Buddy deletion may be handled as follows. If the user of the endpoint 104 wants to delete a contact on a buddy list currently associated with the online endpoint 106, the endpoint 104 will first notify the access server 102 that the buddy is being deleted. The access server 102 then updates the profile of both users so that neither buddy list shows the other user as a buddy. Note that, in this instance, a unilateral action by one user will alter the profile of the other user. The endpoint 104 then sends a message directly to the endpoint 106 to remove the buddy (the user of the endpoint 104) from the buddy list of the user of endpoint 106 in real time. Accordingly, even though the user is online at endpoint 106, the user of the endpoint 104 will be removed from the buddy list of the endpoint 106
Referring to
In step 802, the endpoint 106 sends a registration and/or authentication request message to the access server 102 as described previously. Upon authentication, the access server 102 updates a session table residing on the server to indicate that the user ID currently associated with the endpoint 106 is online. The access server 102 also retrieves a buddy list associated with the user ID currently used by the endpoint 106 and identifies which of the buddies (if any) are online using the session table. The access server 102 then sends the profile information and a routing table to the endpoint 106 in step 804.
In step 806, the endpoint 106 sends a message to the access server 102 requesting that the endpoint 104 be added to its buddy list. The access server 102 determines that the endpoint 104 is offline in step 808 and temporarily stores the request message in step 810. In steps 812 and 814, the endpoint 104 and access server 102 repeat steps 802 and 804 as described for the endpoint 106. However, when the access server 102 sends the profile information and routing table to the endpoint 104, it also sends the request by the endpoint 106 (including address information for the endpoint 106).
In step 816, the endpoint 104 responds directly to the endpoint 106 with either permission or a denial. The endpoint 104 then updates the access server 102 with the result of the response in step 818 and also instructs the access server to delete the temporarily stored request.
Referring to
In step 902, the endpoint 106 sends a registration and/or authentication request message to the access server 102 as described previously. Upon authentication, the access server 102 updates a session table residing on the server to indicate that the user ID currently associated with the endpoint 106 is online. The access server 102 also retrieves a buddy list associated with the user ID currently used by the endpoint 106 and identifies which of the buddies (if any) are online using the session table. The access server 102 then sends the profile information and a routing table to the endpoint 106 in step 904.
In step 906, the endpoint 106 sends a message to the access server 102 requesting that the endpoint 104 be added to its buddy list. The access server 102 determines that the endpoint 104 is offline in step 908 and temporarily stores the request message in step 910. In step 912, the endpoint 106 notifies the access server 102 that it is going offline.
In steps 914 and 916, the endpoint 104 and access server 102 repeat steps 902 and 904 as described for the endpoint 106. However, when the access server 102 sends the profile information and routing table to the endpoint 104, it also sends the request by the endpoint 106. Endpoint 104 sends its response to the access server 102 in step 918 and also instructs the access server to delete the temporarily stored request. After the endpoint 106's next authentication process, its profile information will include endpoint 104 as a buddy (assuming the endpoint 104 granted permission).
Referring to
As will be described below in greater detail, the stateless reflector 1002 is configured to receive one or more packets from an endpoint and reflect the packet to another endpoint after modifying information within the packet. This reflection process enables the endpoints 104 and 106 to communicate regardless of the presence and type of the NAT devices 1004 and 1006. The stateless reflector 1002 is stateless because state information (e.g., information relating to how an endpoint is to connect with other endpoints) is stored by the endpoints, as described previously. Accordingly, the stateless reflector 1002 processes header information contained within a packet without access to other information about the network or endpoints, such as the database 206 of
Although each endpoint 104, 106 is shown with a separate NAT device 1004, 1006, it is understood that multiple endpoints may be connected to the network 108 via a single NAT device. For example, a LAN may access the network 108 via a single NAT device, and all communications between the endpoints connected to the LAN and the network 108 must pass through the NAT device. However, communications between the endpoints within the LAN itself may occur directly, as previously described, because the endpoints are not communicating through the NAT device. Furthermore, if one of the endpoints 104 or 106 does not have a NAT device, then communications with that endpoint may occur directly as described above even if the endpoints are not in the same network.
Each NAT device 1004 and 1006 includes an internal IP address (on the side coupled to the endpoint 104 for the NAT device 1004 and the side coupled to the endpoint 106 for the NAT device 1006) and an external IP address (on the side coupled to the network 108 for both NAT devices). Each connection is also associated with an internal port and an external port. Therefore, each connection includes both internal IP address/port information and external IP address/port information.
Generally, a NAT device may be defined as full cone, restricted cone, port restricted cone, or symmetric. A full cone NAT is one where all requests from the same internal IP address and port are mapped to the same external IP address and port. Therefore, any external host can send a packet to the internal host by sending a packet to the mapped external address.
A restricted cone NAT is one where all requests from the same internal IP address and port are mapped to the same external IP address and port. Unlike a full cone NAT, an external host can send a packet to the internal host only if the internal host has previously sent a packet to the external host's IP address.
A port restricted cone NAT is like a restricted cone NAT, but the restriction includes port numbers. More specifically, an external host can send a packet with source IP address X and source port P to the internal host only if the internal host has previously sent a packet to the external host at IP address X and port P.
A symmetric NAT is one where all requests from the same internal IP address and port to a specific destination IP address and port are mapped to the same external IP address and port. If the same host sends a packet with the same source address and port, but to a different destination, a different mapping is used. Only the external host that receives a packet can send a UDP packet back to the internal host.
Referring to
As illustrated by the table 1100, there are twenty-five possible pairings of NAT types and establishing communication between different NAT types may require different steps. For purposes of convenience, these twenty-five pairings may be grouped based on the required steps. For example, if the originating NAT type is no NAT, full cone, restricted cone, or port restricted cone, then the originating NAT can establish communication directly with a terminating NAT type of either no NAT or full cone.
If the originating NAT type is no NAT or full cone, then the originating NAT can establish communications with a terminating NAT type of either restricted cone or port restricted cone only after using the stateless reflector 1002 to reflect a packet. This process is described below with respect to
Referring to
Although not shown in
In the present example, the NAT device 1004 has an external address/port of 1.1.1.1:1111 and the NAT device 1006 has an external address/port of 2.2.2.2:2222. The STUN server 214 has an address/port of 3.3.3.3:3333 and the stateless reflector has an address/port of 4.4.4.4:4444. It is understood that the STUN server and/or stateless reflector 1002 may have multiple addresses/ports.
Referring to
In step 1204, the stateless reflector 1002 modifies the packet header by replacing the IP/UDP header with the source and destination from the custom header. In the present example, the stateless reflector 1002 will modify the IP/UDP header to identify the packet's source as 3.3.3.3:3333 and its destination as 2.2.2.2:2222. Identifying the packet's source as the STUN server 214 enables the stateless reflector 1002 to send the packet through the pinhole in the NAT device 1006 that was created when the endpoint 106 logged on. After modifying the header, the stateless reflector 1002 sends the packet to the endpoint 106 via the NAT device 1006 in step 1206.
In step 1208, the endpoint 106 sends an acknowledgement (e.g., a 200 OK) directly to the endpoint 104. The address of the endpoint 104 is contained within the payload of the packet. The endpoint 106 is able to send the acknowledgement directly because the NAT device 1004 is either a no NAT or a full cone type. Because the endpoint 106 has opened a pinhole through the restricted or port restricted NAT device 1006 to the endpoint 104 by sending a message to the endpoint 104, the endpoint 104 is now able to communicate directly with the endpoint 106, as indicated by step 1210.
Referring again to table 1100 of
Referring to
Referring again to table 1100 of
Referring to
Referring again to table 1100 of
Referring to
Referring again to table 1100 of
Referring to
Referring again to table 1100 of
Referring to
Referring again to table 1100 of
Accordingly, the peer-to-peer communications described herein may be achieved regardless of the NAT type that may be used by an endpoint. The stateless reflector 1002 need not know the information for each client, but instead reflects various packets based on information contained within the packet that is to be reflected. Both the custom header and payload may be encrypted for security purposes. However, the stateless reflector 1002 may only be able to decrypt the custom header and the payload itself may only be decrypted by the terminating endpoint. This enables the stateless reflector 1002 to perform the reflection functionality while maintaining the security of the payload itself. As described above, not all processes for traversing a NAT device may use the stateless reflector 1002.
Referring to
A rule-based system may be fairly inflexible, as such a system generally has a clear set of rules that are defined for various NAT situations and the current relationship between the two endpoints is handled according to those rules. Network configuration changes and other modifications may require revisions to the rules, which is not convenient and may prevent the endpoints from communicating until the rules are revised. Accordingly, in some embodiments, the flexibility described below may enable the endpoints 104, 106, and 1901 to adapt to new network configurations without requiring updated rules as would be required in a strictly rule-based system. In still other embodiments, the logic within the endpoints 104, 106, and 1901 may be updated to handle new network configurations, which also provides flexibility not found in strictly rule-based systems.
Each endpoint 104, 106, and 1901 may include one or more virtual interfaces for communication with other endpoints. In the present example, there are three virtual interfaces including a private virtual interface corresponding to the private route 1902, a public virtual interface corresponding to the public route 1904, and a relay virtual interface corresponding to the relay route 1906. It is understood that the term “virtual interface” is used only for purposes of description to clarify that there are multiple possible routes. Accordingly, the term “virtual interface” need not denote separate physical network interfaces on an endpoint, but may use a single physical network interface.
As described above, each endpoint 104, 106, and 1901 is generally associated with two IP address/port pairs. The first IP address/port pair may be the local (i.e., private) IP address/port information that represents each of the endpoints 104, 106, and 1901 in the network that is “inside” the corresponding NAT device 1004 or 1006. For example, the first IP address/port pair for the endpoint 104 may be the physical address assigned to the endpoint 104 by the corresponding NAT device 1004. This first IP address/port pair corresponds to the private virtual interface and may provide access via the private route to the endpoint 104 by endpoints in the same local network (e.g., the endpoint 1901). The second IP address/port pair may be the public IP address/port information that represents each of the endpoints 104, 106, and 1901 in the network that is “outside” the corresponding NAT device 1004 or 1006. For example, the second IP address/port pair for the endpoint 104 may be the address that is returned to the endpoint 104 by the STUN server as previously described (e.g., the NAT's external IP address/port pair assigned to the endpoint 104). This second IP address/port pair for the endpoint 104 corresponds to the public virtual interface and may provide access via the public route to the endpoint 104 by endpoints both inside and outside the endpoint 104's local network. Each endpoint 104, 106, and 1901 is also aware of the address information of the reflector 1002 as described in previous embodiments, which corresponds to the relay virtual interface of the endpoints. The relay route may be used in (5,4), (4,5), and/or (5,5) conditions according to the table of
Referring to
The present example uses a SIP messaging model over UDP, and so accommodates the transaction-based SIP model within connection-less UDP messaging. Because UDP is not transaction based, certain message handling processes may be used to conform to SIP standards, such as discarding multiple messages when the SIP model expects a message belonging to a specific transaction. However, it is understood that the sequence 2000 may be implemented using many different messaging models. In the present example, neither endpoint is online at the beginning of the sequence and the endpoints 104 and 1901 are “buddies.” As described above, buddies are endpoints that have both previously agreed to communicate with one another.
In steps 2002 and 2006, the endpoints 104 and 1901, respectively, send STUN requests to obtain their corresponding public IP address/port pairs (NATIP, NATPort). In the present example, the reflector 1002 is serving as a STUN server, but it is understood that the STUN server may be separate from the reflector. The reflector 1002 responds to the STUN requests with the public IP address and port information for each of the endpoints 104 and 1901 in steps 2004 and 2008, respectively.
As the two endpoints 104 and 1901 are not logged in when the present example begins, they must both authenticate with the access server 102. In step 2010, the endpoint 104 sends an authentication request to the access server 102 with its private and public IP address/port pairs. In step 2012, the access server 102 responds to the authentication request and, as described previously, returns information that includes the private and public IP addresses of any buddy endpoints that are currently logged in. However, as the endpoint 1901 has not yet logged in, the information received by the endpoint 104 from the access server 102 will not include any address information for the endpoint 1901.
In step 2014, the endpoint 1901 sends an authentication request to the access server 102 with its private and public IP address/port pairs. In step 2016, the access server 102 responds to the authentication request and, as described previously, returns information that includes the private and public IP addresses of any buddy endpoints that are currently logged in. As the endpoint 104 is currently logged in, the information received by the endpoint 1901 from the access server 102 will include the private and public address information for the endpoint 104. Although not shown, the endpoint 1901 may then send a message to the endpoint 104 informing the endpoint 104 that the endpoint 1901 is currently online. This message may contain the private and public address information of the endpoint 1901. The message may be sent via the three different routes as described below with respect to later messaging, or may be sent via one or more selected routes. For example, the message may only be relayed (i.e., sent via the relay route) due to the high chance of success of that route.
At this point, the endpoint 104 wants to establish a communication session with the endpoint 1901, but does not know which of the three routes (i.e., pr, pu, and rl) should be used. In the previously described rule-based system, the endpoint 1901 would publish its NAT information, which enables the endpoint 104 to determine how to establish a connection. However, in the present example, such information is not published and the endpoint 104 does not know whether the endpoint 1901 is in the same private network as the endpoint 104, whether the endpoint 1901 is only accessible via a public network, whether the endpoint 1901 is behind a NAT device, or, if the endpoint 1901 is behind a NAT device, the settings of the NAT device (full cone, port restricted, etc.). Accordingly, the endpoint 104 needs to dynamically determine which of the three routes to use with the endpoint 1901.
Accordingly, in step 2018, the endpoint 104 interacts with the endpoint 1901 to determine which of the three routes should be used to send messages to the endpoint 1901. Similarly, in step 2020, the endpoint 1901 interacts with the endpoint 104 to determine which of the three routes should be used to send messages to the endpoint 104, which may not be the same route as that used by the endpoint 104 to send messages to the endpoint 1901. Steps 2018 and 2020 are illustrated in greater detail below with respect to
Referring to
The endpoint 104 (which is the originating endpoint in the present example) sends out three presence messages in steps 2102, 2104, and 2106. As the current example uses SIP messaging transported via UDP, the message is a SIP INFO message. More specifically, in step 2102, the endpoint 104 sends a SIP INFO message to the private IP address/port pair of the endpoint 1901 (i.e., via the private route) with an identifier such as a ‘pr’ tag to indicate the route. In step 2104, the endpoint 104 sends a SIP INFO message to the public (NAT) IP address/port pair of the endpoint 1901 (i.e., via the public route) with an identifier such as a ‘pu’ tag to indicate the route. In step 2106, the endpoint 104 sends a SIP INFO message to the endpoint 1901 via the reflector 1002 (i.e., via the relay route) with an identifier such as an ‘rl’ tag to indicate the route, which is reflected to the endpoint 1901 in step 2108.
The order in which the messages are sent may vary, but the order follows a hierarchy of desired routes in the present embodiment that places the private route first (i.e., most desirable), the public route next, and the relay route last (i.e., least desirable). However, it is understood that the order in which the messages are sent may vary or, if the endpoint 104 is capable of sending multiple messages simultaneously, the messages may be sent at the same time.
The present example assumes that the endpoint 1901 receives one or more of the messages sent in steps 2102, 2104, and 2106. If more than one message is received, the endpoint 1901 may respond only to the first one received. So, for example, if the message sent via the private route is received before the messages sent via the public and relay routes, the endpoint 1901 will respond only to the private route message and the later messages will be ignored. This reduces network traffic and provides for SIP compliance as the endpoint 104 (from a SIP perspective) expects to receive a single 200 OK message in response to its SIP INFO message. Furthermore, the response message may be sent back along the same route as the presence message to which the response is directed. So a response to the private route message will be sent back along the private route. Accordingly, only one of steps 2110A, 2110B, and 2110C-1 may occur in the present example. Step 2110C-2 is dependent on the occurrence of step 2110C-1 because the response message will not be reflected unless the relay route is used.
The response message returned by the endpoint 1901 is a SIP 200 OK message that may include the tag extracted from the received INFO message to identify which of the routes was successful (e.g., which route carried the message that was received first). For purposes of example, the private route was successful and the table may then be updated as shown in Table 2 below:
It is noted that since the private route is successful, the two endpoints 104 and 1901 are in the same private network.
It is understood that the response message (e.g., the SIP 200 OK) may never be received by the endpoint 104. For example, the private route may not be available from the endpoint 1901 to the endpoint 104 due to network configuration settings. Accordingly, if the SIP 200 OK is not received by the endpoint 104, the endpoint 104 may execute a retransmission process that resends the presence messages along the three routes. The resending may occur a set number of times, for a set period of time, or until some other limit is reached. For example, the first set of presence messages may be sent 0.5 seconds after the initial messages are sent, the second set of messages may be sent one second after that, and each additional set of messages may be sent at time periods that are double the previous delay until a total of seven sets of messages are sent. At this time, the endpoint 104 may stop sending messages. If a response is received during the retransmission process, the endpoint 104 will stop retransmitting. However, the response message will generally be received by the endpoint 104.
The outbound SIP INFO messages and the received SIP 200 OK message inform the endpoint 104 of which route to use when sending communications to the endpoint 1901. However, this route may not work in reverse. In other words, just because the endpoint 104 can reach the endpoint 1901 via the private route (to continue the example), it does not necessarily follow that the endpoint 1901 can reach the endpoint 104 using the same route. For example, differences in the configurations of NAT devices or other network differences may mean one endpoint can be reached via a particular route even if the reverse route is not available.
Accordingly, the endpoint 1901 sends out three presence messages in steps 2112, 2114, and 2116. As the current example uses SIP messaging transported via UDP, the message is a SIP INFO message. More specifically, in step 2112, the endpoint 1901 sends a SIP INFO message to the private IP address/port pair of the endpoint 104 (i.e., via the private route). In step 2114, the endpoint 1901 sends a SIP INFO message to the public (NAT) IP address/port pair of the endpoint 104 (i.e., via the public route). In step 2116, the endpoint 1901 sends a SIP INFO message to the endpoint 104 via the reflector 1002 (i.e., via the relay route), which is reflected to the endpoint 104 in step 2118.
The present example assumes that the endpoint 104 receives one or more of the messages sent in steps 2112, 2114, and 2116. If more than one message is received, the endpoint 104 may respond only to the first one received. Accordingly, only one of steps 2120A, 2120B, and 2120C-1 may occur in the present example. Step 2120C-2 is dependent on the occurrence of step 2120C-1 because the response message will not be reflected unless the relay route is used. The response message returned by the endpoint 104 is a SIP 200 OK message that identifies which of the routes was successful (e.g., was received first).
If the first (or only) SIP INFO message received by the endpoint 104 from the endpoint 1901 is received via the same route as that used by the endpoint 104 to send messages to the endpoint 1901 (e.g., the private route), then the communication session is established with messages going both ways on that route. At this point, the table may then be updated as shown in Table 3 below:
However, the first (or only) SIP INFO message received by the endpoint 104 from the endpoint 1901 may be received on a different route than that used by the endpoint 104 to send messages to the endpoint 1901. When this occurs, the endpoint 104 flags this as the endpoint 1901 responded to the INFO message via one route but is now communicating via another route. For example, the endpoint 1901 responded on the private route, but is now using the public route. One possibility for this discrepancy is that there is a router or other network device interfering with the return path (i.e., the path used by the endpoint 1901 to send messages to the endpoint 104). Another possibility is that a message went faster one way than another way. For example, while the endpoint 1901 may have received the private message from the endpoint 104 (i.e., the message of step 2102 of
When this occurs, the endpoint 104 may transition from the private route to the public route. This results in sending and receiving routes of pu-pu as illustrated by Table 4 below:
The endpoint 104 may also be configured to confirm that this transition is correct. To confirm the transition, the endpoint 104 executes a confirmation process and sends a confirmation message to the endpoint 1901 on the private route (i.e., the route that the endpoint 104 thinks it should be using to send messages to the endpoint 1901). In the present example, the confirmation message may include a SIP field named MAX_FORWARDS that defines a maximum number of hops that a packet can take before being dropped. The MAX_FORWARDS field has a standard default value of seventy, but the endpoint 104 may set the value to one (i.e., MAX_FORWARDS=1). If the response message from the endpoint 1901 is received by the endpoint 104 and has set the MAX_FORWARDS field to 0, then the endpoint 104 transitions back to the private route and uses that route for sending future messages. This results in different sending and receiving routes as illustrated by Table 5 below:
However, if the endpoint 104 does not receive a response message to its confirmation message, it continues using the public route. This results in sending and receiving routes of pu-pu as illustrated by Table 4 above.
Communications between the endpoints 104 and 106 as illustrated in
Referring to
In step 2202, the endpoint 104 sends outbound presence messages on the private, public, and relay routes. The presence messages may contain identifiers such as tags or other route indicators, or the receiving endpoint may simply note which virtual interface (i.e., pr, pu, or rl) received a particular presence message and correlate the message with the route upon receipt. In step 2204, the endpoint 104 receives a response message that indicates which of the presence messages was received first. For example, the response message may include the tag from the presence message to identify the route corresponding to the received presence message. In step 2206, the endpoint 104 selects the identified route as the initial outbound route for messages being sent to the other endpoint.
In step 2208, the endpoint receives one or more inbound presence messages from the other endpoint. In step 2210, the endpoint 104 sends a response to the first received inbound presence message.
In step 2212, the endpoint 104 determines whether the inbound route of the message received in step 2210 is the same route as the initial outbound route selected in step 2206. If the routes are the same, the method 2200 continues to step 2220 and uses the initial outbound route to send messages to the other endpoint. If the routes are not the same, the method 2200 moves to step 2214 and sends a confirmation message to the other endpoint using only the initial outbound route. In step 2216, the endpoint 104 determines whether a response to the confirmation message has been received. If no response to the confirmation message has been received, the method 2200 moves to step 2218 and transitions to the inbound route as the new outbound route for messages being sent to the other endpoint. If a response to the confirmation message has been received, the method 2200 continues to step 2220 and uses the initial outbound route to send messages to the other endpoint.
In step 2222, the endpoint 104 may begin sending keep-alive messages to the other endpoint to ensure that the outbound route remains open. For example, one of the networks or NAT devices involved in the established session may undergo a configuration change or a failure while the two endpoints are online, and so an existing route may become unusable. In such a case, the endpoint may detect that the keep-alive messages are failing and so may return to step 2202 to re-establish a valid route. It is noted that the other endpoint may not need to re-establish its outbound route. For example, if the inbound and outbound routes for the endpoint 104 are different, the inbound route may remain valid even though the outbound route is invalid. Accordingly, some steps of the method 2200 may be skipped in some scenarios.
It is noted that many different variations of the method 2200 may exist. For example, the endpoint 104 may transition to the inbound route as the new outbound route if it is determined in step 2212 that the routes are not the same, rather than remaining on the initial outbound route. Then, if a response is received to the confirmation message, the endpoint 104 may transition back to the initial outbound virtual interface. Furthermore, as stated previously, the response message may never be received by the endpoint 104 and so some steps of the method 2200 may not occur or may occur in a different order as there may be no response message available to determine the initial outbound route. It is also noted that some steps of the method 2200 may be performed in a different order than shown. For example, step 2208 may occur before step 2204 depending on network latency and other factors.
Referring to
Referring to
In step 2402, the endpoint 104 sends a STUN request that fails. Based on the failure of the STUN request, the endpoint 104 determines that the network (e.g., the NAT device 1004) has disabled UDP. It is understood that other indicators may be used to determine that UDP is not available. In step 2404, based on the unavailability of UDP, the endpoint 104 opens a TCP/IP connection (i.e., a tunnel) with the tunneling server 2302. This connection may use a port such as port 443 of the NAT device 1004, which is the default TCP port for HTTP Secure (HTTPS) connections using the Transport Layer Security (TLS) or Secure Socket Layer (SSL) protocols. However, it is understood that port 443 is only an example and that other available ports may be used. In step 2406, the endpoint 104 requests a shadow IP address and shadow port on the tunneling server 2302. In step 2408, the tunneling server 2302 creates the shadow IP address and port and returns this information to the endpoint 104 in step 2410.
The shadow IP address and shadow port serve as the public address and port of the endpoint 104 for other endpoints. In other words, the shadow IP address/port replace the NAT IP address/port that would serve as the public contact information for the endpoint 104 in an environment in which UDP is available to the endpoint 104 (e.g., as in
In step 2412, the endpoint 104 authenticates with the access server 102 via the tunnel using its local IP address/port and shadow address/port information. In step 2414, the access server 102 authenticates the endpoint 104 and sends the endpoint 104 the contact information of online buddies, including corresponding private, public, and shadow IP address/port information.
Although not shown in
In steps 2420 and 2422, the endpoints 104 and 106 may establish a communication session as described previously with respect to
In embodiments where the endpoint 106 knows that the endpoint 104 is using a shadow, the endpoint 106 may not send a presence message via the private route as the endpoint 106 knows that the private route is not available. In other embodiments, the endpoint 106 may send a presence message via the private route even though the route is not available.
Communications between the endpoints 104 and 2304 as illustrated in
Referring to
As is known, IM systems such as the third party IM system 2502 allow a user to send and receive instant messages (i.e., text messages) using an IM client provided by the particular third party IM system 2502. In some IM systems, the instant messages may include text formatting options (e.g., allowing bold or italicized text) and may also allow other information, such as HyperText Transfer Protocol (HTTP) links, to be sent and recognized by the IM client. However, such instant messages may be limited to text and may provide limited or no media options. In cases where media options are provided within the third party IM system 2502, the media options may be separate from the instant messages and may be proprietary to the third party IM system 2502. This means that the media options may not be accessible to outside service providers, while the instant message interfaces may be documented for use by outside service providers.
Signaling communications between the endpoints 104 and 106 using the instant message capabilities provided by the third party IM system 2502 may be routed through the third party IM system 2502 (e.g., through a server of the third party system 2502) as illustrated by path 2504, may be routed between the endpoints 104 and 106 as illustrated by path 2506, or may be routed through some combination of the paths 2504 and 2506. Media communications (and some signaling communications in some embodiments) are routed through one or more routes that are supported by a peer-to-peer hybrid network and are outside of the third party IM system 2502. For example, the media routes may include one or more of the private route 1902, the public route 1904, and/or the relay route 1906. Although not shown as an available route in
In
In the present example, the endpoints 104 and 106 each include endpoint functionality for direct communications via the peer-to-peer hybrid network as described previously. The endpoints 104 and 106 also include IM clients 2508 and 2510, respectively, that are compatible with the third party IM system 2502. For example, each endpoint 104 and 106 includes the softswitch 258 that has an IM control module as illustrated in
An outside service provider, such as a provider controlling the access server 102 and the client software providing endpoint functionality to the endpoints 104 and 106, may want to provide services to the endpoints 104 and 106 within the third party IM system 2502. However, the services may not be supported by the third party IM system 2502 or use of the services to the outside service provider may be blocked by the third party IM system 2502. Accordingly, the outside service provider may use the available communication channel provided by the instant messaging of the third party IM system 2502 to provide additional services outside of the third party IM system 2502.
Referring to
In step 2602, the endpoint 104 may contact the access server 102 (
In step 2606, the endpoint 104 logs into the third party IM system 2502. This may involve sending whatever authentication credentials are required from the endpoint 104 to the third party IM system 2502, such as a user name and a password. The third party IM system 2502 may respond with such information as a friend list that shows the status of various friends of the endpoint 104 within the third party IM system 2502. Similarly, in step 2608, the endpoint 106 logs into the third party IM system 2502 and the third party IM system 2502 may respond with such information as a friend list that shows the status of various friends of the endpoint 106 within the third party IM system 2502. In the present example, the endpoints 104 and 106 are friends within the third party IM system 2502, although they may not be friends if the particular third party IM system 2502 does not require or support friends. It is understood that the login process of steps 2606 and 2608 may vary depending on the particular third party IM system, and that the endpoints 104 and 106 include the functionality needed to login and communicate via the third party IM system 2502.
The third party IM system 2502 views the endpoints 104 and 106 as clients of the third party IM system 2502 and not as peer-to-peer hybrid endpoints as described in the present disclosure. For example, the third party IM system 2502 may not be aware of the endpoints' peer-to-peer hybrid network functionality and instead may be aware only that the endpoints 104 and 106 can communicate with the third party IM system 2502 in the manner required by the third party IM system 2502 and that the endpoints 104 and 106 present proper authentication credentials. Accordingly, the third party IM system 2502 views the login process of steps 2606 and 2608 as a normal process that is performed by clients of the third party IM system 2502.
In step 2610, the endpoint 104 sends a call request to the endpoint 106 using an instant message sent through the third party IM system 2502. In the present example, the call request is for a streaming audio/video connection with the endpoint 106. The call request may include information needed for the endpoint 106 to communicate with the endpoint 104 outside of the third party IM system 2502. Although not shown, the endpoint 104 may have previously performed a STUN request and obtained the public IP address and port information corresponding to the endpoint 104 as previously described. Accordingly, the call request may include the address information of the endpoint 104, such as the public and private (NAT) IP address and port information of the endpoint 104. The call request may also include call parameters such as the type of media for the call (e.g., audio, audio/video, and/or data), codec type, available bandwidth, and other information. It is understood that, if the initial call request message does not include the address information needed to communicate with the endpoint 104 outside of the third party IM system 2502, then a later message may be sent with such information as this information is needed for the call to continue.
In the present example, the request message is encrypted using a public key/private key system or another encryption system prior to being sent, although encryption may not be used in some embodiments. More specifically, an instant message compatible with the third party IM system 2502 may contain required information that is required by the third party IM system 2502 and optional information that represents the text or other data supplied by a user of the third party IM system 2502. For example, the required information may be header information that identifies the sender and destination clients within the third party IM system 2502, while the optional information may be plain text that is to be transported by the instant message. Some or all of the optional information may be encrypted by the endpoint 104. In the present example, the optional information would include the address information of the endpoint 104 and the parameters. The parameters and/or the address information may be encrypted prior to sending the instant message. It is understood that the endpoint 104 may encrypt only those instant messages that are associated with a call and that normal instant messages handled by the endpoint 104 may not be encrypted.
If the endpoint 106 is not an endpoint but is instead a normal client of the third party IM system 2502, the client may display the request message to a user of the client as a meaningless text message. In such cases, there may be no response to the endpoint 104. Accordingly, the call request from the endpoint 104 may time out after the expiration of a predefined amount of time (e.g., thirty seconds) and end the attempt to set up a call. The endpoint 104 may display a message that the endpoint 106 is unavailable or otherwise notify the user of the endpoint 104 that the endpoint 106 is not responding.
In step 2612, the endpoint 104 traps the received instant message. More specifically, the IM control module receives the message and, after decrypting the message if needed, determines that it is a call request rather than a regular text message. It is noted that the encryption itself may trigger the determination that the received instant message is not simply a text message. Although not shown, if the IM control module determines that the received instant message is a regular text message of the kind supported by the third party IM system 2502, it will treat the instant message as simply what it is (i.e., a text message) and display it for the user of the endpoint 106. However, as the instant message contains a call request in the present example, the IM control module will extract the information contained in the instant message and will not display the message to the user. In step 2614, the endpoint 106 sends an instant message to the endpoint 104 approving the call request. This response message may also be encrypted.
In step 2616, the endpoints 104 and 106 determine a route to be used for the media leg of the call. Although the public, private, and relay routes described previously are used in
In step 2618, the endpoint 104 sends a message using an extended RTP message sent via the media route to the endpoint 106 to start the media flow. Signaling messages between the endpoints 104 and 106 following the initial signaling messages (i.e., the messages of steps 2610 and 2614) may be sent via the third party IM system 2502 and/or the media route(s). In the present example, the signaling messages are sent via the media route(s) as RTP messages that are extended to carry desired information. There may be different extended RTP messages to perform different functions, such as “start flow,” “stop flow,” “pause,” “resume” or “restart,” “ok,” “end call” or “end flow,” and any other desired message types. In the present example, a stop flow message differs from an end flow message in that the stop flow message indicates that the flow is to be stopped temporarily (e.g., put on hold), while the end flow message indicates that the flow is to be terminated.
These extended RTP signaling messages use the media channel to bypass the third party IM system 2502. This outside route avoids flooding the third party IM system 2502 with the relatively high number of messages that may be needed for call setup and call maintenance. It is understood that the third party IM system 2502 may be used as the only signaling channel in some embodiments, although instant messages carrying text commands or other commands would replace the extended RTP messages of the present example. Furthermore, it is understood that other media protocols than RTP may be used to carry signaling information and that RTP messages are used to provide an example of such messages.
In step 2620, the endpoint 106 sends an OK message to the endpoint 104 using an extended RTP message sent via the media route. For purposes of example, the call request is for a streaming audio/video call that streams audio/video information one-way from the endpoint 106 to the endpoint 104. If the audio/video were to also stream from the endpoint 104 to the endpoint 106, as it would for a two-way audio/video call, the endpoint 106 would also send a start flow message to the endpoint 104.
In step 2622, the endpoints 104 and 106 are engaged in the call. As described above, signaling for the call in the present example uses the media route(s) with corresponding media messages (e.g., extended RTP messages), while signaling in other embodiments may use instant messages passed through the third party IM system 2502. Media for the call uses the media route(s) outside of the third party IM system 2502 (e.g., one or more of the private, public, and relay routes). In the present example, all information (both signaling and media) carried on the media route is encrypted. Encryption of any signaling information carried via the third party IM system 2502 may occur as described previously.
It is understood that many messages may be exchanged during the time period covered by step 2622. For example, although not shown, the endpoint 104 may send a pause message and then, at a later time, a resume message. The endpoint 106 may respond to these messages by pausing and then resuming the audio/video stream. Accordingly, using the extended RTP messages, the endpoints 104 and 106 may exert control over the call. Although not shown, one or more other endpoints may be included in the call (e.g., a conference call) and the signaling may also handle the addition and/or removal of the other endpoint(s).
In step 2624, when the endpoint 104 wants to stop the media flow, the endpoint 104 sends a stop flow message to the endpoint 106 via the media route. In step 2626, the endpoint 106 sends an OK message to the endpoint 104 via the media route. In step 2628, the endpoint 104 sends an end flow message to the endpoint 106 to break down the media leg and finish the call. In step 2630, the endpoint 106 sends an end flow message or another message, such as an OK message, to the endpoint 104. This ends the call. After the call is ended, the media leg(s) are terminated and the endpoints 104 and 106 may continue to send instant messages through the third party IM system 2502.
It is understood that various steps may occur in a different order than shown in
Accordingly, an audio/video call or another type of call may be established using the third party IM system 2502 as an initial signaling channel. This allows an outside service provider to provide services, such as streaming video, to users of the third party IM system 2502 without needed access to proprietary interfaces of the third party IM system 2502. Furthermore, it allows the outside service provider to provide services that may not be available on the third party IM system 2502. For example, if the third party IM system 2502 does not provide video on demand to its users, the outside service provider may do so using the instant messaging signaling and separate media leg(s) described above.
Referring to
The state machine 2650 has six states in the present example: an IDLE FLOW state 2652, an INIT FLOW state 2654, a TIMEOUT FLOW state 2656, a RECONFIRM FLOW state 2658, an ACTIVE FLOW state 2660, and a KEEPALIVE FLOW state 2662. The IDLE FLOW state 2652 and the ACTIVE FLOW state 2660 are operating states (indicated by double concentric circles) and the INIT FLOW state 2654, TIMEOUT FLOW state 2656, RECONFIRM FLOW state 2658, and KEEPALIVE FLOW state 2662 are transitional states (indicated by a single circle).
The state machine 2650 is initially in the IDLE FLOW state 2652. The state machine 2650 remains in the IDLE FLOW state 2652 while no messaging is occurring on its corresponding route. When the endpoint 104 initiates a message sequence, it sends an RTP flow initialization message on the private route 1902, public route 1904, and relay route 1906 as described previously with respect to step 2202 of
If the endpoint 104 receives an end flow message while in the INIT FLOW state 2654, the state machine 2650 transitions back to the IDLE FLOW state 2652. The state machine 2650 remains in the IDLE FLOW state 2652 until a message is sent or received on the public route 1904.
While waiting for the response while in the INIT FLOW state 2654, the state machine 2650 transitions to the TIMEOUT FLOW state 2656. The state machine 2650 then transitions from the TIMEOUT FLOW state 2656 back to the INIT FLOW state 2654 if still within a timeout period or if the period is extended. The transitions between the INIT FLOW state 2654 and the TIMEOUT FLOW state 2656 may occur until a timeout occurs or another state transition is triggered. If a timeout occurs, the state machine 2650 transitions from the TIMEOUT FLOW state 2656 to the IDLE FLOW state 2652.
If the endpoint 104 receives an acknowledgement back on a different route (e.g., on the relay route 1906 rather than the public route 1904 as determined in step 2212 of
If the endpoint 104 receives an acknowledgement back on the same route while in the INIT FLOW state 2654, the INIT FLOW state 2654 transitions to the ACTIVE FLOW state 2610. While in the ACTIVE FLOW state 2610, the endpoint 104 sends and receives call messages for a call. The state machine 2650 remains in the ACTIVE FLOW state 2660 until a message is received that interrupts the call. If the endpoint 104 receives an end flow message while in the ACTIVE FLOW state 5660, the state machine 2650 transitions to the IDLE FLOW state 2652. If the endpoint 104 receives a stop flow message while in the ACTIVE FLOW state 5660, the state machine 2650 transitions to the KEEPALIVE FLOW state 2662.
If the endpoint 104 receives a stop flow message while in the INIT FLOW state 2654, the state machine 2650 transitions to the KEEPALIVE FLOW state 2662. While in the KEEPALIVE FLOW state 2662, the endpoint 104 will send keep alive messages to the endpoint 106 to keep the connection open (e.g., to maintain a pinhole through a firewall) as described with respect to step 2222 of
Referring to
In step 2702, the endpoint 104 obtains address information for the reflector 1002. Although shown as the first step of the method 2700, step 2702 may occur at any time prior to the need for the address information (e.g., prior to step 2708). In step 2704, the endpoint 104 logs into the third party IM system 2502.
In step 2706, the endpoint 104 receives input representing a call request from a user of the endpoint 104. For example, the user may dial a number associated with the endpoint 106, select the endpoint 106 from a menu or list, or otherwise indicate that the user would like to place the call to the endpoint 106. In the present embodiment, the endpoint 104 recognizes the call request as a request for a call to a client that is currently logged into the third party IM system 2502. In other words, the call request does not identify the endpoint portion of the endpoint 106 as the destination, but instead identifies the IM client 2510 as the destination. In the present embodiment, the endpoint 104 has no knowledge of the endpoint 106 and is not aware that the endpoint 106 has endpoint functionality. Instead, the endpoint 104 views the endpoint 106 only as the IM client 2510 and knows that the IM client 2510 is logged into the third party IM system 2502. Accordingly, the call request is viewed by the endpoint 104 as a request to a client in the third party IM system 2502. It is understood that, in other embodiments, the endpoint 104 may be aware that the IM client 2510 is associated with the endpoint 106 and is therefore tied to endpoint functionality.
In step 2708, the endpoint 104 creates an instant message based on the call request. The instant message may contain header information and a key. In the present example, the header information includes public IP address and port information needed to communicate with the endpoint 104. This public information may be obtained by a STUN request as described in previous embodiments. The header information may also include private (NAT) IP address and port information if applicable. The key represents parameters needed for the call, such as media type, codecs, and similar information.
In step 2710, the endpoint 104 encrypts the created instant message. As described previously, this involves encrypting at least a portion of the optional information in the instant message. In step 2712, the endpoint 104 sends the encrypted instant message to the endpoint 106 via the third party IM system 2502. In step 2714, the endpoint 104 determines whether an answer is received from the endpoint 106 prior to the expiration of a timeout period. The timeout period prevents the endpoint 104 from waiting indefinitely. For example, if the endpoint 106 does not respond or if the endpoint 104 is communicating with a client of the third party IM system 2502 rather than an endpoint, the timeout period ensures that the endpoint 104 ends the call attempt. If there is no answer, the method 2700 moves to step 2720 and ends the call. If there is an answer, the method 2700 moves to step 2716. In step 2716, the endpoints 104 and 106 establish one or more routes for the media leg(s) of the call. For example, the routes may be selected from the public, private, and relay paths described in previous embodiments. The media routes are outside of the third party IM system 2502 and are therefore not limited to text messages.
In step 2718, the call is conducted with signaling and audio/video media going through the selected routes outside of the control of the third party IM system 2502. As described with respect to
Referring to
In step 2802, the endpoint 106 obtains address information for the reflector 1002. Although shown as the first step of the method 2800, step 2802 may occur at any time prior to the need for the address information (e.g., prior to step 2816). In step 2804, the endpoint 106 logs into the third party IM system 2502. In step 2806, the endpoint 106 receives an encrypted instant message and decrypts the instant message in step 2808. In step 2810, the endpoint 106 identifies the instant message as a request for a call and not a regular instant message. It is understood that step 2810 may be combined with step 2806 in that the receipt of an encrypted instant message may be recognized as a call request rather than a regular instant message.
In step 2612, the endpoint 106 extracts information from the decrypted instant message, such as the address information of the endpoint 104 and any call parameters inserted into the message by the endpoint 104. In step 2614, the endpoint 106 determines whether the call request is to be accepted. For example, the endpoint 106 may display a message to prompt user feedback (e.g., answer or reject the call request) or the endpoint 106 may accept or reject the message based on criteria set forth in a configuration file (e.g., automatically accept the call request if from the endpoint 106). If the call request is not accepted, the method 2800 ends. If the call request is accepted, the method 2800 continues to step 2816.
In step 2816, the endpoint 106 sends a response message to the endpoint 104 via the third party IM system 2502. The response message may be encrypted prior to sending. As described previously, this involves encrypting at least a portion of the optional information in the instant message. In step 2818, the endpoints 104 and 106 establish one or more routes for the media leg(s) of the call. For example, the routes may be selected from the public, private, and relay paths described in previous embodiments. The media routes are outside of the third party IM system 2502 and are therefore not limited to text messages.
In step 2820, the call is conducted with signaling and audio/video media going through the selected routes outside of the control of the third party IM system 2502. As described with respect to
Referring to
The computer system 2900 may use any operating system (or multiple operating systems), including various versions of operating systems provided by Microsoft (such as WINDOWS), Apple (such as Mac OS X), UNIX, and LINUX, and may include operating systems specifically developed for handheld devices, personal computers, and servers depending on the use of the computer system 2900. The operating system, as well as other instructions (e.g., for the endpoint engine 252 of
In another embodiment, a method for using a third party instant message system as a signaling channel comprises receiving, by a first endpoint capable of operating within the third party instant message system and also capable of operating within a peer-to-peer hybrid network that is separate from the third party instant message system, user input representing a call request for a call to be placed to a second endpoint that is also capable of operating within the third party instant message system and the peer-to-peer hybrid network; creating, by the first endpoint, a call request message containing address information of the first endpoint, wherein the call request message is an instant message able to sent via the third party instant message system; sending, by the first endpoint, the call request message to the second endpoint via the third party instant messaging system; receiving, by the first endpoint, a response message from the second endpoint via the third party instant message system, wherein the response message contains address information of the second endpoint; establishing, by the first endpoint, at least one media route with the second endpoint to carry media for the call, wherein the at least one media route is established using the peer-to-peer hybrid network and not the third party instant message system; and conducting the call by the first endpoint with the second endpoint, wherein the conducting includes sending and receiving, by the first endpoint, media information for the call via the at least one media route, and sending and receiving, by the first endpoint, signaling information for the call. Sending and receiving the signaling information while conducting the call may include sending and receiving the signaling information using media packets transferred via the at least one media route. The media packets may be real-time transport protocol (RTP) packets created by the first endpoint. Sending and receiving the signaling information while conducting the call may include sending and receiving the signaling information using instant messages transferred via the third party instant message system. The method may further comprise encrypting, by the first endpoint, at least a portion of the call request message prior to sending the call request message to the second endpoint. The method may further comprise obtaining, by the first endpoint, address information for a reflector in the peer-to-peer hybrid network and using, by the first endpoint, the reflector to establish the at least one media route. The method may further comprise logging in to the peer-to-peer network before obtaining the address information for the reflector. The call request message may further include at least one parameter for the call. The method may further comprise determining, by the first endpoint, whether a timeout has occurred after sending the call request message to the second endpoint, wherein the timeout prevents the first endpoint from waiting indefinitely for the response message from the second endpoint if the second endpoint is not an endpoint within the peer-to-peer hybrid network.
In yet another embodiment, a method for using a third party instant message system as a signaling channel comprises receiving, by a first endpoint capable of operating within the third party instant message system and also capable of operating within a peer-to-peer hybrid network that is separate from the third party instant message system, a call request message for a call from a second endpoint that is also capable of operating within the third party instant message system and the peer-to-peer hybrid network, wherein the call request message is an instant message received via the third party instant message system; identifying, by the first endpoint, that the call request message contains a request for the call prior to sending the call request message to a user display associated with the third party instant message system, wherein the identifying prevents the call request message from being displayed to the user; extracting address information of the second endpoint from the call request message; sending, by the first endpoint, a response message to the second endpoint, wherein the response message contains address information of the first endpoint; establishing, by the first endpoint, at least one media route with the second endpoint to carry media for the call, wherein the at least one media route is established using the peer-to-peer hybrid network and not the third party instant message system; and conducting the call by the first endpoint with the second endpoint, wherein the conducting includes sending and receiving, by the first endpoint, media information for the call via the at least one media route, and sending and receiving, by the first endpoint, signaling information for the call. The sending and receiving the signaling information while conducting the call may include sending and receiving the signaling information using media packets transferred via the at least one media route. The media packets may be real-time transport protocol (RTP) packets created by the first endpoint. The sending and receiving the signaling information while conducting the call may include sending and receiving the signaling information using instant messages transferred via the third party instant message system. The method may further comprise decrypting, by the first endpoint, at least a portion of the call request message prior to extracting the address information. The method may further comprise obtaining, by the first endpoint, address information for a reflector in the peer-to-peer hybrid network and using, by the first endpoint, the reflector to establish the at least one media route. The method may further comprise extracting, by the first endpoint, at least one parameter for the call from the call request message. The method may further comprise prompting, by the first endpoint, a user of the first endpoint to accept or reject the request for the call, wherein the prompting occurs via at least one of a display visible to the user, a speaker audible to the user, or a vibrating mechanism that can be felt by the user.
In still another embodiment, a system comprises a network interface; a processor coupled to the network interface; and a memory coupled to the processor and containing a plurality of instructions for execution by the processor, the instructions including instructions for a first endpoint configured to operate within a peer-to-peer hybrid network, the first endpoint including a client of a third party instant message system that enables the first endpoint to communicate via the third party instant message system, the instructions for the first endpoint including instructions for: receiving, by the first endpoint, user input representing a call request for a call to be placed to a second endpoint that is also capable of operating within the third party instant message system and the peer-to-peer hybrid network; creating, by the first endpoint, a call request message containing address information of the first endpoint, wherein the call request message is an instant message able to sent via the third party instant message system; sending, by the first endpoint, the call request message to the second endpoint via the third party instant messaging system; receiving, by the first endpoint, a response message from the second endpoint via the third party instant message system, wherein the response message contains address information of the second endpoint; establishing, by the first endpoint, at least one media route with the second endpoint to carry media for the call, wherein the at least one media route is established using the peer-to-peer hybrid network and not the third party instant message system; and conducting the call by the first endpoint with the second endpoint, wherein the conducting includes sending and receiving, by the first endpoint, media information for the call via the at least one media route, and sending and receiving, by the first endpoint, signaling information for the call. The instructions for sending and receiving the signaling information while conducting the call may include instructions for sending and receiving the signaling information using media packets transferred via the at least one media route. The media packets may be real-time transport protocol (RTP) packets. The instructions for sending and receiving the signaling information while conducting the call may include instructions for sending and receiving the signaling information using instant messages transferred via the third party instant message system. The system may further comprise instructions for encrypting at least a portion of the call request message. The system may further comprise instructions for obtaining address information for a reflector in the peer-to-peer hybrid network, wherein the reflector is used to establish the at least one media route. The system may further comprise instructions for logging in to the peer-to-peer network before obtaining the address information for the reflector.
While the preceding description shows and describes one or more embodiments, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the present disclosure. For example, various steps illustrated within a particular sequence diagram or flow chart may be combined or further divided. In addition, steps described in one diagram or flow chart may be incorporated into another diagram or flow chart. Some steps may be performed in an order different from that shown and/or may overlap. Furthermore, the described functionality may be provided by hardware and/or software, and may be distributed or combined into a single platform. Additionally, functionality described in a particular example may be achieved in a manner different than that illustrated, but is still encompassed within the present disclosure. Therefore, the claims should be interpreted in a broad manner, consistent with the present disclosure.
This application is a Continuation of U.S. patent application Ser. No. 12/770,482, filed on Apr. 29, 2010, now U.S. Pat. No. 8,352,563, issued Jan. 8, 2013, and entitled SYSTEM AND METHOD FOR PEER-TO-PEER MEDIA ROUTING USING A THIRD PARTY INSTANT MESSAGING SYSTEM FOR SIGNALING, which is incorporated herein by reference in its entirety. Application Ser. No. 12/770,482 incorporates by reference in their entirety U.S. Pat. No. 7,570,636, filed on Aug. 30, 2005, and entitled SYSTEM AND METHOD FOR TRAVERSING A NAT DEVICE FOR PEER-TO-PEER HYBRID COMMUNICATIONS, and U.S. patent application Ser. No. 12/705,925, filed on Feb. 15, 2010, and entitled SYSTEM AND METHOD FOR STRATEGIC ROUTING IN A PEER-TO-PEER ENVIRONMENT.
Number | Name | Date | Kind |
---|---|---|---|
5442637 | Nguyen | Aug 1995 | A |
5761309 | Ohashi et al. | Jun 1998 | A |
5790637 | Johnson et al. | Aug 1998 | A |
5818447 | Wolf et al. | Oct 1998 | A |
5889762 | Pajuvirta et al. | Mar 1999 | A |
6031818 | Lo et al. | Feb 2000 | A |
6128283 | Sabaa et al. | Oct 2000 | A |
6141687 | Blair | Oct 2000 | A |
6161082 | Goldberg et al. | Dec 2000 | A |
6202084 | Kumar et al. | Mar 2001 | B1 |
6219638 | Padmanabhan et al. | Apr 2001 | B1 |
6298129 | Culver et al. | Oct 2001 | B1 |
6311150 | Ramaswamy et al. | Oct 2001 | B1 |
6343067 | Drottar et al. | Jan 2002 | B1 |
6360196 | Poznanski et al. | Mar 2002 | B1 |
6389016 | Sabaa et al. | May 2002 | B1 |
6438376 | Elliott et al. | Aug 2002 | B1 |
6473425 | Bellaton et al. | Oct 2002 | B1 |
6574668 | Gubbi et al. | Jun 2003 | B1 |
6741691 | Ritter et al. | May 2004 | B1 |
6754181 | Elliott et al. | Jun 2004 | B1 |
6766373 | Beadle | Jul 2004 | B1 |
6826613 | Wang et al. | Nov 2004 | B1 |
6836765 | Sussman | Dec 2004 | B1 |
6842460 | Olkkonen et al. | Jan 2005 | B1 |
6850769 | Grob et al. | Feb 2005 | B2 |
6898413 | Yip et al. | May 2005 | B2 |
6912278 | Hamilton | Jun 2005 | B1 |
6940826 | Simard et al. | Sep 2005 | B1 |
6963555 | Brenner et al. | Nov 2005 | B1 |
6975718 | Pearce et al. | Dec 2005 | B1 |
6987756 | Ravindranath et al. | Jan 2006 | B1 |
6999575 | Sheinbein | Feb 2006 | B1 |
6999932 | Zhou | Feb 2006 | B1 |
7006508 | Bondy et al. | Feb 2006 | B2 |
7010109 | Gritzer et al. | Mar 2006 | B2 |
7013155 | Ruf et al. | Mar 2006 | B1 |
7079529 | Khuc | Jul 2006 | B1 |
7080158 | Squire | Jul 2006 | B1 |
7092385 | Gallant et al. | Aug 2006 | B2 |
7117526 | Short | Oct 2006 | B1 |
7123710 | Ravishankar | Oct 2006 | B2 |
7184415 | Chaney et al. | Feb 2007 | B2 |
7272377 | Cox et al. | Sep 2007 | B2 |
7302496 | Metzger | Nov 2007 | B1 |
7304985 | Sojka et al. | Dec 2007 | B2 |
7345999 | Su et al. | Mar 2008 | B2 |
7346044 | Chou et al. | Mar 2008 | B1 |
7353252 | Yang et al. | Apr 2008 | B1 |
7353255 | Acharya et al. | Apr 2008 | B2 |
7412374 | Seiler et al. | Aug 2008 | B1 |
7457279 | Scott et al. | Nov 2008 | B1 |
7477282 | Firestone et al. | Jan 2009 | B2 |
7487248 | Moran et al. | Feb 2009 | B2 |
7512652 | Appelman et al. | Mar 2009 | B1 |
7542472 | Gerendai et al. | Jun 2009 | B1 |
7570743 | Barclay et al. | Aug 2009 | B2 |
7574523 | Traversat et al. | Aug 2009 | B2 |
7590758 | Takeda et al. | Sep 2009 | B2 |
7613171 | Zehavi et al. | Nov 2009 | B2 |
7623476 | Ravikumar et al. | Nov 2009 | B2 |
7623516 | Chaturvedi et al. | Nov 2009 | B2 |
7656870 | Ravikumar et al. | Feb 2010 | B2 |
7664495 | Bonner et al. | Feb 2010 | B1 |
7769881 | Matsubara et al. | Aug 2010 | B2 |
7774495 | Pabla et al. | Aug 2010 | B2 |
7778187 | Chaturvedi et al. | Aug 2010 | B2 |
7782866 | Walsh et al. | Aug 2010 | B1 |
7917584 | Arthursson | Mar 2011 | B2 |
8009586 | Chaturvedi et al. | Aug 2011 | B2 |
8065418 | Abuan et al. | Nov 2011 | B1 |
20020031212 | O'Neil et al. | Mar 2002 | A1 |
20020037000 | Park et al. | Mar 2002 | A1 |
20020038282 | Montgomery | Mar 2002 | A1 |
20020042769 | Gujral et al. | Apr 2002 | A1 |
20020062285 | Amann et al. | May 2002 | A1 |
20020064167 | Khan et al. | May 2002 | A1 |
20020080719 | Parkvall et al. | Jun 2002 | A1 |
20020087887 | Busam et al. | Jul 2002 | A1 |
20020097150 | Sandelman et al. | Jul 2002 | A1 |
20020120757 | Sutherland et al. | Aug 2002 | A1 |
20020143548 | Korall et al. | Oct 2002 | A1 |
20020150110 | Inbar et al. | Oct 2002 | A1 |
20020166053 | Wilson | Nov 2002 | A1 |
20020173303 | Shibutani | Nov 2002 | A1 |
20020176404 | Girard | Nov 2002 | A1 |
20020178087 | Henderson et al. | Nov 2002 | A1 |
20020184310 | Traversat et al. | Dec 2002 | A1 |
20030009565 | Arao | Jan 2003 | A1 |
20030031210 | Harris | Feb 2003 | A1 |
20030035441 | Cheng et al. | Feb 2003 | A1 |
20030043764 | Kim et al. | Mar 2003 | A1 |
20030044020 | Aboba et al. | Mar 2003 | A1 |
20030046056 | Godoy et al. | Mar 2003 | A1 |
20030046585 | Minnick | Mar 2003 | A1 |
20030061025 | Abir | Mar 2003 | A1 |
20030061481 | Levine et al. | Mar 2003 | A1 |
20030072485 | Guerin et al. | Apr 2003 | A1 |
20030076815 | Miller et al. | Apr 2003 | A1 |
20030078858 | Angelopoulos et al. | Apr 2003 | A1 |
20030088676 | Smith et al. | May 2003 | A1 |
20030105812 | Flowers, Jr. et al. | Jun 2003 | A1 |
20030110047 | Santosuosso | Jun 2003 | A1 |
20030115251 | Fredrickson et al. | Jun 2003 | A1 |
20030126213 | Betzler | Jul 2003 | A1 |
20030135569 | Khakoo et al. | Jul 2003 | A1 |
20030137939 | Dunning et al. | Jul 2003 | A1 |
20030158722 | Lord | Aug 2003 | A1 |
20030163525 | Hendriks et al. | Aug 2003 | A1 |
20030163697 | Pabla et al. | Aug 2003 | A1 |
20030172145 | Nguyen | Sep 2003 | A1 |
20030174707 | Grob et al. | Sep 2003 | A1 |
20030177186 | Goodman et al. | Sep 2003 | A1 |
20030177422 | Tararoukhine et al. | Sep 2003 | A1 |
20030187650 | Moore et al. | Oct 2003 | A1 |
20030202480 | Swami | Oct 2003 | A1 |
20030214955 | Kim | Nov 2003 | A1 |
20030217171 | Von Stuermer et al. | Nov 2003 | A1 |
20030217318 | Choi | Nov 2003 | A1 |
20030220121 | Konishi et al. | Nov 2003 | A1 |
20040005877 | Vaananen | Jan 2004 | A1 |
20040024879 | Dingman et al. | Feb 2004 | A1 |
20040034776 | Fernando et al. | Feb 2004 | A1 |
20040034793 | Yuan | Feb 2004 | A1 |
20040039781 | LaVallee et al. | Feb 2004 | A1 |
20040044517 | Palmquist | Mar 2004 | A1 |
20040052234 | Ameigeiras et al. | Mar 2004 | A1 |
20040068567 | Moran et al. | Apr 2004 | A1 |
20040100973 | Prasad | May 2004 | A1 |
20040103212 | Takeuchi et al. | May 2004 | A1 |
20040128554 | Maher, III et al. | Jul 2004 | A1 |
20040133689 | Vasisht | Jul 2004 | A1 |
20040139225 | Takahashi | Jul 2004 | A1 |
20040139228 | Takeda et al. | Jul 2004 | A1 |
20040139230 | Kim | Jul 2004 | A1 |
20040143678 | Chari et al. | Jul 2004 | A1 |
20040148434 | Matsubara et al. | Jul 2004 | A1 |
20040153858 | Hwang | Aug 2004 | A1 |
20040158471 | Davis et al. | Aug 2004 | A1 |
20040162871 | Pabla et al. | Aug 2004 | A1 |
20040203834 | Mahany | Oct 2004 | A1 |
20040213184 | Hu et al. | Oct 2004 | A1 |
20040228279 | Midtun et al. | Nov 2004 | A1 |
20040240399 | Corrao et al. | Dec 2004 | A1 |
20040249953 | Fernandez et al. | Dec 2004 | A1 |
20040260952 | Newman et al. | Dec 2004 | A1 |
20040267527 | Creamer et al. | Dec 2004 | A1 |
20040267938 | Shoroff et al. | Dec 2004 | A1 |
20040268257 | Mudusuru | Dec 2004 | A1 |
20050004982 | Vernon et al. | Jan 2005 | A1 |
20050008024 | Newpol et al. | Jan 2005 | A1 |
20050033843 | Shahi et al. | Feb 2005 | A1 |
20050033985 | Chen et al. | Feb 2005 | A1 |
20050050227 | Michelman | Mar 2005 | A1 |
20050071481 | Danieli | Mar 2005 | A1 |
20050086309 | Galli et al. | Apr 2005 | A1 |
20050091407 | Vaziri et al. | Apr 2005 | A1 |
20050105524 | Stevens et al. | May 2005 | A1 |
20050119005 | Segal et al. | Jun 2005 | A1 |
20050120073 | Cho | Jun 2005 | A1 |
20050130650 | Creamer et al. | Jun 2005 | A1 |
20050132009 | Solie | Jun 2005 | A1 |
20050136911 | Csapo et al. | Jun 2005 | A1 |
20050138119 | Saridakis | Jun 2005 | A1 |
20050138128 | Baniel et al. | Jun 2005 | A1 |
20050143105 | Okamoto | Jun 2005 | A1 |
20050144288 | Liao | Jun 2005 | A1 |
20050187781 | Christensen | Aug 2005 | A1 |
20050187957 | Kramer et al. | Aug 2005 | A1 |
20050195802 | Klein et al. | Sep 2005 | A1 |
20050198499 | Salapaka et al. | Sep 2005 | A1 |
20050201357 | Poyhonen | Sep 2005 | A1 |
20050208947 | Bahl | Sep 2005 | A1 |
20050220017 | Brand et al. | Oct 2005 | A1 |
20050246193 | Roever et al. | Nov 2005 | A1 |
20050249196 | Ansari et al. | Nov 2005 | A1 |
20050254440 | Sorrell | Nov 2005 | A1 |
20050270992 | Sanzgiri et al. | Dec 2005 | A1 |
20050286519 | Ravikumar et al. | Dec 2005 | A1 |
20060002355 | Baek et al. | Jan 2006 | A1 |
20060062180 | Sayeedi et al. | Mar 2006 | A1 |
20060072506 | Sayeedi et al. | Apr 2006 | A1 |
20060120375 | Ravikumar et al. | Jun 2006 | A1 |
20060121902 | Jagadeesan et al. | Jun 2006 | A1 |
20060121986 | Pelkey et al. | Jun 2006 | A1 |
20060148516 | Reddy et al. | Jul 2006 | A1 |
20060168643 | Howard et al. | Jul 2006 | A1 |
20060171534 | Baughman | Aug 2006 | A1 |
20060182100 | Li et al. | Aug 2006 | A1 |
20060183476 | Morita et al. | Aug 2006 | A1 |
20060187926 | Imai et al. | Aug 2006 | A1 |
20060195402 | Malina et al. | Aug 2006 | A1 |
20060203750 | Ravikumar et al. | Sep 2006 | A1 |
20060205436 | Liu et al. | Sep 2006 | A1 |
20060218624 | Ravikumar et al. | Sep 2006 | A1 |
20060230166 | Philyaw | Oct 2006 | A1 |
20060246903 | Kong et al. | Nov 2006 | A1 |
20060258289 | Dua | Nov 2006 | A1 |
20070016921 | Levi et al. | Jan 2007 | A1 |
20070019545 | Alt et al. | Jan 2007 | A1 |
20070025270 | Sylvain | Feb 2007 | A1 |
20070078785 | Bush et al. | Apr 2007 | A1 |
20070082671 | Feng et al. | Apr 2007 | A1 |
20070110043 | Girard | May 2007 | A1 |
20070111794 | Hogan et al. | May 2007 | A1 |
20070116224 | Burke et al. | May 2007 | A1 |
20070130253 | Newson et al. | Jun 2007 | A1 |
20070136459 | Roche et al. | Jun 2007 | A1 |
20070165629 | Chaturvedi et al. | Jul 2007 | A1 |
20070190987 | Vaananen | Aug 2007 | A1 |
20070206563 | Silver et al. | Sep 2007 | A1 |
20070253435 | Keller et al. | Nov 2007 | A1 |
20070260359 | Benson et al. | Nov 2007 | A1 |
20070274276 | Laroia et al. | Nov 2007 | A1 |
20070297430 | Nykanen et al. | Dec 2007 | A1 |
20080005328 | Shively et al. | Jan 2008 | A1 |
20080019285 | John et al. | Jan 2008 | A1 |
20080032695 | Zhu et al. | Feb 2008 | A1 |
20080069105 | Costa et al. | Mar 2008 | A1 |
20080080392 | Walsh et al. | Apr 2008 | A1 |
20080091813 | Bodlaender | Apr 2008 | A1 |
20080123685 | Varma et al. | May 2008 | A1 |
20080130639 | Costa-Requena et al. | Jun 2008 | A1 |
20080168440 | Regnier et al. | Jul 2008 | A1 |
20080192756 | Damola et al. | Aug 2008 | A1 |
20080235362 | Kjesbu et al. | Sep 2008 | A1 |
20080235511 | O'Brien et al. | Sep 2008 | A1 |
20080250408 | Tsui et al. | Oct 2008 | A1 |
20080273541 | Pharn | Nov 2008 | A1 |
20080320096 | Szeto | Dec 2008 | A1 |
20090003322 | Isumi | Jan 2009 | A1 |
20090006076 | Jindal | Jan 2009 | A1 |
20090052399 | Silver et al. | Feb 2009 | A1 |
20090055473 | Synnergren | Feb 2009 | A1 |
20090088150 | Chaturvedi et al. | Apr 2009 | A1 |
20090136016 | Gornoi et al. | May 2009 | A1 |
20090156217 | Bajpai | Jun 2009 | A1 |
20090182815 | Czechowski et al. | Jul 2009 | A1 |
20090192976 | Spivack et al. | Jul 2009 | A1 |
20090234967 | Yu et al. | Sep 2009 | A1 |
20090240821 | Juncker et al. | Sep 2009 | A1 |
20090257433 | Mutikainen et al. | Oct 2009 | A1 |
20090300673 | Bachet et al. | Dec 2009 | A1 |
20090327516 | Amishima et al. | Dec 2009 | A1 |
20100011108 | Clark et al. | Jan 2010 | A1 |
20100011111 | Vizaei | Jan 2010 | A1 |
20100049980 | Barriga et al. | Feb 2010 | A1 |
20100077023 | Eriksson | Mar 2010 | A1 |
20100107205 | Foti | Apr 2010 | A1 |
20100223047 | Christ | Sep 2010 | A1 |
20100279670 | Ghai et al. | Nov 2010 | A1 |
20100299150 | Fein et al. | Nov 2010 | A1 |
20100299313 | Orsini et al. | Nov 2010 | A1 |
20100312832 | Allen et al. | Dec 2010 | A1 |
20100312897 | Allen et al. | Dec 2010 | A1 |
20110040836 | Allen et al. | Feb 2011 | A1 |
20110099612 | Lee et al. | Apr 2011 | A1 |
20110122864 | Cherifi et al. | May 2011 | A1 |
20110145687 | Grigsby et al. | Jun 2011 | A1 |
20110314134 | Foti | Dec 2011 | A1 |
20120263144 | Nix | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
1404082 | Mar 2004 | EP |
160339 | Dec 2005 | EP |
1638275 | Mar 2006 | EP |
1848163 | Oct 2007 | EP |
1988697 | Nov 2008 | EP |
1988698 | Nov 2008 | EP |
2005-94600 | Apr 2005 | JP |
2007-043598 | Feb 2007 | JP |
10-2005-0030548 | Mar 2005 | KR |
WO 2004063843 | Jul 2004 | WO |
WO 2005009019 | Jan 2005 | WO |
WO 03079635 | Sep 2005 | WO |
2006064047 | Jun 2006 | WO |
WO 2006075677 | Jul 2006 | WO |
Entry |
---|
PCT: International Preliminary Report on Patentability of PCT/US2008/075141; Mar. 9, 2010; 5 pgs. |
PCT: International Preliminary Report on Patentability of PCT/US2007/068820; Dec. 31, 2008; 8 pgs. |
PCT: International Preliminary Report on Patentability of PCT/US2007/068823; Nov. 27, 2008; 8 pgs. |
PCT: International Preliminary Report on Patentability of PCT/US2006/047841; Nov. 6, 2008; 7 pgs. |
PCT: International Preliminary Report on Patentability of PCT/US2007/002424; Aug. 7, 2008; 6 pgs. |
PCT: International Preliminary Report on Patentability of PCT/US2006/040312; May 2, 2008; 5 pgs. |
PCT: International Preliminary Report on Patentability of PCT/IB2005/000821; Oct. 19, 2006; 10 pgs. |
PCT: International Search Report and Written Opinion for PCT/US2011/024870; Oct. 26, 2011; 12 pages. |
J. Rosenberg et al. “Session Traversal Utilities for NAT (STUN)”, draft-ietf-behave-rfc3489bis-06, Mar. 5, 2007. |
PCT: International Search Report and Written Opinion for PCT/US2011/028685; Nov. 9, 2011; 10 pages. |
PCT: International Search Report and Written Opinion for PCT/US2011/029954; Nov. 24, 2011; 8 pages. |
PCT: International Search Report and Written Opinion for PCT/US2011/024891; Nov. 25, 2011; 9 pages. |
PCT: International Search Report and Written Opinion for PCT/US2011/031245; Dec. 26, 2011; 13 pages. |
Wireless Application Protocol—Wireless Transport Layer Security Specification, Version 18—Feb. 2000, Wireless Application Forum, Ltd. 2000; 99 pages. |
PCT: International Search Report and Written Opinion for PCT/US2011/040864; Feb. 17, 2012; 8 pages. |
PCT: International Search Report and Written Opinion for PCT/US2011/041565; Jan. 5, 2012; 7 pages. |
PCT: International Search Report and Written Opinion for PCT/US2011/031246; Dec. 27, 2011; 8 pages. |
PCT: International Search Report and Written Opinion for PCT/US2011/049000; Mar. 27, 2012; 10 pages. |
PCT: International Search Report and Written Opinion for PCT/US2011/051877; Apr. 13, 2012; 7 pages. |
PCT: International Search Report and Written Opinion for PCT/US2011/055101; May 22, 2012; 9 pages. |
Balamurugan Karpagavinayagam et al. (Monitoring Architecture for Lawful Interception in VoIP Networks, ICIMP 2007, Aug. 24, 2008). |
NiceLog User's Manual 385A0114-08 Rev. A2, Mar. 2004. |
WISPA: Wireless Internet Service Providers Association; WISPA-CS-IPNA-2.0; May 1, 2009. |
PCT: International Preliminary Report on Patentability of PCT/US2011/024870; Aug. 30, 2012; 7 pgs. |
RFC 5694 (“Peer-to-Peer (P2P) Architecture: Definition, Taxonomies, Examples, and Applicability”, Nov. 2009). |
Mahy et al., The Session Initiation Protocol (SIP) “Replaces” Header, Sep. 2004, RFC 3891, pp. 1-16. |
PCT: International Preliminary Report on Patentability of PCT/US2011/024891; Aug. 30, 2012; 6 pgs. |
T. Dierks & E. Rescorla, The Transport Layer Security (TLS) Protocol (Ver. 1.2, Aug. 2008) retrieved at http://tools.ietf.org/htmllrfc5246. Relevant pages provided. |
J. Rosenberg et al., SIP: Session Initiation Protocol (Jun. 2008) retrieved at http://tools.ietf.org/html/rfc3261. Relevant pages provided. |
Philippe Bazot et al., Developing SIP and IP Multimedia Subsystem (IMS) Applications (Feb. 5, 2007) retrieved at redbooks IBM form number: SG24-7255-00. Relevant pages provided. |
PCT: International Preliminary Report on Patentability of PCT/US2011/028685; Oct. 4, 2012; 6 pgs. |
PCT: International Preliminary Report on Patentability of PCT/US2011/031245; Oct. 26, 2012; 9 pgs. |
PCT: International Preliminary Report on Patentability of PCT/US2011/029954; Oct. 11, 2012; 5 pgs. |
PCT: International Preliminary Report on Patentability of PCT/US2011/031246; Nov. 8, 2012; 5 pgs. |
Rosenberg, J; “Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols”; Oct. 29, 2007; I ETF; I ETF draft of RFC 5245, draft-ietf-mmusic-ice-19; pp. 1-120. |
Blanchet et al; “IPv6 Tunnel Broker with the Tunnel Setup Protocol (TSP)”; May 6, 2008; IETF; IETF draft of RFC 5572, draftblanchet-v6ops-tunnelbroker-tsp-04; pp. 1-33. |
Cooper et al; “NAT Traversal for dSIP”; Feb. 25, 2007; IETF; IETF draft draft-matthews-p2psip-dsip-nat-traversal-00; pp. 1-23. |
Cooper et al; “The Effect of NATs on P2PSIP Overlay Architecture”; IETF; IETF draft draft-matthews-p2psip-nats-and-overlays-01.txt; pp. 1-20. |
Srisuresh et al; “State of Peer-to-Peer(P2P) Communication Across Network Address Translators(NATs)”; Nov. 19, 2007; I ETF; I ETF draft for RFC 5128, draft-ietf-behave-p2p-state-06.txt; pp. 1-33. |
PCT: International Search Report and Written Opinion for PCT/US2012/046026; Oct. 18, 2012; 6 pages. |
Dunigan, Tom, “Almost TCP over UDP (atou),” last modified Jan. 12, 2004; retrieved on Jan. 18, 2011 from <http://www.csm.ornl.gov/˜dunigan/net100/atou.html> 18 pgs. |
Chathapuram, “Security in Peer-To-Peer Networks”, Aug. 8. 2001, XP002251813. |
International Search Report and Written Opinion of the International Searching Authority from PCT/IB2005/000821, dated Aug. 5, 2005. |
International Search Report and Written Opinion of the International Searching Authority from PCT/US2006/032791, dated Dec. 18, 2006. |
International Search Report and Written Opinion of the International Searching Authority from PCT/US2006/040312, dated Mar. 2, 2007. |
International Search Report and Written Opinion of the International Searching Authority from PCT/US2006/047841, dated Sep. 12, 2008. |
International Search Report and Written Opinion of the International Searching Authority from PCT/US2007/002424, dated Aug. 14, 2007. |
International Search Report and Written Opinion of the International Searching Authority from PCT/US2007/068820, dated Jun. 11, 2008. |
International Search Report and Written Opinion of the International Searching Authority from PCT/US2007/068821, dated Jun. 14, 2008. |
International Search Report and Written Opinion of the International Searching Authority from PCT/US2007068823, dated Jun. 1, 2008. |
Jeff Tyson, “How Instant Messaging Works”, www.verizon.com/learningcenter, Mar. 9, 2005. |
Rory Bland, et al,“P2P Routing” Mar. 2002. |
Rosenberg, “STUN—Simple Traversal of UDP Through NAT”, Sep. 2002, XP015005058. |
Salman A. Baset, et al, “An Analysis of the Skype Peer-To-Peer Internet Telephony Protocol”, Department of Computer Science, Columbia University, New York, NY, USA, Sep. 15, 2004. |
Singh et al., “Peer-to Peer Internet Telephony Using SIP”, Department of Computer Science, Columbia University, Oct. 31, 2004, XP-002336408. |
Sinha, S. and Oglieski, A., A TCP Tutorial, Nov. 1998 (Date posted on Internet: Apr. 19, 2001) [Retrieved from the Internet <URL:http//www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html>]. |
Pejman Khadivi, Terence D. Todd and Dongmei Zhao, “Handoff trigger nodes for hybrid IEEE 802.11 WLAN/cellular networks,” Proc. of IEEE International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks, pp. 164-170, Oct. 18, 2004. |
International Search Report and Written Opinion of the International Searching Authority from PCT/US2008/078142, dated Mar. 27, 2009. |
International Search Report and Written Opinion of the International Searching Authority from PCT/US2008/084950, dated Apr. 27, 2009. |
Hao Wang, Skype VoIP service-architecture and comparison, In: Infotech Seminar Advanced Communication Services (ASC), 2005, pp. 4, 7, 8. |
Seta, N.; Miyajima, H.; Zhang, L;; Fujii, T., “All-SIP Mobility: Session Continuity on Handover in Heterogeneous Access Environment,” Vehicular Technology Conference, 2007. VTC 2007-Spring. IEEE 65th, Apr. 22-25, 2007, pp. 1121-1126. |
International Search Report and Written Opinion of the International Searching Authority from PCT/US2008/075141, dated Mar. 5, 2009. |
Qian Zhang; Chuanxiong Guo; Zihua Guo; Wenwu Zhu, “Efficient mobility management for vertical handoff between WWAN and WLAN,” Communications Magazine, IEEE, vol. 41. issue 11, Nov. 2003, pp. 102-108. |
Isaacs, Ellen et al., “Hubbub: A sound-enhanced mobile instant messenger that supports awareness and opportunistic interactions,” Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; vol. 4, Issue No. 1; Minneapolis, Minnesota; Apr. 20-25, 2002; pp. 179-186. |
PCT: International Preliminary Report on Patentability of PCT/US2008/084950; Jun. 1, 2010; 5 pgs. |
Number | Date | Country | |
---|---|---|---|
20130124659 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12770482 | Apr 2010 | US |
Child | 13736657 | US |