1. Field of the Invention
The present invention relates to an improved system and method for enabling a node, such as a remote unit in a wireless network, to perform macroscopic selection and distribution of routes for routing data packets to other nodes in the network. More particularly, the present invention relates to a system and method for enabling nodes in an ad-hoc packet switched communications network to reduce the effects of signal fading by modifying request to send (RTS) and clear to send (CTS) messages to include additional unicast addressing fields comprising two sets of multiple unicast addresses representing the maximum number of data packet routes available per route entry in the node's routing table.
2. Description of the Related Art
Wireless communications networks, such as mobile wireless telephone networks, have become increasingly prevalent over the past decade. These wireless communications networks are commonly referred to as “cellular networks”, because the network infrastructure is arranged to divide the service area into a plurality of regions called “cells”.
Specifically, a terrestrial cellular network or other type of conventional specialized mobile radio (SMR) system includes a plurality of interconnected stationary base stations that are distributed geographically at designated locations throughout the service area. Each stationary base station includes one or more transceivers that are capable of transmitting and receiving electromagnetic signals, such as radio frequency (RF) communications signals, to and from user terminals, such as wireless telephones, located in its coverage area. The communications signals include, for example, voice data that has been modulated according to a desired modulation technique and transmitted as data packets. As can be appreciated by one skilled in the art, the transceiver and user terminals transmit and receive the data packets in multiplexed format, such as time-division multiple access (TDMA) format, code-division multiple access (CDMA) format, frequency-division multiple access (FDMA) format, orthogonal frequency division access (OFDM) or other suitable modulation formats, which enables a single transceiver at the base station to communicate simultaneously with several user terminals in its coverage area.
Each base station is also connected to one or more gateways that enable communication between the base station and other networks, such as the Internet and the public switched telephone network (PSTN). Accordingly, the base stations in the network enable the user terminals to communicate with each other, as well as with other destinations, such as telephony devices, in the PSTN.
Because each base station is stationary and can only handle a limited amount of communications signal traffic from the user terminals at any given time, the coverage area of a base station can vary depending on the amount of traffic that the base station is expected to experience. For example, the coverage area of a base station can be set to several kilometers in diameter in sparsely populated regions, such as rural regions having light wireless traffic, and can be set to less than a kilometer in diameter in densely populated regions, such as major metropolitan areas having heavy wireless traffic. The wireless communications network therefore must employ many stationary base stations in heavily populated metropolitan areas in order for the network to adequately service the user terminals in those regions.
As can be further appreciated by one skilled in the art, it is also common for a mobile user terminal to travel between different base station coverage areas during use, that is, during a single telephone call. When this occurs, the base station whose coverage area the user terminal is leaving must transfer or “handoff” the user terminal to the base station whose coverage area the user terminal is entering, so that the latter base station can become the base station via which the user terminal and network continue to communicate. In densely populated areas having many base stations with small coverage (often sectorized) areas, this handoff process may need to occur several times during a short period of time as the user terminal travels between the different cells and sectors. However, in regions such as high traffic commuting regions having an inadequate number of base stations or overlays or sectors, more user terminals are competing for access to a base station within their coverage area. Accordingly, the number of lost or dropped calls that may occur during the handoff process can be increased due to the lack of adequate base station accessibility and the break before make hard handoff process itself.
Selection and distribution of data packet routes within wireless communication systems, such as those described above, is known in the art. One such communication system employing selection and distribution is a Code Division Multiple Access (CDMA) communication system as described in Cellular System Remote Unit Base Station Compatibility Standard of the Electronic Industry Association/Telecommunications Industry Association Interim Standard 95A (IS-95A/B), which is incorporated by reference herein.
Many techniques have been developed using the circuit-switched cellular infrastructure to minimize data packet loss during handoff while also minimizing overhead necessary to successfully perform the handoff. For example, as described in IS-95A/B, as a remote unit moves to the edge of a cell, it may commence communication with an adjacent base station, while the current base station continues to handle the call. Both base stations then handle the call simultaneously. During such a scenario, the remote unit is said to be in soft handoff. Soft handoff provides diversity of forward traffic channels and reverse channel paths on the boundaries between base stations. It should also be noted that when the soft handoff occurs between sectors it is referred to as a “softer handoff”. Each base station involved in a particular soft handoff demodulates the traffic channel frames and provides the frames to a selector function. The selector function then selects the best frame from each of the active call legs and that frame is forwarded on to the rest of the communication network. This can also employ methods such as maximal ratio combining as is typically done in rake receivers or simple packet error detection methods. Likewise, the communication network provides frames to a distribution function that are to be transmitted to the remote unit. The distribution function distributes these frames to all base stations involved in soft handoff with the remote unit. Thus far this powerful technique has only been widely applied and integrated into CDMA based cellular systems such as those specified and proposed by the Third Generation Third Party Partnership Project (3GPP) Universal Mobile Telecommunications System (UMTS), 3GPP2 (CDMA 2000/IS-95C), IS-95 A/B (2G CDMA) and International Mobile Telecommunications (IMT) 2000.
Macro-diversity selection and distribution is used in cellular systems to allow mobile units to simultaneously communicate with multiple base stations, thus greatly increasing the chances that at least one of the paths will not experience any particular fade or possibly a shadowing. Mobile radios often can experience deep fades of 40 dB or more for milliseconds at a time.
U.S. Pat. Nos. 6,226,283, 6,141,559, and 6,072,790 to Neumiller et al., the entire contents of each being incorporated herein by reference, disclose methods for providing macro-diversity selection and distribution in a peer-to-peer distributed manner where the SDU function was moved to the base transceiver stations. However, in hybrid multi-hop ad-hoc network systems that have fixed nodes to backhaul traffic to and from the Internet and the Public Switched Telephone Network (PSTN), a mobile node will use only one of the many routes it may have accumulated via routing protocols to its gateway. A mobile node may also send packets through other mobile nodes if the routing algorithm has no better choices.
Thus, for a fast moving mobile terminal in an ad-hoc network that has an established route, the signal can suffer from fading as those seen on interstate highways when mobile nodes/terminals are surrounded by a large amount of RF scattering clutter surfaces and reflectors. The call could then be dropped.
Accordingly, a need exists for a system and method for providing macro-diversity selection and distribution in ad-hoc communication networks to minimize the affects of fading.
An object of the present invention is to provide a system and method capable of effectively and efficiently reducing the affect of signal fading on wireless user mobile terminals in a communications network, in particular, a packet-switched network, with minimal overhead and packet loss.
Another object of the present invention is to provide a system and method for achieving the most suitable routing path for the type of data contained in the data packets by enabling a node in an ad-hoc packet switched communications network to reduce transmitter power and maintain a fixed bit error rate (BER) or maintain transmit power and achieve orders-of-magnitude reduction in BER.
These and other objectives are substantially achieved by providing a system and method for enabling a mobile terminal and surrounding macroscopic fixed wireless routers (or other mobile nodes) in a wireless ad-hoc communications network to establish communication with each other to minimize the effect of fading on data packets being transmitted from the originating mobile terminal to the mobile terminals that experience uncorrelated fading. Upon origination, a mobile terminal shall narrowcast a modified request to send (RTS) to the surrounding macroscopic mobile terminals, which each respond to the mobile terminal with a modified clear to send (CTS) message. The modified RTS and CTS messages each provide for an additional two sets of k unicast addresses, where k equals the maximum number of routes available per route entry in the mobile terminal's route table. Data packets can thus be sent by the originating mobile terminal to the surrounding mobile terminals, which can each then further route the data packets to their destination using a similar technique. In the preferred embodiment of the present invention, if the surrounding router receiving a packet from the originating router is mobile (i.e. moving), it is desirable to use the same technique again. If the surrounding router receiving the narrowcast packet is a fixed wireless router, it may choose to forward the packet using unicast or multi-cast routing. It should also be noted that the fast moving mobiles will experience much more fading than fixed infrastructure equipment. Thus, is it is not necessary to narrow cast packets on links between fixed infrastructure equipment.
If the packet is destined for the network gateway, that is, leaving the ad-hoc network, the individual routing paths will collapse into one path (possibly a Steiner tree as used in known multi-cast routing art) on route to the destination gateway.
However, if the packet is destined for another mobile host, it may use the additional set of narrow cast addresses to distribute the packets to the mobile terminal.
These and other objects, advantages and novel features of the invention will be more readily appreciated from the following detailed description when read in conjunction with the accompanying drawings, in which:
As can be appreciated by one skilled in the art, the nodes 102, 106 and 107 are capable of communicating with each other directly, or via one or more other nodes 102, 106 and 107 operating as a router or routers for data packets being sent between nodes 102, 106 and 107, as described in U.S. Pat. No. 5,943,322 to Mayor and in U.S. patent application Ser. Nos. 09/897,790, 09/815,157 and 09/815,164, referenced above. Specifically, as shown in
Each node 102, 106 and 107 further includes a memory 114, such as a random access memory (RAM), that is capable of storing, among other things, routing information pertaining to itself and other nodes 102, 106 and 107 in the network 100. The nodes 102, 106 and 107 exchange their respective routing information, referred to as routing advertisements or routing table information, with each other via a flooding/broadcast mechanism periodically, for example, when a new mobile terminal 102 enters the network 100, or when existing mobile terminals 102 in the network 100 move. A node 102, 106 and 107 will broadcast its routing table updates, and nearby nodes 102, 106 and 107 will only receive the broadcast routing table updates if within radio frequency (RF) range of the broadcasting node 102, 106 and 107. For example, assuming that mobile terminals 102-1, 102-2 and 102-7 are within the RF broadcast range of mobile terminal 102-6, when mobile terminal 102-6 broadcasts its routing table information, that information is received by mobile terminals 102-1, 102-2 and 102-7. However, if mobile terminal 102-3, 102-4 and 102-5 through 102-n are out of the broadcast range, none of those mobile terminals will receive the broadcast routing table information from mobile terminals 102-6.
Each of the mobile terminals 102-1, 102-2 and 102-7 (or other nodes) that receive the routing table information from mobile terminal 102-6 can store all or a relevant portion of that routing table information in their respective memory 114. Typically, each node 102, 106 and 107 will perform a pruning operation to reduce the amount of routing table information that it stores in its memory 114 as can be appreciated by one skilled in the art.
It is also noted that when a node 102, 106 and 107 broadcasts the routing table information to its neighboring nodes 102, 106 and 107 the node 102, 106 and 107 can include routing table information pertaining to some or all of its neighboring nodes 102, 106 and 107 that it has previously received from them and has stored in its memory 114. Accordingly, a node 102, 106 and 107 receiving the broadcast routing table information from another node 102, 106 and 107 also receives some information pertaining to the routing capabilities of the neighbors of that other node 102, 106 and 107. For example, when mobile terminal 102-2 broadcasts its routing table information, assuming that mobile terminals 102-1 and 102-3 through 102-7 are within the RF range, those node will receive the routing table information from mobile terminal 102-2 and update their routing tables accordingly. This routing table information can include information pertaining to, for example, mobile terminals 102-1, 102-6 and 102-7, which are out of RF range of some nodes, such as mobile terminal 102-3. Hence, mobile terminal 102-3 can receive routing information pertaining to mobile terminals 102-1, 102-6 and 102-7 via the routing table information broadcast by mobile terminal 102-2. In this event, a node can store in its memory 114 routing information pertaining to nodes that are several away. It is noted that a hop is simply a link between two points in a route. That is, a routing path that traverses several nodes will have a “hop” between each node.
An example of the manner in which a mobile terminal 102 can communicate data packets to another mobile terminal 102 in accordance with an embodiment of the present invention will now be described with reference to
As discussed in the Background section above, conventional RTS/CTS messages use a single unicast or broadcast addressing scheme. However, the present invention provides for an additional two sets of k unicast addresses, where k equals the maximum number of routes available per route entry in the mobile terminal's 102 route table. This allows a mobile terminal 102 to narrowcast to a set of k first-hop neighbors and to remotely deliver the packet to its destination by up to k last hop neighbors of the destination node.
The present invention can be applied to but is not limited to any popular ad-hoc routing algorithm such as those based on link state routing and/or distance vector approaches. The present invention can be further practiced with routing algorithms that use MAC layer addresses in their routing tables. The present invention can be further practiced when on demand routing is used or when network directed routing is used.
An example of the manner in which a mobile terminal 102 can determine the surrounding macroscopic mobile terminals 102 can be understood with reference to
With reference to
Overall, a mobile terminal 102 in an ad-hoc network 100 will usually maintain a collection of routes to any given host, so that if one route is lost the other routes can be used. The embodiments of present invention take advantage of this knowledge in a pro-active manner. Commonly used channel modulation methods such as QPSK or QAM-16 have bit error rates that are directly related to the signal-to-noise ratio of the channel being used. Typical measurements in CDMA networks show high speed mobiles will often experience 10−2 BERs. With reference to
It will be noted that embodiments of the present invention introduce no extra routing overhead, since only routes that have already been discovered are used. The assumption is that an on demand or distance vector or link state ad-hoc routing algorithm is populating the routing table, and the technique is simply taking advantage of this. The present invention also does not degrade network performance noticeably since the mobile terminals 102 that heard the RTS/CTS exchange were to remain idle anyway. It should also be noted that data packets may have had to be re-transmitted anyway due to errors caused by fading. Additionally, there is minimal network overhead for the RTSn since it only needs to be sent once physically (i.e. through narrowcast by a packet sender. At the destination, the packets will need to be sent individually, since typically there is no global synchronization in ad hoc networks.
More specifically, prior to sending packets to a mobile terminal A, the mobile terminal B normally has no knowledge of the high mobility of the mobile terminal A and thus no knowledge of the surrounding macroscopic terminals MT 1, MT 2, and MT 3. In accordance with an embodiment of the present invention, for the destination node to know about the macroscopic terminals surrounding the origination node so that they can be used in the reverse direction as macroscopic distribution nodes, end-to-end meta-data is placed in the data payload portion of the data packet to indicate the presence of such macroscopic terminals to the destination mobile terminal. This information is only inserted into the payload as meta-data when the information changes, that is, if one or more macroscopic terminals are no longer initial nodes of the preferred k paths used by terminal A, or when the network topology around terminal A changes.
In the example system of
Unlike a conventional RTS/CTS message which only contains unicast source and destination and broadcasting structures, the RTS/CTS messages according to embodiments of the present invention include additional fields. In terms of the RTS messages, the RTS messages are modified in the following manner with reference to
Similarly, the CTS messages are modified in the following manner. That is, a CTSnf message includes a first hop narrow cast address set, a CTSn1 message contains a last hop narrow cast address set, and a CTSnf1 message contains both the first and last hop narrow cast address set.
The embodiment of the invention will now be further described with reference to the call flow diagram of
After receiving the data, the macroscopic mobile terminals 102 forward the data in a conventional manner using conventional RTS/CTS message exchanges. Of course, the macroscopic terminals retain the option to also use narrowcast addressing so that macroscopic gain is realized by them as well. This decision can be made based on relative mobility or other metrics.
Data is routed separately, and pre-decoded soft-symbols are buffered into the modem for a fixed amount of time. Combining is then performed to decode the message. Thus, macro-diversity is achieved at the symbol level.
As can be appreciated by one skilled in the art, combining is only necessary when the BER associated with the received packet prevents it from being properly decoded. The destination terminal may therefore perform packet selection to accelerate the routing process.
It will be noted that the surrounding macroscopic mobile terminals 102 are sending the same data. However, since the origination mobile terminal 102 can be moving, Rayleigh fading can occur. By performing maximum-ratio combining, an improved signal is gained as seen in
It will be noted that although the call flows of
Additionally, although only a few exemplary embodiments of the present invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4494192 | Lew et al. | Jan 1985 | A |
4617656 | Kobayashi et al. | Oct 1986 | A |
4736371 | Tejima et al. | Apr 1988 | A |
4742357 | Rackley | May 1988 | A |
4747130 | Ho | May 1988 | A |
4910521 | Mellon | Mar 1990 | A |
5034961 | Adams | Jul 1991 | A |
5068916 | Harrison et al. | Nov 1991 | A |
5231634 | Giles et al. | Jul 1993 | A |
5233604 | Ahmadi et al. | Aug 1993 | A |
5241542 | Natarajan et al. | Aug 1993 | A |
5317566 | Joshi | May 1994 | A |
5392450 | Nossen | Feb 1995 | A |
5412654 | Perkins | May 1995 | A |
5424747 | Chazelas | Jun 1995 | A |
5502722 | Fulghum | Mar 1996 | A |
5517491 | Nanni et al. | May 1996 | A |
5555425 | Zeller et al. | Sep 1996 | A |
5555540 | Radke | Sep 1996 | A |
5572528 | Shuen | Nov 1996 | A |
5615212 | Ruszczyk et al. | Mar 1997 | A |
5618045 | Kagan et al. | Apr 1997 | A |
5621732 | Osawa | Apr 1997 | A |
5623495 | Eng et al. | Apr 1997 | A |
5627976 | McFarland et al. | May 1997 | A |
5631897 | Pacheco et al. | May 1997 | A |
5644576 | Bauchot et al. | Jul 1997 | A |
5652751 | Sharony | Jul 1997 | A |
5680392 | Semaan | Oct 1997 | A |
5684794 | Lopez et al. | Nov 1997 | A |
5687194 | Paneth et al. | Nov 1997 | A |
5696903 | Mahany | Dec 1997 | A |
5701294 | Ward et al. | Dec 1997 | A |
5706428 | Boer et al. | Jan 1998 | A |
5717689 | Ayanoglu | Feb 1998 | A |
5721725 | Want et al. | Feb 1998 | A |
5745483 | Nakagawa et al. | Apr 1998 | A |
5774876 | Wooley et al. | Jun 1998 | A |
5781540 | Malcolm et al. | Jul 1998 | A |
5787080 | Hulyalkar et al. | Jul 1998 | A |
5794154 | Bar-On et al. | Aug 1998 | A |
5796732 | Mazzola et al. | Aug 1998 | A |
5796741 | Saito et al. | Aug 1998 | A |
5805593 | Busche | Sep 1998 | A |
5805842 | Nagaraj et al. | Sep 1998 | A |
5805977 | Hill et al. | Sep 1998 | A |
5809518 | Lee | Sep 1998 | A |
5822309 | Ayanoglu et al. | Oct 1998 | A |
5828659 | Teder et al. | Oct 1998 | A |
5844905 | McKay et al. | Dec 1998 | A |
5845097 | Kang et al. | Dec 1998 | A |
5857084 | Klein | Jan 1999 | A |
5870350 | Bertin et al. | Feb 1999 | A |
5877724 | Davis | Mar 1999 | A |
5881095 | Cadd | Mar 1999 | A |
5881372 | Kruys | Mar 1999 | A |
5886992 | Raatikainen et al. | Mar 1999 | A |
5896561 | Schrader et al. | Apr 1999 | A |
5903559 | Acharya et al. | May 1999 | A |
5909651 | Chander et al. | Jun 1999 | A |
5936953 | Simmons | Aug 1999 | A |
5943322 | Mayor et al. | Aug 1999 | A |
5987011 | Toh | Nov 1999 | A |
5987033 | Boer et al. | Nov 1999 | A |
5991279 | Haugli et al. | Nov 1999 | A |
6028853 | Haartsen | Feb 2000 | A |
6029217 | Arimilli et al. | Feb 2000 | A |
6034542 | Ridgeway | Mar 2000 | A |
6044062 | Brownrigg et al. | Mar 2000 | A |
6047330 | Stracke, Jr. | Apr 2000 | A |
6052594 | Chuang et al. | Apr 2000 | A |
6052752 | Kwon | Apr 2000 | A |
6064626 | Stevens | May 2000 | A |
6067291 | Kamerman et al. | May 2000 | A |
6072790 | Neumiller et al. | Jun 2000 | A |
6078566 | Kikinis | Jun 2000 | A |
6104712 | Robert et al. | Aug 2000 | A |
6108738 | Chambers et al. | Aug 2000 | A |
6115580 | Chuprun et al. | Sep 2000 | A |
6122690 | Nannetti et al. | Sep 2000 | A |
6130881 | Stiller et al. | Oct 2000 | A |
6132306 | Trompower | Oct 2000 | A |
6141559 | Neumiller et al. | Oct 2000 | A |
6147975 | Bowman-Amuah | Nov 2000 | A |
6163699 | Naor et al. | Dec 2000 | A |
6178337 | Spartz et al. | Jan 2001 | B1 |
6192053 | Angelico et al. | Feb 2001 | B1 |
6192230 | Van Bokhorst et al. | Feb 2001 | B1 |
6208870 | Lorello et al. | Mar 2001 | B1 |
6223240 | Odenwald et al. | Apr 2001 | B1 |
6226283 | Neumiller et al. | May 2001 | B1 |
6240294 | Hamilton et al. | May 2001 | B1 |
6246875 | Seazholtz et al. | Jun 2001 | B1 |
6249516 | Brownrigg et al. | Jun 2001 | B1 |
6272117 | Choi et al. | Aug 2001 | B1 |
6275707 | Reed et al. | Aug 2001 | B1 |
6285892 | Hulyalkar | Sep 2001 | B1 |
6304556 | Haas | Oct 2001 | B1 |
6327300 | Souissi et al. | Dec 2001 | B1 |
6349091 | Li | Feb 2002 | B1 |
6349210 | Li | Feb 2002 | B1 |
6370123 | Woo | Apr 2002 | B1 |
6577613 | Ramanathan | Jun 2003 | B1 |
7031293 | Srikrishna et al. | Apr 2006 | B1 |
20010053699 | McCrady et al. | Dec 2001 | A1 |
20020006123 | Angelico et al. | Jan 2002 | A1 |
20020045435 | Fantaske | Apr 2002 | A1 |
20020080768 | Garcia-Luna-Aceves et al. | Jun 2002 | A1 |
20020167963 | Joa-Ng | Nov 2002 | A1 |
Number | Date | Country |
---|---|---|
2132180 | Mar 1996 | CA |
0513841 | Nov 1992 | EP |
0513841 | Nov 1992 | EP |
0627827 | Dec 1994 | EP |
0924890 | Jun 1999 | EP |
2683326 | Jul 1993 | FR |
WO 9608884 | Mar 1996 | WO |
WO 9724005 | Jul 1997 | WO |
WO 9839936 | Sep 1998 | WO |
WO 9912302 | Mar 1999 | WO |
WO 0034932 | Jun 2000 | WO |
WO 0110154 | Feb 2001 | WO |
WO 0133770 | May 2001 | WO |
WO 0135567 | May 2001 | WO |
WO 0137481 | May 2001 | WO |
WO 0137482 | May 2001 | WO |
WO 0137483 | May 2001 | WO |
WO 0235253 | May 2002 | WO |