Embodiments of the invention relate generally to diagnostic imaging and, more particularly, to a walk-through type imaging device configured to acquire multiple types of physiological and morphological data from a subject and that provides for a comprehensive assessment of the subject's overall health.
Walk-through imaging devices for acquiring information about a subject have become an increasingly valuable tool in recent years, as such devices enable high-throughput, efficient imaging of a large number of subjects in a very cost effective manner. One example of the implementation of such walk-through imaging devices is their use as airport and anti-theft scanners. It is known, however, that such walk-through imaging devices are limited in the data that they acquire, in that they are designed only for the specific purpose of security or theft prevention. Thus, the purpose of these walk-through imaging devices is not to diagnose or provide health information to the individual, and such devices, in fact, lack that capability to provide health information to/about the individual.
Similarly, there are walk-through devices and technology to screen individuals for specific physiological conditions such as body thermal imaging temperature monitors used at body control points for detection of individuals with elevated body temperatures indicative of potential carriers of infection. Again, however, the purpose of these devices is not to diagnose or provide health information to the individual, nor do they combine automatic integration of multiple types of data (patient history, electronic medical records (EMR) information, etc.). A critical difference is the lack of personalized metrics that the individual's health will be referenced against. Instead, the prior art devices described above reference the measured parameter from the individual against a population norm.
Thus, existing walk-through devices thus fail to enable and facilitate a “one-stop” examination where a single walk-through device acquires and obtains a range of diagnostic test information. Such a one-stop examination device would be beneficial in that this would increase efficiency and could lower overall cost to a health care enterprise. Furthermore, such a one-stop examination device could be implemented to provide a comprehensive assessment of the patient's overall health in “non-traditional” locations where obtaining a complete patient diagnosis is difficult. That is, one-stop examination devices could be situated in areas where there is insufficient provider coverage (e.g., rural areas or developing countries), where more convenience is desired (e.g., shopping malls, drugstores), or where independent, rapid health screens are required (e.g., natural disasters, military deployments, border entry points), for example.
Therefore, it would be desirable to design a walk-through type imaging device capable of acquiring patient data in a “one-stop” type examination and that provides for diagnosing or providing health information to/about an individual. It would also be desirable for such a walk-through type imaging device to combine automatic integration of multiple types of patient data to provide a comprehensive assessment of the patient's overall health.
Embodiments of the invention are directed to a method and apparatus for acquiring multiple types of physiological and morphological data from a subject and providing for a comprehensive assessment of the subject's overall health. A walk-through type imaging device is provided that enables the acquisition of patient data in a “one-stop” type examination and the diagnosing or providing of health information to or about an individual.
According to an aspect of the invention, a health assessment system includes a first support structure oriented in a vertical fashion, a second support structure oriented in a vertical fashion and spaced apart from the first support structure to define a scanning area configured to receive a subject to be scanned, an x-ray imaging system incorporated into the first and second support structures and configured to acquire x-ray image data from the subject in a standing position, and at least one additional data acquisition device configured to acquire health related data from the subject. The health assessment system also includes a computer programmed to receive the x-ray image data and the health related data and generate a diagnostic output based on the x-ray image data and the health related data, the diagnostic output comprising at least one of a health related diagnosis and a recommendation for future action.
According to another aspect of the invention, a walk-through health assessment system includes a gate structure having a first vertical member and a second vertical member spaced apart from the first vertical member to define a scanning area, an x-ray imaging system secured to the gate structure and configured to acquire x-ray image data from a subject when standing in the scanning area, and a means for acquiring additional health related data from the subject separate from the x-ray image data. The walk-through health assessment system also includes a computer programmed to receive the x-ray image data and the additional health related data, extract diagnostic information from the x-ray image data and the health related data, and generate a subject health assessment from the extracted diagnostic information.
According to yet another aspect of the invention, a method of acquiring physiological and biological data on a subject by way of a walk-through health assessment system includes positioning a subject within an scanning area of a gate structure of the walk-through health assessment system, with the gate structure including a first vertical member and a second vertical member spaced apart from the first vertical to define a scanning area. The method also includes acquiring x-ray image data from the subject by way of a linear x-ray source and x-ray detector arrangement and acquiring additional health related data from the subject by way of at least one additional data acquisition device. The method further includes extracting diagnostic information from the x-ray image data and the additional health related data and generating a subject health assessment from the extracted diagnostic information.
These and other advantages and features will be more readily understood from the following detailed description of preferred embodiments of the invention that is provided in connection with the accompanying drawings.
The drawings illustrate preferred embodiments presently contemplated for carrying out the invention.
In the drawings:
According to embodiments of the invention, a health assessment system is provided that provides for quick and efficient acquisition and processing of physiological and/or anatomical data from a subject. The health assessment system is configured as a “one-stop” examination where a single system acquires and obtains a range of diagnostic test information. For acquiring such data, health assessment system includes a plurality of data capture devices configured to acquire or receive image data as well as physiological and health related data from the subject. For processing the acquired/received subject data, diagnostic devices are provided in the health assessment system that enable a health related diagnosis for the subject or recommendation for further action, for example. Health assessment system thus enables a more complete assessment of the subject's overall health than that provided by a system or device that captures just one physiological or biological related parameter from a subject, such as a stand-alone x-ray examination or imaging system, for example.
Referring to
Subject guidance mechanisms are integrated into health assessment system 10 and provide instructions and/or prompts to a subject regarding operation of the system, such that the subject can operate the system independently and without the assistance of trained medical personnel. The subject may follow written, audible or visual cues provided by subject guidance mechanism to facilitate the acquisition of a range of diagnostic test information and enable a health related diagnosis for the subject and/or recommendation for further action. As shown in
Another subject guidance mechanism is provided in health assessment system 10 in the form of a user interface 28 with which the subject interacts. The user interface 28 is located on one of the first or second support structures 14, 16, on either an inward or outward facing surface thereof so as to provide easy access for the subject. The user interface 28 is configured to serve several functions for the acquisition of health data from a subject—including gathering information identifying the subject and gathering health related information/data on the subject.
As indicated, the user interface 28 assists in gathering identifying information from the subject to be examined, with the user interface 28 allowing for the subject to identify himself/herself in several ways. According to one embodiment, user interface 28 includes a device reader 30 configured to receive/accommodate a data storage and transport device which the subject possesses. For example, as shown in
According to another embodiment, user interface 28 is configured to gather identifying information from the subject by way of facial recognition technology. That is, a video capture device (not shown) is integrated into user interface 28 that works in conjunction with facial recognition software programmed in user interface 28 in order to capture a facial image from the subject and process the image for identification purposes. The implementation of facial recognition capability into user interface 28 can thus provide for verification of the identity of the subject, so as to enhance user safety by providing protection from identity theft, such as by theft of a subject health card, flash drive, or similar health data storage device.
In functioning as a “one-stop” examination system, the health assessment system 10 acquires and integrates multiple types of patient data so as to provide a comprehensive assessment of the subject's overall health. For acquiring such data, health assessment system 10 includes a plurality of data capture devices configured to acquire or receive physiological and health related data from the subject.
One such type of data acquired from the subject by health assessment system 10 is x-ray image data. To provide for such x-ray image data acquisition, an x-ray source 34 and a detector assembly or arrangement 36 are incorporated into the first and second support structures 14, 16, respectively. As shown in
As shown in
According to an exemplary embodiment of the invention, the linear x-ray source 34 and detector assembly 36 are configured so as to provide for x-ray image data acquisition that enables production of a tomographic image. That is, the linear x-ray source 34 is controlled to emit x-rays towards the subject from a plurality of positions relative to the linear detector arrangement 36, such that multiple projection images are acquired at differing angles based on the emission of x-rays from the linear x-ray source 34 at the plurality of positions. Based on the multiple projection images, a tomographic image is generated of at least a portion of the subject. Furthermore, according to an embodiment of the invention, the detector assembly 36 is formed from a direct conversion material (e.g., CZT) and configured as an energy sensitive detector capable of providing data or feedback as to the number and/or energy of photons detected. Data as to the number and/or energy of photons detected by detector assembly allows for multi-spectral x-ray image data to be acquired, with the linear x-ray source 34 performing a dual energy x-ray scan to provide for the capture of such data.
As shown in
As another means for acquiring physiological and health related data, the user interface 28 functions as a data acquisition device. That is, as set forth above, the user interface 28 is configured not only to provide for receipt of identification information on the subject, but is also configured to provide for the receipt or acquisition of health related data on the subject to be examined. According to an embodiment of the invention, the user interface 28 includes a device reader 30 configured to receive/accommodate a data storage and transport device which the subject possesses, with the device reader 30 being in the form of a card reader through which subject could swipe a “health card” upon arrival at system or, alternatively, a USB port into which the subject could plug is a flash drive or similar device. The health card or flash drive would contain data regarding the electronic medical records (EMR) of the subject that identifies/provides data regarding patient specific information and/or characteristics of the subject. The specific information provided by the health card/flash drive may include information on the user's past health history (i.e., illnesses, surgeries, chronic disease), family history, a review of current symptoms and/or health-related behaviors, and current medications and supplements, for example. The information may also include current measurement of various physiological parameters. Thus, for example, data regarding the user's current weight, height, and blood pressure, may be provided to system by way of the subject's interaction with user interface 28 (e.g., swiping the health card in device reader 30).
In an embodiment where a data input device 32 (e.g., keyboard, touch screen, etc.) is provided on user interface 28, the subject can input health related data by way of the device 32. Thus, for example, subject may input a textual description of a specific physiological or biological condition, numerical values for specific physiological or biological parameters, or select a health related description/condition from a menu, for example. According to one embodiment, where the subject inputs a biometric identification number, the user interface 28 links to the subject's EMR based on the provided biometric identification number. In such an embodiment, health assessment system 10 may include a communications device 56 that enables remote access to the patient's EMR, such as a wired or wireless link to a healthcare records storage facility or other record storage. Thus, for example, health assessment system 10 can include a transceiver 56 that may function in accordance with any desired wireless transition protocols, such as Blue tooth, infrared protocols, IEEE 802.11, and so forth, that provides for bi-directional communication of data back and forth from the patient's EMR.
In addition to the data acquisition devices and/or sensors that acquire or receive physiological and health related data from the subject, health assessment system 10 also includes diagnostic tools configured to process the acquired/received subject data, so as to enable a health related diagnosis for the subject or recommendation for further action, for example. Accordingly, the computer 42 of health assessment system 10 is programmed to process the physiological and biological data acquired/received on the subject by way of the data acquisition devices and/or sensors, such as the x-ray imaging data acquired by the x-ray source and detector combination 34, 36 and the health related data received by swiping of a health card through card reader 30. Algorithms and/or programming on the computer 42 enable automatic extraction of diagnostic information from the acquired data. For example, algorithms on the computer 42 can extract information from acquired x-ray image data, such as lung cancer detection via a computer aided diagnosis (CAD). Additionally, algorithms on the computer 42 provide for integration of the additional health related data, acquired via additional data acquisition devices 30, 32 and/or sensors 48-54, with the imaging data to obtain a health related diagnosis or a recommendation for further action. For example, CAD detection of suspicious patterns from a chest x-ray with body temperature and patient oral history could be used to diagnose pneumonia or differentiate an acute viral respiratory infection (common cold) from presentation of a potential pandemic infection such as SARS or H1N1 or TB and recommend further medical action or non-medical action such as border or facility access restriction.
According to embodiments of the invention, the diagnostic output of health assessment system 10 is provided at the system to the subject and/or an operator of the system, or alternatively is transmitted to a remote location for further analysis. According to one embodiment, the diagnostic output of health assessment system 10, in the form of a health related diagnosis and/or recommendation for future action, is displayed on a display screen 58 (
Referring now to
Embodiments of health assessment system 10 thus provide for a walk-through type health assessment system that acquires image data and other health related data that allow for the diagnosing or providing of health information to/about a subject. The health assessment system 10 enables the patient to operate the system independently, following written, audible or visual cues and prompts, without the assistance of trained medical personnel. In operation, the health assessment system 10 acquires health related data via subject interaction with a user interface 28 included thereon. The health assessment system 10 also acquires health related data upon the subject positioning himself/herself in the scanning area 18 of gate structure 12. That is, x-ray image data and other health related data are acquired by the x-ray source and detector combination 34, 36 and by the additional devices/sensors configured to acquire physiological and biological data, such as the electrical impedance percent body fat characterization device 47, the body thermal imaging device 48, weight measurement device (e.g., scale) 50, video capture device 52, and biomarker specimen collector 54, for example. Upon data acquisition, algorithms and/or programming on computer 42 enable automatic extraction of diagnostic information from the acquired data and provide a health related diagnosis or a recommendation for further action based thereon via the implementation of computer aided diagnosis (CAD).
Beneficially, health assessment system 10 thus functions to acquire and analyze a range of diagnostic test information so as to enable and facilitate a “one-stop” exam for a subject. Such a one-stop exam increases efficiency and lowers overall cost to a health care enterprise. By designing the system to be user-friendly and to operate independently of trained medical professionals, access to reliable health diagnoses is improved. The health assessment system 10 could be situated in many non-traditional locations either in areas where there is insufficient provider coverage (rural areas or developing countries), where more convenience is desired (shopping malls, drugstores), or where independent and rapid but comprehensive health screens are required (natural disasters, military deployments, border or facility control points).
According to one embodiment, the data acquisition process with subject positioned in the scanning area 18 takes a matter of seconds (e.g., 2 seconds), with the acquired image and health related data providing for diagnosing or providing health information to/about the subject. The short duration of the image acquisition by walk-through health assessment system 10 enables the subject to move through the device in an efficient and convenient manner, so as to provide high-throughput, efficient imaging of a large number of subjects in a very cost effective manner, if so required, and so as to minimizes the x-ray exposure experienced by the subject.
Therefore, according to one embodiment of the invention, a health assessment system includes a first support structure oriented in a vertical fashion, a second support structure oriented in a vertical fashion and spaced apart from the first support structure to define a scanning area configured to receive a subject to be scanned, an x-ray imaging system incorporated into the first and second support structures and configured to acquire x-ray image data from the subject in a standing position, and at least one additional data acquisition device configured to acquire health related data from the subject. The health assessment system also includes a computer programmed to receive the x-ray image data and the health related data and generate a diagnostic output based on the x-ray image data and the health related data, the diagnostic output comprising at least one of a health related diagnosis and a recommendation for future action.
According to another embodiment of the invention, a walk-through health assessment system includes a gate structure having a first vertical member and a second vertical member spaced apart from the first vertical member to define a scanning area, an x-ray imaging system secured to the gate structure and configured to acquire x-ray image data from a subject when standing in the scanning area, and a means for acquiring additional health related data from the subject separate from the x-ray image data. The walk-through health assessment system also includes a computer programmed to receive the x-ray image data and the additional health related data, extract diagnostic information from the x-ray image data and the health related data, and generate a subject health assessment from the extracted diagnostic information.
According to yet another embodiment of the invention, a method of acquiring physiological and biological data on a subject by way of a walk-through health assessment system includes positioning a subject within an scanning area of a gate structure of the walk-through health assessment system, with the gate structure including a first vertical member and a second vertical member spaced apart from the first vertical to define a scanning area. The method also includes acquiring x-ray image data from the subject by way of a linear x-ray source and x-ray detector arrangement and acquiring additional health related data from the subject by way of at least one additional data acquisition device. The method further includes extracting diagnostic information from the x-ray image data and the additional health related data and generating a subject health assessment from the extracted diagnostic information.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
The present application is a non-provisional of, and claims priority to, U.S. Provisional Application No. 61/416,637, filed Nov. 23, 2010, the disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61416637 | Nov 2010 | US |