System and method for performing next placements and pruning of disallowed placements for programming an integrated circuit

Information

  • Patent Grant
  • 7844437
  • Patent Number
    7,844,437
  • Date Filed
    Monday, November 19, 2001
    23 years ago
  • Date Issued
    Tuesday, November 30, 2010
    14 years ago
Abstract
A system and method for matching the hardware resource requirements of a user module with the available resources of an underlying integrated circuit is shown. Databases are utilized to describe the requirements of a particular user module and the resources of a particular chip. A graphical interface is utilized to relate a selected user module with potentially appropriate resources, and to illustrate alternative placements. This graphical interface utilizes highlights of both the module and the associated resource in patterns, grayscales, or colors to graphically illustrate the relationship between the module and the associated resource.
Description
RELATED APPLICATIONS

U.S. patent application Ser. No. 10/033,027, entitled “PROGRAMMABLE MICROCONTROLLER ARCHITECTURE,” filed on Oct. 22, 2001, and with inventor Warren Snyder is hereby incorporated by reference.


FIELD OF THE INVENTION

The invention relates generally to the field of chip design software applications, more particularly to a system and method for placing resources within a chip.


BACKGROUND OF THE INVENTION

It is often useful to utilize chip design application software to layout and plan new chips. This chip design application software is typically configured to aide the user in keeping track of resource requirements of particular modules. Furthermore, chip design application software also allows users to assign chip resources to particular modules.


However, chip design software applications typically have minimal graphical support. They usually are not capable of supplying the user with a graphical display representing a current status of the layout of the resources on a chip. Chip designers are typically required to manually and textually track their layout decisions with minimal graphical support. Further, typical software packages do not give graphical representations of possible placement of resources for unplaced user modules. Additionally, typical software packages also do not provide automated possible placements for user module resources.


Using the conventional art, a chip designer examines the vacant hardware resources and manually determines which hardware resources can be used for which user modules. This task involves manually determining the set of resources available in a hardware block and comparing them to the resources needed for a user module. This manual test is very technically complex and user-prone. Further, because possible placements require a great deal of manual effort, optimization through iteration trial and error is typically never accomplished.


SUMMARY OF THE INVENTION

It is useful to provide a chip designer with a chip design application software that provides the chip designer with an automated placement of user module resource onto the chip given constraints of the chip resources and the requirements of the user module resources. For example, having a placement of resources for a user module automatically be performed without low level programming by a user would be useful. Further, being able offer alternate placement possibilities for resources of user modules would also be beneficial.


A system and method are described for graphically displaying modules and resources within a chip design software application. The system and method provide a data driven model for matching the hardware resource requirements for an associated user module and the available hardware resources on an underlying chip. In this way, possible placements of a user module can be inferred from the data descriptions of the hardware resources and the user modules. In one embodiment, the data descriptions are formatted using XML data. Databases are utilized to describe the hardware resource requirements which are dictated by the particular user module and the available hardware resources of a particular chip. The user module descriptive database can be updated in response to additional user modules being added or changes to the hardware resource requirements of existing user modules. The hardware description database can be updated in response to additional chips being added. Further, the graphical interface relates both a user module and the possible hardware resource. This graphical interface utilizes highlights of both the module and the associated resource in patterns, grayscales, or colors to graphically illustrate the relationship between the module and the associated resource.


User modules may require multiple hardware blocks to implement. In some cases, user modules may require special ports or hardware which will limit the number of hardware blocks that can be used for their implementation. The process of mapping hardware blocks to a user module, such that the user module is realized within the microcontroller, is called “user module placement.”


Embodiments of the present invention relate to an automatic process that determines the possible placements of a user module based on (1) its XML user module description and (2) the hardware description of the underlying chip. The potential placement positions are automatically inferred based on the XML input data. Therefore, the placement process of the present invention is data driven from this viewpoint.


In one example, when the next placement icon is selected, a potential placement position is computed based on the XML input data. The placement is shown in a graphical hardware layout diagram by highlighting the hardware blocks involved. By clicking the next placement icon, a new placement is then computed and displayed. Placements that are incompatible with the user module requirements are automatically pruned out. In one embodiment, all positions are shown to the user, sequentially, each time the next placement icon is selected. However, if a potential placement involves a hardware block that has already been used (e.g., by another placed user module), then in these cases the placement icon is grayed out indicating that this placement is only valid if the resources were vacant. This allows the user to see all possible placements.


An advantage is that the placement process is data driven based on the XML descriptions of the user modules and hardware. The placements that are computed are inferred based on these descriptions.


More specifically, an embodiment of the present invention is drawn to a computer implemented method of determining hardware resources for an electronic design comprising: a) selecting an electronic design represented as a user module; b) accessing a data description of resources required for the user module; c) accessing data descriptions of a plurality of programmable resources of an electronic device; and d) comparing the data description of the user module with the data descriptions of the plurality of programmable resources to automatically determine potential placement options of the user module among the plurality of programmable resources.


Embodiments are also directed to a method as described above and further comprising: displaying on a graphical user interface, a first potential placement of the potential placement options; and in response to a user selecting a next placement icon, displaying on the graphical user interface, a second potential placement of the potential placement options, wherein potential placement options are displayed using visual attributes and wherein the electronic device is a programmable microcontroller device.


Embodiments include the above and wherein the user module requires one or more programmable resource to place and wherein the plurality of programmable resources comprise a plurality of analog programmable resources and a plurality of digital programmable resources.


Embodiments also include the above and wherein the data descriptions are created in XML.


Other aspects and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, and illustrated by way of example of the principles of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a system for coding modules and associated resource(s) in accordance with the invention.



FIGS. 2A, 2B, and 2C illustrate various embodiments for color coding modules and associated resources in accordance with the invention.



FIG. 3 illustrates a process flow diagram of one embodiment of the invention.



FIG. 4 illustrates a display screen from one embodiment of the invention.



FIG. 5A illustrates an exemplary screen diagram of a next placement iteration procedure of an embodiment of the present invention where one user module is placed.



FIG. 5B illustrates an exemplary screen diagram of a next placement iteration procedure of an embodiment of the present invention where a subject user module is selected and showing an initial possible placement designation for the subject user module.



FIG. 5C illustrates an exemplary screen diagram of a next placement iteration procedure of an embodiment of the present invention where a subject user module is selected and the digital portion of the initial placement is maintained while the analog portion is iterated to a next placement (second).



FIG. 5D illustrates an exemplary screen diagram of a next placement iteration procedure of an embodiment of the present invention where a subject user module is selected and the analog portion of the second placement is maintained while the digital portion is iterated to a next placement (third).



FIG. 5E illustrates an exemplary screen diagram of a next placement iteration procedure of an embodiment of the present invention where a subject user module is placed using the third placement of FIG. 5D.





DETAILED DESCRIPTION

Specific reference is made in detail to the embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention is described in conjunction with the embodiments, it will be understood that the embodiments are not intended to limit the scope of the invention. The various embodiments are intended to illustrate the invention in different applications. Further, specific details are set forth in the embodiments for exemplary purposes and are not intended to limit the scope of the invention. In other instances, well-known methods, procedures, and components have not been described in detail as not to unnecessarily obscure aspects of the invention.


With reference to FIG. 1, a system 100 for utilizing a data driven model for matching the hardware resource requirements for an associated user module and the available hardware resources on an underlying chip is shown. Further, the system 100 graphically illustrates alternative possible placements for user module resources and automatically generates alternative placements for user module resources based on the requirements of the user module and the resource availability on the underlying chip. The system 100 operates within a chip design application to automatically generate possible placements for user module resources based on the requirements of the user module and the resource availability on the chip. Further, the system 100 also operates to graphically display the correlation between an unplaced module and multiple alternate possible resources associated with the unplaced module. In one embodiment, the graphical correlation between the unplaced module and the possible resources associated with the unplaced module are displayed by use of a corresponding color within the design application.


The system 100 includes a processor 140, a user input interface 130 (e.g., cursor control device and keyboard), volatile memory 150, a video processor 160, and non-volatile memory 170. The input interface 130, the volatile memory 150, the video processor 160, and the non-volatile memory 170 are connected to the processor 140. The input interface 130, the processor 140, the volatile memory 150, the video processor 160, and the non-volatile memory 170 are components that are readily found in personal computer systems.


The system 100 further includes a user module description database 110, a resource placement locator 120, a color coordinator 180, and a hardware description database 185, which are also connected to the processor 140. The components 110, 120, 180, and 185 are merely illustrated in FIG. 1 as one embodiment of the system 100. Although the components 110, 120, 180, and 185 are illustrated in FIG. 1 as separate components of the system 100, two or more of these components may be integrated, thus decreasing the number of components in the system 100. Similarly, the components 110, 120, 180, and 185 may also be separated, thus increasing the number of components within the system 100. The components 110, 120, 180, and 185 may be implemented in any combination of hardware, firmware and software.


In one embodiment, the system 100 helps users more accurately and efficiently design chip layouts. The system 100 automatically finds potential placements of resources which fulfill the requirements of the associated user module.


The system 100 can iterate through multiple potential placement possibilities for resources, thus giving the user of the system 100 multiple choices for resource placement.


Further, the system 100 also graphically displays relationships between the user module and the potential placement locations for the resources. The system 100 can also graphically display locations that are currently occupied by another user module but otherwise could have been a potential placement location.


In one embodiment, the system 100 is configured to support microcontroller design. In another embodiment, the system 100 is configured to support programmable microcontroller design. In yet another embodiment, the system 100 supports general chip design.


The input interface 165 provides a means for the system 100 to receive user input which may include selection of various user module and resources and command sequences. The input interface 165 may be a USB port, a serial port, Ethernet port, or any other interface port configured to transmit electronic data to the system 100.


The video processor 160 provides graphical output from the system 100. The video processor 160 is configured to display color coded user modules and corresponding resources.


The user module description database 110 contains descriptions of the required hardware resources needed by a particular user module. This information may be stored using XML data. In addition to a list of hardware resources that are needed, the user module description database 110 also stores the specific configuration requirements of the needed hardware resources. Some of the description of the required hardware resources contains detailed configuration parameters such as pin restrictions, resource dependencies, speed requirements, and the like. For example, due to communication requirements between hardware resources, these hardware resources may need to be located in close proximity to each other. Another example, due to performance requirements, certain hardware resources may need to be located in close proximity to each other.


In one embodiment, the user module description database 110 contains descriptions of hardware resources within a user module. The user module description database 110 can include the hardware resource requirements of many different user modules. In this embodiment, the user module description database 110 would be applicable across a plurality of underlying chips. The contents of the user module description database 110 can be updated based on changes to the resource requirements of the user module or the introduction of new user modules not currently contained within the user module description database 110. In one embodiment, the user module description database 110 is updated from an outside source. The updated data can be routed through the input interface 130. In one embodiment, the information within the user module description database 110 can also be stored within the volatile memory 150 and/or the non-volatile memory 170.


In one embodiment, the user module description database 110 is implemented in XML. In another embodiment, the user module description database 110 is implemented in any other mark-up language.


The hardware description database 185 contains descriptions of hardware resources within the underlying chip. These descriptions includes various attributes of the hardware resources such as the functionality of the resources, the interconnectivity between these resources, the operating parameters of the resources, the pin layouts of the resources, and the like.


In one embodiment, the hardware description database 185 contains descriptions of hardware resources for multiple underlying chips. In this embodiment, the hardware description database 185 would be applicable across a plurality of underlying chips. The contents of the hardware description database 185 can be updated based on changes to the resources within the underlying chip or the introduction of new chips not currently contained within the hardware description database 185. In one embodiment, the hardware description database 185 is updated from an outside source. The updated data can be routed through the input interface 130. In one embodiment, the information within the hardware description database 185 can also be stored within the volatile memory 150 and/or the non-volatile memory 170.


In one embodiment, each instance of a change in utilized resources within the underlying chip triggers an update within the hardware description database 185. For example, when a hardware resource changes from being utilized to being available because the associated placed user module become “unplaced”, then the hardware description database 185 is updated with the newly available hardware resources. Likewise, when a hardware resource changes from being available to being utilized because the associated user module is “placed”, then the hardware description database 185 is updated with the newly unavailable hardware resources.


In one embodiment, the hardware description database 185 is implemented in XML. In another embodiment, the hardware description database 185 is implemented in any general database format which is compatible with the database engine used.


The resource placement locator 120 locates available hardware resources on an underlying chip that would be suitable for realizing an unplaced module. The module, or user module is a circuit design. In one embodiment, the resource placement locator 120 is configured to accept the hardware resource requirements for the unplaced module from the user module description database 110 and to search for a resource from the available resources that would satisfy these requirements from the hardware description database 185. The resource placement locator 120 can utilize the information describing the hardware resource requirements of a user module and find a suitable match based on that information. Hardware resources on the underlying chip which are incompatible with the user module are automatically disregarded and pruned out from the selection of suitable resources.


In one embodiment, the hardware resources that are currently utilized by another user module which would otherwise be suitable for a current user module are grayed out indicating that placement of these resources would only be valid if the resources were vacant. In another embodiment, occupied hardware resources would not be highlighted and would be disregarded and pruned.


In another embodiment, the resource placement locator 120 sequentially searches for possible resource configurations from the available resources. For example, the resource placement locator 120 can be configured to find a first set of resources which fulfill the requirements for the unplaced module. Next, the resource placement locator 120 can be configured to sequentially find a second set of resources that are different from the first set of resources which also fulfill the requirements for the unplaced module.


The color coordinator 180 graphically matches the module and the associated corresponding resources. In one embodiment, the color coordinator 180 color codes the module and the associated corresponding resources. In one embodiment, the color coordinator 180 is configured to select a unique color to display both an unplaced module and a possible set of available resources corresponding to the requirements of the unplaced module. In another embodiment, the color coordinator 180 is configured to select a unique color to display an unplaced module and another unique color to display a fixed resource and another unique color to display a next placement resource.


In one embodiment, matching colors can be utilized. In another embodiment, matching grayscales also can be utilized. In yet another embodiment, matching patterns can also be utilized.



FIGS. 2A, 2B, and 2C each illustrate one embodiment of the color coordinator 180 displaying a unique color that corresponds with a module and resources which correspond with the module. For the sake of clarity, common element numbers are utilized to represent similar items to avoid unnecessary confusion. For example, a module 210 and the corresponding resources 220 and 230 are utilized in FIGS. 2A, 2B, and 2C to merely illustrate the different embodiments of color coding the module 210 with the corresponding resources 220 and 230. Additional modules and resources can be displayed simultaneously.


In FIG. 2A, a ring 235 appears around an icon representation of the module 210. In one embodiment, the ring 235 is displayed filled in with a cross-hatched pattern 240 to represent a unique color. However, in other embodiments, different shading techniques may be utilized. The resources 220 and 230 are also filled in with the cross-hatched pattern 240. The same cross-hatched pattern 240 within the ring 235 and within the corresponding resources 220 and 230 visually indicate that the module 210 corresponds to the resources 220 and 230.


In FIG. 2B, the module icon 210 is displayed filled in with a cross-hatched pattern 245 to represent a unique color. However, in other embodiments, different shading techniques may be utilized. The resources 220 and 230 are also filled in with the cross-hatched pattern 245. The same cross-hatched pattern 245 within the module 210 and within the corresponding resources 220 and 230 visually indicate that the module 210 corresponds to the resources 220 and 230.


In FIG. 2C, a ring 250 appears around the module icon 210. In one embodiment, the ring 250 is displayed filled in with a cross-hatched pattern 255 to represent a unique color. However, in other embodiments, different shading techniques may be utilized. An area 260 is also filled in with the cross-hatched pattern 255. The area 260 includes the resources 220 and 230. The same cross-hatched pattern 255 within the ring 250 and within the area 260 visually indicate that the module 210 corresponds to the resources 220 and 230.



FIG. 3 illustrates a process flow diagram in accordance with one embodiment of the invention. The functional blocks are not to be construed as limiting the number of functional blocks within the process flow diagrams nor to be construed as a requirement for every functional block. The blocks may be performed in a different sequence without departing from the spirit of the invention. Further, blocks may be deleted, added or combined without departing from the spirit of the invention.



FIG. 3 illustrates one embodiment showing the selection of an unplaced module and the viable options of possible resources which meet the requirement of the unplaced module. In Block 310, an unplaced module is selected.


In Block 320, a description of the required hardware resources associated with the selected unplaced module are located. In one embodiment, the function within the Block 320 can be performed by the user module description database 110 (FIG. 1).


In Block 330, a description of the underlying hardware resources within the underlying chip are located. In one embodiment, the function within the Block 330 can be performed by the hardware description database 185 (FIG. 1).


In Block 340, a comparison between the description of the required hardware resources associated with the selected unplaced module and the description of the hardware resources belonging to the underlying chip occur. The result of this comparison is a group of possible hardware resources that satisfy the requirements of the selected unplaced module. In one embodiment, the function within the Block 340 can be performed by the resource placement locator 120 (FIG. 1).


For instance, if a user module requires a special port, then any hardware resource block not having the port is automatically pruned out of the list by performing the database comparison function of Step 340. Furthermore, if a user module requires multiple hardware resources that need to be adjacent, then any set of hardware resources not meeting this requirement will be automatically pruned out of consideration. In one embodiment, occupied hardware resources are also pruned out. In another embodiment, they are left in to give the user maximum potential placement information. The pruning process is data driven according to the XML databases which are compared to determine the list of possible placement options.


By automatically selecting the possible placements, and automatically pruning the disallowed placements, the user need only click the next placement icon to view the potential placements available to select the optimal placement location for a user module.


In Block 350, the hardware resources of the underlying chip which satisfy the requirements of the selected unplaced module are highlighted. In one embodiment, the hardware resources that are currently utilized by another user module which would otherwise be suitable for a current user module are grayed out indicating that placement of these resources would only be valid if the resources were vacant. In Block 360, the next set of hardware resources of the underlying chip which satisfy the requirements of the selected unplaced module are highlighted.



FIG. 4 illustrates one embodiment of a display screen showing a group of modules and a group of resources. For example, a module grouping 410 and a resource grouping 430 are utilized in FIG. 4 to merely illustrate a graphical representation of the general layout of the plurality of modules and resources. Additional modules and resources can be displayed simultaneously.


In one embodiment, FIG. 4 illustrates a highlighted module 415 within the module grouping 410. The highlighted module 415 is shown with a ring 420 surrounding the module 415. The ring 420 is shown with a first cross-hatched pattern. The highlighted module 415 graphically illustrates that this particular module is selected from the module grouping 410.


Resources 435, 440, and 450 are shown highlighted and correspond to the module 415. The resources 435, 440, and 450 are shown within the resource grouping 430. The resources 435 and 440 are also shown highlighted with a second cross-hatched pattern 445. The resource 450 is shown highlighted with a third cross-hatched pattern 455.


In one embodiment, the resources 435 and 440 are decoupled from the resource 450 as illustrated by the second cross-hatched pattern 445 and the third cross-hatched pattern 455, respectively. In one embodiment, the resources 435 and 440 are coupled together and placed as a group.


In one embodiment, the second cross-hatched pattern 445 graphically represent the area covered by the unfixed resources, and the third cross-hatched pattern 455 graphically represents the area covered by the fixed resources. Accordingly, in this embodiment, the resources 435 and 440 are initially unfixed, and the resource 450 is initially fixed. However, the resources 435 and 440 can become fixed resources at any time by finalizing placement of the resources 435, 440, and 450 of the module 415 or by selecting the resource 450 as the unfixed resource.


In operation, as a next placement is requested, the resources 435 and 440 are iterated to a next available position for placement. The second cross-hatched pattern 445 follows the resources 435 and 440 to their next location. If a next placement is requested again, the resources 435 and 440 would be iterated again to the next available position as long as the resources 435 and 440 are unfixed. At any time during this process, the resources 435 and 440 can have their placements finalized by either finalizing placement for the resources 435, 440, and 450 or by selecting the resource 450 as the unfixed resource.


In another embodiment, there can be more or fewer resources associated with the second and third cross-hatched patterns 445 and 455. There can also be more than one group of fixed resources. The second and third cross-hatched patterns 445 and 455 and their associated resources are shown for exemplary purposes.


Next Placement Iterator Example



FIG. 5A illustrates an example computer screen diagram 510 of a next placement iterator process in accordance with one embodiment of the present invention. In accordance with the graphical user interface, the digital resources (here, eight) are shown in an upper horizontal row 505 and the analog resources (here, twelve) are shown in a lower situated matrix 507. A selection bar 505 comprises user module icons that can be selected. The user module icon 515 (“counter”) is currently selected. The allocated resources 509 that are designated to implement user module 515 are also highlighted. In this embodiment, the color ring that surrounds user module icon 515 is color coded to the allocated resources 509. Therefore, this user module 515 is currently placed. The remaining user module icons of the selection bar 504 remain unplaced.



FIG. 5B illustrates an example computer screen diagram 520 of the next placement iterator process in accordance with one embodiment of the present invention where the user selects an unplaced user module icon 525 (the “ADCINC”). Since the module 525 is unplaced, it does not have an associated color ring. Upon selection of the user module icon 525, an initial possible placement for this design is displayed. The initial possible placement includes two digital resources (blocks) 530a and one analog resource 530b. In the embodiment shown, only vacant blocks were selected as the initial placement, however, in another embodiment, the computer could also designate a used block as a potential placement option for user module 525. Of course, a block would have to be made vacant before it could be used for user module 525.



FIG. 5C illustrates an example computer screen diagram 530 of the next placement iterator process in accordance with one embodiment of the present invention where the user invokes a next placement iteration for module icon 525 (the “ADCINC”). In particular, the user uses the cursor control device to select resource 530b. This causes the cross hatching behind the analog resource 530b to change colors from the cross hatching behind the digital resources 520a. Once selected, the user clicks the “next placement” icon 590, this causes the analog resource to move from its initial location in FIG. 5B to its new location in FIG. 5C. FIG. 5C therefore illustrates a second possible placement for the selected user module 525. By selecting the analog resource 530b before pressing the next placement icon 590, the user decoupled the placement of the digital versus analog resources. In other words, the digital resources 530a remained fixed from FIG. 5B to FIG. 5C.



FIG. 5D illustrates an example computer screen diagram 540 of the next placement iterator process in accordance with one embodiment of the present invention where the user invokes a next placement iteration for module icon 525 (the “ADCINC”). In particular, the user uses the cursor control device to select digital resource 530a. This causes the cross hatching behind the digital resources 530a to change colors from the cross hatching behind the analog resource 520b. Once selected, the user clicks the “next placement” icon 590, this causes the digital resource 530a to move from its initial location in FIG. 5B to position 509 (an occupied position). The user clicks the icon 590 again thereby causing the digital resource 530a to appear in its position as shown in FIG. 5D. FIG. 5D therefore illustrates a third possible placement for the selected user module 525. By selecting the digital resource 530a before pressing the next placement icon 590, the user decoupled the placement of the digital versus analog resources. In other words, the analog resource 530b remained fixed from FIG. 5C to FIG. 5D.



FIG. 5E illustrates an example computer screen diagram 560 of the next placement iterator process in accordance with one embodiment of the present invention where the user then places the user module 525. In accordance with the graphical user interface, the user then selects the “place user module” icon 595 and the user module 525 becomes placed using the last possible placement. In accordance with placing, a color ring appears around the module icon 525. Further, the hardware resources 530 appear in a matching color and they now have labels (“ADCINC . . . ”) that correspond to the placed icon 525.


By decoupling the digital from the analog resources during the next placement iteration process, the present invention reduces the number of possible placements that have to be cycled through by the user before the desired placement is found.


The foregoing descriptions of specific embodiments of the invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise embodiments disclosed, and naturally many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the Claims appended hereto and their equivalents.

Claims
  • 1. A computer implemented method of matching a selectable user module with plurality of programmable hardware resources associated with a programmable integrated circuit comprising: displaying said selectable user module, wherein said user module is a representation of a configuration of a programmable circuit for implementation on said programmable integrated circuit;displaying said plurality of programmable hardware resources associated with a programmable integrated circuit;in response to a selection of said selectable user module, comparing a description of a hardware resource requirement of said selectable user module with a description of said plurality of programmable hardware resources associated with said programmable integrated circuit;in response to said comparing, determining a plurality of allowed programmable hardware resources of the programmable integrated circuit satisfying the hardware resource requirement of said programmable circuit each allowed programmable hardware resource for implementing said programmable circuit of said selectable user module; andgraphically depicting a first allowed programmable hardware resource of said plurality of allowed programmable hardware resources within said displayed plurality of programmable hardware resources wherein said first allowed programmable hardware resource graphically associated with said selectable user module.
  • 2. The method according to claim 1 wherein the description of the hardware resource requirement of said selectable user module is represented as XML data.
  • 3. The method according to claim 1 wherein the description of the plurality of programmable hardware resources are represented as XML data.
  • 4. The method according to claim 1 wherein said graphically depicting said first allowed programmable hardware resource comprises visually highlighting said first allowed programmable hardware resource within said displayed plurality of programmable hardware resources.
  • 5. The method according to claim 1 further comprising graphically depicting a second allowed programmable resource of said plurality of allowed programmable hardware resources within said displayed plurality of programmable hardware resources.
  • 6. The method according to claim 1 further comprising identifying a plurality of disallowed programmable hardware resources associated with said programmable integrated circuit wherein the disallowed resources represents unavailable resources associated with said programmable integrated circuit that otherwise satisfies the hardware resource requirement of said selectable user module.
  • 7. The method according to claim 6 further comprising graphically depicting the plurality of disallowed programmable hardware resource using said graphical user interface.
  • 8. The method according to claim 5 wherein said graphically depicting said second allowed programmable resource comprises highlighting said second allowed programmable resource within said displayed plurality of programmable hardware resources.
  • 9. The method according to claim 1 further comprising updating the description of the hardware resource requirements of said selectable user module.
  • 10. The method according to claim 9 wherein said updating is performed in response to changes in a hardware resource requirement of said selectable user module.
  • 11. The method according to claim 1 further comprising adding an additional selectable user module to the description of the hardware resource requirement of said selectable user module.
  • 12. The method according to claim 1 further comprising updating the description of the plurality of programmable hardware resources associated with said programmable integrated circuit.
  • 13. The method according to claim 12 further comprising adding an additional chip description to the description of the plurality of programmable hardware resources associated with said programmable integrated circuit.
  • 14. An apparatus comprising: a user module description database containing a description of a hardware resource requirement of a user module;a hardware description database coupled to the user module description database and containing a description of a pre-existing hardware resource of a programmable integrated circuit;a resource placement locator coupled to the user module description database and configured to compare the description of the hardware resource requirement of the user module with the description of the pre-existing hardware resource of the programmable integrated circuit; andsoftware for generating data to be displayed, said data depicting hardware resources of said programmable integrated circuit and depicting a plurality of allowed hardware resources of said programmable integrated circuit, wherein each of said plurality of allowed hardware resources satisfies the hardware resource requirement for implementing said programmable circuit of said user module, and wherein said data graphically depicts at least one of said plurality of allowed hardware resources with said hardware resources of said programmable integrated circuit and said data is further operable to graphically associate said one of said plurality of allowed hardware resources of said programmable integrated circuit to said user module.
  • 15. The apparatus according to claim 14 wherein the user module description database is represented as XML data.
  • 16. The apparatus according to claim 14 wherein said data further graphically depicts another allowed programmable resource of said plurality of allowed programmable hardware resources within said hardware resources of said programmable integrated circuit.
  • 17. A computer implemented method of determining hardware resources for an electronic design comprising: displaying a plurality of pre-existing programmable hardware resources associated with a programmable electronic device;selecting an electronic design represented as a user module of predefined functionality implementable on said programmable electronic device;in response to said selecting, accessing a data description of hardware resources required for implementing said user module on said programmable electronic device;accessing data descriptions of said plurality of pre-existing programmable hardware resources of said programmable electronic device on which to implement said user module;comparing said data description of said user module with said data descriptions of said plurality of pre-existing programmable hardware resources to determine a plurality of allowed programmable hardware resources that satisfies a hardware resource requirement of said programmable electronic device for implementing a programmable circuit of said user module, and wherein a first allowed programmable hardware resource of said plurality of allowed programmable hardware resources is graphically depicted with said displayed plurality of programmable hardware resources and wherein said comparing automatically determines potential placement options of said user module on said programmable electronic device, wherein each potential placement option is operable to implement said user module; andin response to said comparing, graphically associating said selected user module to said first allowed programmable hardware resource of said plurality of allowed programmable hardware resources.
  • 18. A method as described in claim 17 further comprising: displaying on a graphical user interface, a first potential placement of said potential placement options by graphically depicting said first allowed programmable hardware resource; andin response to a user selecting a next placement icon, displaying on said graphical user interface, a second potential placement of said potential placement options by graphically depicting a second allowed programmable hardware resource of said plurality of allowed programmable hardware resources.
  • 19. A method as described in claim 18 wherein potential placement options are displayed using visual attributes and wherein said programmable electronic device is a programmable microcontroller device.
  • 20. A method as described in claim 17 wherein said user module requires one pre-existing programmable hardware resource to place.
  • 21. A method as described in claim 17 wherein said user module requires two pre-existing programmable hardware resources to place.
  • 22. A method as described in claim 17 wherein said plurality of pre-existing programmable hardware resources comprise a plurality of pre-existing analog programmable hardware resources and a plurality of pre-existing digital programmable hardware resources.
  • 23. A method as described in claim 17 wherein said comparing automatically prunes out pre-existing programmable hardware resources that do not satisfy requirements of said user module.
  • 24. A method as described in claim 17 wherein said data descriptions are created in XML.
  • 25. A computer system comprising a processor coupled to a bus and a memory coupled to said bus and containing instructions that implement a method of determining hardware resources for an electronic design comprising: displaying a plurality of pre-existing programmable hardware resources associated with a programmable electronic device;selecting an electronic design represented as a user module of predefined functionality implementable on said programmable electronic device;in response to said selecting, accessing a data description of hardware resources required for implementing said user module on said programmable electronic device;accessing data descriptions of a plurality of pre-existing programmable hardware resources of said programmable electronic device on which to implement said user module;comparing said data description of said user module with said data descriptions of said plurality of pre-existing programmable hardware resources to determine a plurality of allowed programmable hardware resources that satisfies a hardware resource requirement of said programmable electronic device for implementing a programmable circuit of said user module; andgraphically depicting a first allowed programmable hardware resource said plurality of allowed programmable hardware resources with said displayed plurality of programmable hardware resources and wherein said comparing automatically determines potential placement options of said user module on said programmable electronic device, wherein each potential placement option is operable to implement said user module; andin response to said comparing, graphically associating said selected user module to said first allowed programmable hardware resource of said plurality of allowed programmable hardware resources.
  • 26. A computer system as described in claim 25 wherein said method further comprises: displaying on a graphical user interface, a first potential placement of said potential placement options by graphically depicting said first allowed programmable hardware resource; andin response to a user selecting a next placement icon, displaying on said graphical user interface, a second potential placement of said potential placement options by graphically depicting a second allowed programmable hardware resource of said plurality of allowed programmable hardware resources.
  • 27. A computer system as described in claim 26 wherein potential placement options are displayed using visual attributes and wherein said programmable electronic device is a programmable microcontroller device.
  • 28. A computer system as described in claim 25 wherein said user module requires one pre-existing programmable hardware resource to place.
  • 29. A computer system as described in claim 25 wherein said user module requires two pre-existing programmable hardware resources to place.
  • 30. A computer system as described in claim 25 wherein said plurality of pre-existing programmable hardware resources comprise a plurality of pre-existing analog programmable hardware resources and a plurality of pre-existing digital programmable hardware resources.
  • 31. A computer system as described in claim 25 wherein said comparing automatically prunes out pre-existing programmable hardware resources that do not satisfy requirements of said user module.
  • 32. A computer system as described in claim 25 wherein said data descriptions are created in XML.
US Referenced Citations (1131)
Number Name Date Kind
3600690 White Aug 1971 A
3725804 Langan Apr 1973 A
3740588 Stratton et al. Jun 1973 A
3805245 Brooks et al. Apr 1974 A
3810036 Bloedorn May 1974 A
3831113 Ahmed Aug 1974 A
3845328 Hollingsworth Oct 1974 A
3940760 Brokaw Feb 1976 A
4061987 Nagahama Dec 1977 A
4134073 MacGregor Jan 1979 A
4138671 Comer et al. Feb 1979 A
4176258 Jackson Nov 1979 A
4250464 Schade, Jr. Feb 1981 A
4272760 Prazak et al. Jun 1981 A
4283713 Philipp Aug 1981 A
4326135 Jarrett et al. Apr 1982 A
4344067 Lee Aug 1982 A
4380083 Andersson et al. Apr 1983 A
4438404 Philipp Mar 1984 A
4475151 Philipp Oct 1984 A
4497575 Philipp Feb 1985 A
4604363 Newhouse et al. Aug 1986 A
4608502 Dijkmans et al. Aug 1986 A
4656603 Dunn Apr 1987 A
4670838 Kawata Jun 1987 A
4689740 Moelands et al. Aug 1987 A
4692718 Roza et al. Sep 1987 A
4701907 Collins Oct 1987 A
4727541 Mori et al. Feb 1988 A
4736097 Philipp Apr 1988 A
4740966 Goad Apr 1988 A
4755766 Metz Jul 1988 A
4773024 Faggin et al. Sep 1988 A
4794558 Thompson Dec 1988 A
4802103 Faggin et al. Jan 1989 A
4802119 Heene et al. Jan 1989 A
4807183 Kung et al. Feb 1989 A
4809345 Tabata et al. Feb 1989 A
4812664 Borden Mar 1989 A
4813013 Dunn Mar 1989 A
4827401 Hrustich et al. May 1989 A
4831546 Mitsuta et al. May 1989 A
4833418 Quintus et al. May 1989 A
4868525 Dias Sep 1989 A
4876466 Kondou et al. Oct 1989 A
4876534 Mead et al. Oct 1989 A
4878200 Asghar et al. Oct 1989 A
4879461 Philipp Nov 1989 A
4879688 Turner et al. Nov 1989 A
4885484 Gray Dec 1989 A
4907121 Hrassky Mar 1990 A
4935702 Mead et al. Jun 1990 A
4939637 Pawloski Jul 1990 A
4942540 Black et al. Jul 1990 A
4947169 Smith et al. Aug 1990 A
4953928 Anderson et al. Sep 1990 A
4962342 Mead et al. Oct 1990 A
4964074 Suzuki et al. Oct 1990 A
4969087 Tanagawa et al. Nov 1990 A
4970408 Hanke et al. Nov 1990 A
4972372 Ueno Nov 1990 A
4977381 Main Dec 1990 A
4980652 Tarusawa et al. Dec 1990 A
4999519 Kitsukawa et al. Mar 1991 A
5043674 Bonaccio et al. Aug 1991 A
5049758 Mead et al. Sep 1991 A
5050168 Paterson Sep 1991 A
5053949 Allison et al. Oct 1991 A
5055827 Philipp Oct 1991 A
5059920 Anderson et al. Oct 1991 A
5068622 Mead et al. Nov 1991 A
5073759 Mead et al. Dec 1991 A
5083044 Mead et al. Jan 1992 A
5095284 Mead Mar 1992 A
5097305 Mead et al. Mar 1992 A
5099191 Galler et al. Mar 1992 A
5107146 El-Ayat Apr 1992 A
5107149 Platt et al. Apr 1992 A
5109261 Mead et al. Apr 1992 A
5119038 Anderson et al. Jun 1992 A
5120996 Mead et al. Jun 1992 A
5122800 Philipp Jun 1992 A
5126685 Platt et al. Jun 1992 A
5127103 Hill et al. Jun 1992 A
5128871 Schmitz Jul 1992 A
5136188 Ha et al. Aug 1992 A
5140197 Grider Aug 1992 A
5142247 Lada et al. Aug 1992 A
5144582 Steele Sep 1992 A
5146106 Anderson et al. Sep 1992 A
5150079 Williams et al. Sep 1992 A
5155836 Jordan et al. Oct 1992 A
5159292 Canfield et al. Oct 1992 A
5159335 Veneruso Oct 1992 A
5160899 Anderson et al. Nov 1992 A
5161124 Love Nov 1992 A
5165054 Platt et al. Nov 1992 A
5166562 Allen et al. Nov 1992 A
5175884 Suarez Dec 1992 A
5179531 Yamaki Jan 1993 A
5184061 Lee et al. Feb 1993 A
5198817 Walden et al. Mar 1993 A
5200751 Smith Apr 1993 A
5202687 Distinti Apr 1993 A
5204549 Platt et al. Apr 1993 A
5206582 Ekstedt et al. Apr 1993 A
5220512 Watkins et al. Jun 1993 A
5225991 Dougherty Jul 1993 A
5230000 Mozingo et al. Jul 1993 A
5235617 Mallard, Jr. Aug 1993 A
5241492 Girardeau, Jr. Aug 1993 A
5243554 Allen et al. Sep 1993 A
5245262 Moody et al. Sep 1993 A
5248843 Billings Sep 1993 A
5248873 Allen et al. Sep 1993 A
5258760 Moody et al. Nov 1993 A
5260592 Mead et al. Nov 1993 A
5260979 Parker et al. Nov 1993 A
5270963 Allen et al. Dec 1993 A
5276407 Mead et al. Jan 1994 A
5276890 Arai Jan 1994 A
5280199 Itakura Jan 1994 A
5280202 Chan et al. Jan 1994 A
5289023 Mead Feb 1994 A
5303329 Mead et al. Apr 1994 A
5304955 Atriss et al. Apr 1994 A
5305017 Gerpheide Apr 1994 A
5305312 Fornek et al. Apr 1994 A
5307381 Ahuja Apr 1994 A
5313618 Pawloski May 1994 A
5317202 Waizman May 1994 A
5319370 Signore et al. Jun 1994 A
5319771 Takeda Jun 1994 A
5321828 Phillips et al. Jun 1994 A
5324958 Mead et al. Jun 1994 A
5325512 Takahashi Jun 1994 A
5329471 Swoboda et al. Jul 1994 A
5331215 Allen et al. Jul 1994 A
5331315 Crosette Jul 1994 A
5331571 Aronoff et al. Jul 1994 A
5334952 Maddy et al. Aug 1994 A
5335342 Pope et al. Aug 1994 A
5336936 Allen et al. Aug 1994 A
5339213 O'Callaghan Aug 1994 A
5339262 Rostoker et al. Aug 1994 A
5341044 Ahanin et al. Aug 1994 A
5341267 Whitten et al. Aug 1994 A
5345195 Cordoba et al. Sep 1994 A
5349303 Gerpheide Sep 1994 A
5355097 Scott et al. Oct 1994 A
5357626 Johnson et al. Oct 1994 A
5361290 Akiyama Nov 1994 A
5371524 Herczeg et al. Dec 1994 A
5371860 Mura et al. Dec 1994 A
5371878 Coker Dec 1994 A
5371883 Gross et al. Dec 1994 A
5374787 Miller et al. Dec 1994 A
5377333 Nakagoshi et al. Dec 1994 A
5378935 Korhonen et al. Jan 1995 A
5381515 Platt et al. Jan 1995 A
5381524 Lewis et al. Jan 1995 A
5384467 Plimon et al. Jan 1995 A
5384745 Konishi et al. Jan 1995 A
5384910 Torres Jan 1995 A
5390173 Spinney et al. Feb 1995 A
5392784 Gudaitis Feb 1995 A
5394522 Sanchez-Frank et al. Feb 1995 A
5396245 Rempfer Mar 1995 A
5398261 Marbot Mar 1995 A
5399922 Kiani et al. Mar 1995 A
5408194 Steinbach et al. Apr 1995 A
5414308 Lee et al. May 1995 A
5414380 Floyd et al. May 1995 A
5416895 Anderson et al. May 1995 A
5422823 Agrawal et al. Jun 1995 A
5424689 Gillig et al. Jun 1995 A
5426378 Ong Jun 1995 A
5426384 May Jun 1995 A
5428319 Marvin et al. Jun 1995 A
5430395 Ichimaru Jul 1995 A
5430687 Hung et al. Jul 1995 A
5430734 Gilson Jul 1995 A
5432476 Tran Jul 1995 A
5438672 Dey Aug 1995 A
5440305 Signore et al. Aug 1995 A
5451887 El-Avat et al. Sep 1995 A
5453904 Higashiyama et al. Sep 1995 A
5455525 Ho et al. Oct 1995 A
5455731 Parkinson Oct 1995 A
5455927 Huang Oct 1995 A
5457410 Ting Oct 1995 A
5457479 Cheng Oct 1995 A
5463591 Aimoto et al. Oct 1995 A
5479603 Stone et al. Dec 1995 A
5479643 Bhaskar et al. Dec 1995 A
5479652 Dreyer et al. Dec 1995 A
5481471 Naglestad et al. Jan 1996 A
5488204 Mead et al. Jan 1996 A
5491458 McCune, Jr. et al. Feb 1996 A
5493246 Anderson Feb 1996 A
5493723 Beck et al. Feb 1996 A
5495077 Miller et al. Feb 1996 A
5495593 Elmer et al. Feb 1996 A
5495594 MacKenna et al. Feb 1996 A
5497119 Tedrow et al. Mar 1996 A
5499192 Knapp et al. Mar 1996 A
5500823 Martin et al. Mar 1996 A
5517198 McEwan May 1996 A
5519854 Watt May 1996 A
5521529 Agrawal et al. May 1996 A
5530444 Tice et al. Jun 1996 A
5530673 Tobita et al. Jun 1996 A
5530813 Paulsen et al. Jun 1996 A
5537057 Leong et al. Jul 1996 A
5541878 LeMoncheck et al. Jul 1996 A
5542055 Amini et al. Jul 1996 A
5543588 Bisset et al. Aug 1996 A
5543590 Gillespie et al. Aug 1996 A
5543591 Gillespie et al. Aug 1996 A
5544067 Rostoker et al. Aug 1996 A
5544311 Harenberg et al. Aug 1996 A
5546433 Tran et al. Aug 1996 A
5546562 Patel Aug 1996 A
5552725 Ray et al. Sep 1996 A
5552748 O'Shaughnessy Sep 1996 A
5554951 Gough Sep 1996 A
5555452 Callaway, Jr. et al. Sep 1996 A
5555907 Philipp Sep 1996 A
5557762 Okuaki et al. Sep 1996 A
5559502 Schutte Sep 1996 A
5559996 Fujioka Sep 1996 A
5563526 Hastings et al. Oct 1996 A
5563529 Seltzer et al. Oct 1996 A
5564010 Henry et al. Oct 1996 A
5564108 Hunsaker et al. Oct 1996 A
5565658 Gerpheide et al. Oct 1996 A
5566702 Philipp Oct 1996 A
5572665 Nakabayashi Nov 1996 A
5572719 Biesterfeldt Nov 1996 A
5574678 Gorecki Nov 1996 A
5574852 Bakker et al. Nov 1996 A
5574892 Christensen Nov 1996 A
5579353 Parmenter et al. Nov 1996 A
5587945 Lin et al. Dec 1996 A
5587957 Kowalczyk et al. Dec 1996 A
5590354 Klapproth et al. Dec 1996 A
5594388 O'Shaughnessy et al. Jan 1997 A
5594734 Worsley et al. Jan 1997 A
5594876 Getzlaff et al. Jan 1997 A
5594890 Yamaura et al. Jan 1997 A
5600262 Kolze Feb 1997 A
5604466 Dreps et al. Feb 1997 A
5608892 Wakerly Mar 1997 A
5614861 Harada Mar 1997 A
5625316 Chambers et al. Apr 1997 A
5629857 Brennan May 1997 A
5629891 LeMoncheck et al. May 1997 A
5630052 Shah May 1997 A
5630057 Hait May 1997 A
5630102 Johnson et al. May 1997 A
5631577 Freidin et al. May 1997 A
5633766 Hase et al. May 1997 A
5642295 Smayling Jun 1997 A
5646544 Iadanza Jul 1997 A
5646901 Sharpe-Geisler et al. Jul 1997 A
5648642 Miller et al. Jul 1997 A
5651035 Tozun et al. Jul 1997 A
5663900 Bhandari et al. Sep 1997 A
5663965 Seymour Sep 1997 A
5664199 Kuwahara Sep 1997 A
5666480 Leung et al. Sep 1997 A
5670915 Cooper et al. Sep 1997 A
5673198 Lawman et al. Sep 1997 A
5675825 Dreyer et al. Oct 1997 A
5677691 Hosticka et al. Oct 1997 A
5680070 Anderson et al. Oct 1997 A
5682032 Philipp Oct 1997 A
5684434 Mann et al. Nov 1997 A
5684952 Stein Nov 1997 A
5686844 Hull et al. Nov 1997 A
5687325 Chang Nov 1997 A
5689195 Cliff et al. Nov 1997 A
5689196 Schutte Nov 1997 A
5691664 Anderson et al. Nov 1997 A
5691898 Rosenberg et al. Nov 1997 A
5694063 Burlison et al. Dec 1997 A
5696952 Pontarelli Dec 1997 A
5699024 Manlove et al. Dec 1997 A
5703871 Pope et al. Dec 1997 A
5706453 Cheng et al. Jan 1998 A
5708589 Beauvais Jan 1998 A
5708798 Lynch et al. Jan 1998 A
5710906 Ghosh et al. Jan 1998 A
5712969 Zimmermann et al. Jan 1998 A
5721931 Gephardt et al. Feb 1998 A
5724009 Collins et al. Mar 1998 A
5727170 Mitchell et al. Mar 1998 A
5729704 Stone et al. Mar 1998 A
5730165 Philipp Mar 1998 A
5732277 Kodosky et al. Mar 1998 A
5734272 Belot et al. Mar 1998 A
5734334 Hsieh et al. Mar 1998 A
5737557 Sullivan Apr 1998 A
5737760 Grimmer, Jr. et al. Apr 1998 A
5745011 Scott Apr 1998 A
5748048 Moyal May 1998 A
5748875 Tzori May 1998 A
5752013 Christensen et al. May 1998 A
5754552 Allmond et al. May 1998 A
5754826 Gamal et al. May 1998 A
5757368 Gerpheide et al. May 1998 A
5758058 Milburn May 1998 A
5761128 Watanabe Jun 1998 A
5763909 Mead et al. Jun 1998 A
5764714 Stansell et al. Jun 1998 A
5767457 Gerpheide et al. Jun 1998 A
5774704 Williams Jun 1998 A
5777399 Shibuya Jul 1998 A
5781030 Agrawal et al. Jul 1998 A
5781747 Smith et al. Jul 1998 A
5784545 Anderson et al. Jul 1998 A
5790957 Heidari Aug 1998 A
5796183 Hourmand Aug 1998 A
5799176 Kapusta et al. Aug 1998 A
5802073 Platt Sep 1998 A
5802290 Casselman Sep 1998 A
5805792 Swoboda et al. Sep 1998 A
5805897 Glowny Sep 1998 A
5808883 Hawkes Sep 1998 A
5811987 Ashmore, Jr. et al. Sep 1998 A
5812698 Platt et al. Sep 1998 A
5818254 Agrawal et al. Oct 1998 A
5818444 Alimpich et al. Oct 1998 A
5819028 Manghirmalani et al. Oct 1998 A
5822387 Mar Oct 1998 A
5822531 Gorczyca et al. Oct 1998 A
5828693 Mays et al. Oct 1998 A
5838583 Varadarajan et al. Nov 1998 A
5841078 Miller et al. Nov 1998 A
5841996 Nolan et al. Nov 1998 A
5844404 Caser et al. Dec 1998 A
5848285 Kapusta et al. Dec 1998 A
5850156 Wittman Dec 1998 A
5852733 Chien et al. Dec 1998 A
5854625 Frisch et al. Dec 1998 A
5857109 Taylor Jan 1999 A
5861583 Schediwy et al. Jan 1999 A
5861875 Gerpheide Jan 1999 A
5864242 Allen et al. Jan 1999 A
5864392 Winklhofer et al. Jan 1999 A
5867046 Sugasawa Feb 1999 A
5867399 Rostoker et al. Feb 1999 A
5869979 Bocchino Feb 1999 A
5870004 Lu Feb 1999 A
5870309 Lawman Feb 1999 A
5870345 Stecker Feb 1999 A
5872464 Gradinariu Feb 1999 A
5874958 Ludolph Feb 1999 A
5875293 Bell et al. Feb 1999 A
5877656 Mann et al. Mar 1999 A
5878425 Redpath Mar 1999 A
5880411 Gillespie et al. Mar 1999 A
5880598 Duong Mar 1999 A
5883623 Cseri Mar 1999 A
5886582 Stansell Mar 1999 A
5887189 Birns et al. Mar 1999 A
5889236 Gillespie et al. Mar 1999 A
5889723 Pascucci Mar 1999 A
5889936 Chan Mar 1999 A
5889988 Held Mar 1999 A
5894226 Koyama Apr 1999 A
5894243 Hwang Apr 1999 A
5894565 Furtek et al. Apr 1999 A
5895494 Scalzi et al. Apr 1999 A
5896068 Moyal Apr 1999 A
5896330 Gibson Apr 1999 A
5898345 Namura et al. Apr 1999 A
5900780 Hirose et al. May 1999 A
5901062 Burch et al. May 1999 A
5903718 Marik May 1999 A
5905398 Todsen et al. May 1999 A
5909544 Anderson, II et al. Jun 1999 A
5911059 Profit, Jr. Jun 1999 A
5914465 Allen et al. Jun 1999 A
5914633 Comino et al. Jun 1999 A
5914708 LaGrange et al. Jun 1999 A
5917356 Casal et al. Jun 1999 A
5920310 Faggin et al. Jul 1999 A
5923264 Lavelle et al. Jul 1999 A
5926566 Wang et al. Jul 1999 A
5929710 Bien Jul 1999 A
5930148 Bjorksten et al. Jul 1999 A
5930150 Cohen et al. Jul 1999 A
5931959 Kwiat Aug 1999 A
5933023 Young Aug 1999 A
5933356 Rostoker et al. Aug 1999 A
5933816 Zeanah et al. Aug 1999 A
5935233 Jeddeloh Aug 1999 A
5935266 Thurnhofer et al. Aug 1999 A
5939904 Fetterman et al. Aug 1999 A
5939949 Olgaard et al. Aug 1999 A
5941991 Kageshima Aug 1999 A
5942733 Allen et al. Aug 1999 A
5943052 Allen et al. Aug 1999 A
5945878 Westwick et al. Aug 1999 A
5949632 Barreras, Sr. et al. Sep 1999 A
5952888 Scott Sep 1999 A
5956279 Mo et al. Sep 1999 A
5959871 Pierzchala et al. Sep 1999 A
5963075 Hiiragizawa Oct 1999 A
5963105 Nguyen Oct 1999 A
5963503 Lee Oct 1999 A
5964893 Circello et al. Oct 1999 A
5966027 Kapusta et al. Oct 1999 A
5966532 McDonald et al. Oct 1999 A
5968135 Teramoto et al. Oct 1999 A
5969513 Clark Oct 1999 A
5969632 Diamant et al. Oct 1999 A
5973368 Pearce et al. Oct 1999 A
5974235 Nunally et al. Oct 1999 A
5977791 Veenstra Nov 1999 A
5978584 Nishibata et al. Nov 1999 A
5978937 Miyamori et al. Nov 1999 A
5982105 Masters Nov 1999 A
5982229 Wong et al. Nov 1999 A
5982241 Nguyen et al. Nov 1999 A
5983277 Heile et al. Nov 1999 A
5986479 Mohan Nov 1999 A
5987246 Thomsen et al. Nov 1999 A
5988902 Holehan Nov 1999 A
5994939 Johnson et al. Nov 1999 A
5996032 Baker Nov 1999 A
5999725 Barbier et al. Dec 1999 A
6002268 Sasaki et al. Dec 1999 A
6002398 Wilson Dec 1999 A
6003054 Oshima et al. Dec 1999 A
6003107 Ranson et al. Dec 1999 A
6003133 Moughanni et al. Dec 1999 A
6005814 Mulholland et al. Dec 1999 A
6005904 Knapp et al. Dec 1999 A
6008685 Kunst Dec 1999 A
6008703 Perrott et al. Dec 1999 A
6009270 Mann Dec 1999 A
6009496 Tsai Dec 1999 A
6011407 New Jan 2000 A
6012835 Thompson et al. Jan 2000 A
6014135 Fernandes Jan 2000 A
6014509 Furtek et al. Jan 2000 A
6014723 Tremblay et al. Jan 2000 A
6016554 Skrovan et al. Jan 2000 A
6016563 Fleisher Jan 2000 A
6018559 Azegami et al. Jan 2000 A
6023422 Allen et al. Feb 2000 A
6023565 Lawman et al. Feb 2000 A
6026134 Duffy et al. Feb 2000 A
6026501 Hohl et al. Feb 2000 A
6028271 Gillespie et al. Feb 2000 A
6028959 Wang et al. Feb 2000 A
6031365 Sharpe-Geisler Feb 2000 A
6032268 Swoboda et al. Feb 2000 A
6034538 Abramovici Mar 2000 A
6037807 Wu et al. Mar 2000 A
6038551 Barlow et al. Mar 2000 A
6041406 Mann Mar 2000 A
6043695 O'Sullivan Mar 2000 A
6043719 Lin et al. Mar 2000 A
6049223 Lytle et al. Apr 2000 A
6049225 Huang et al. Apr 2000 A
6051772 Cameron et al. Apr 2000 A
6052035 Nolan et al. Apr 2000 A
6052524 Pauna Apr 2000 A
6055584 Bridges et al. Apr 2000 A
6057705 Wojewoda et al. May 2000 A
6058263 Voth May 2000 A
6058452 Rangasayee et al. May 2000 A
6061511 Marantz et al. May 2000 A
6066961 Lee et al. May 2000 A
6070003 Gove et al. May 2000 A
6072803 Allmond et al. Jun 2000 A
6075941 Itoh et al. Jun 2000 A
6079985 Wohl et al. Jun 2000 A
6081140 King Jun 2000 A
6094730 Lopez et al. Jul 2000 A
6097211 Couts-Martin et al. Aug 2000 A
6097432 Mead et al. Aug 2000 A
6101457 Barch et al. Aug 2000 A
6101617 Burckhartt et al. Aug 2000 A
6104217 Magana Aug 2000 A
6104325 Liaw et al. Aug 2000 A
6107769 Saylor et al. Aug 2000 A
6107826 Young et al. Aug 2000 A
6107882 Gabara et al. Aug 2000 A
6110223 Southgate et al. Aug 2000 A
6111431 Estrada Aug 2000 A
6112264 Beasley et al. Aug 2000 A
6121791 Abbott Sep 2000 A
6121805 Thamsirianunt et al. Sep 2000 A
6121965 Kenney et al. Sep 2000 A
6125416 Warren Sep 2000 A
6130548 Koifman Oct 2000 A
6130551 Agrawal et al. Oct 2000 A
6130552 Jefferson et al. Oct 2000 A
6133773 Garlepp et al. Oct 2000 A
6134181 Landry Oct 2000 A
6134516 Wang et al. Oct 2000 A
6137308 Nayak Oct 2000 A
6140853 Lo Oct 2000 A
6141376 Shaw Oct 2000 A
6141764 Ezell Oct 2000 A
6144327 Distinti et al. Nov 2000 A
6148104 Wang et al. Nov 2000 A
6148441 Woodward Nov 2000 A
6149299 Aslan et al. Nov 2000 A
6150866 Eto et al. Nov 2000 A
6154064 Proebsting Nov 2000 A
6157024 Chapdelaine et al. Dec 2000 A
6157270 Tso Dec 2000 A
6161199 Szeto et al. Dec 2000 A
6166367 Cho Dec 2000 A
6166960 Marneweck et al. Dec 2000 A
6167077 Ducaroir et al. Dec 2000 A
6167559 Furtek et al. Dec 2000 A
6172571 Moyal et al. Jan 2001 B1
6173419 Barnett Jan 2001 B1
6175914 Mann Jan 2001 B1
6175949 Gristede et al. Jan 2001 B1
6181163 Agrawal et al. Jan 2001 B1
6183131 Holloway et al. Feb 2001 B1
6185127 Myers et al. Feb 2001 B1
6185450 Seguine et al. Feb 2001 B1
6185522 Bakker Feb 2001 B1
6185703 Guddat et al. Feb 2001 B1
6185732 Mann et al. Feb 2001 B1
6188228 Philipp Feb 2001 B1
6188241 Gauthier et al. Feb 2001 B1
6188381 van der Wal et al. Feb 2001 B1
6188391 Seely et al. Feb 2001 B1
6188975 Gay Feb 2001 B1
6191603 Muradali et al. Feb 2001 B1
6191660 Mar et al. Feb 2001 B1
6191998 Reddy et al. Feb 2001 B1
6192431 Dabral et al. Feb 2001 B1
6198303 Rangasayee Mar 2001 B1
6201407 Kapusta et al. Mar 2001 B1
6201829 Schneider Mar 2001 B1
6202044 Tzori Mar 2001 B1
6204687 Schultz et al. Mar 2001 B1
6205574 Dellinger et al. Mar 2001 B1
6208572 Adams et al. Mar 2001 B1
6211708 Klemmer Apr 2001 B1
6211715 Terauchi Apr 2001 B1
6211741 Dalmia Apr 2001 B1
6215352 Sudo Apr 2001 B1
6219729 Keats et al. Apr 2001 B1
6222528 Gerpheide et al. Apr 2001 B1
6223144 Barnett et al. Apr 2001 B1
6223147 Bowers Apr 2001 B1
6223272 Coehlo et al. Apr 2001 B1
RE37195 Kean May 2001 E
6225866 Kubota et al. May 2001 B1
6236242 Hedberg May 2001 B1
6236275 Dent May 2001 B1
6236278 Olgaard May 2001 B1
6236593 Hong et al. May 2001 B1
6239389 Allen et al. May 2001 B1
6239798 Ludolph et al. May 2001 B1
6240375 Sonoda May 2001 B1
6246258 Lesea Jun 2001 B1
6246410 Bergeron et al. Jun 2001 B1
6249167 Oguchi et al. Jun 2001 B1
6249447 Boylan et al. Jun 2001 B1
6253250 Evans et al. Jun 2001 B1
6262717 Donohue et al. Jul 2001 B1
6263302 Hellestrand et al. Jul 2001 B1
6263339 Hirsch Jul 2001 B1
6263484 Yang Jul 2001 B1
6271679 McClintock et al. Aug 2001 B1
6272646 Rangasayee et al. Aug 2001 B1
6275117 Abugharbieh et al. Aug 2001 B1
6278568 Cloke et al. Aug 2001 B1
6280391 Olson et al. Aug 2001 B1
6281753 Corsi et al. Aug 2001 B1
6282547 Hirsch Aug 2001 B1
6282551 Anderson et al. Aug 2001 B1
6286127 King et al. Sep 2001 B1
6288707 Philipp Sep 2001 B1
6289300 Brannick et al. Sep 2001 B1
6289478 Kitagaki Sep 2001 B1
6289489 Bold et al. Sep 2001 B1
6292028 Tomita Sep 2001 B1
6294932 Watarai Sep 2001 B1
6294962 Mar Sep 2001 B1
6298320 Buckmaster et al. Oct 2001 B1
6304014 England et al. Oct 2001 B1
6304101 Nishihara Oct 2001 B1
6304790 Nakamura et al. Oct 2001 B1
6307413 Dalmia et al. Oct 2001 B1
6310521 Dalmia Oct 2001 B1
6310611 Caldwell Oct 2001 B1
6311149 Ryan et al. Oct 2001 B1
6314530 Mann Nov 2001 B1
6320184 Winklhofer et al. Nov 2001 B1
6320282 Caldwell Nov 2001 B1
6321369 Heile et al. Nov 2001 B1
6323846 Westerman et al. Nov 2001 B1
6324628 Chan Nov 2001 B1
6326859 Goldman et al. Dec 2001 B1
6332137 Hori et al. Dec 2001 B1
6332201 Chin et al. Dec 2001 B1
6337579 Mochida Jan 2002 B1
6338109 Snyder et al. Jan 2002 B1
6339815 Feng et al. Jan 2002 B1
6342907 Petty et al. Jan 2002 B1
6345383 Ueki Feb 2002 B1
6347395 Payne et al. Feb 2002 B1
6351789 Green Feb 2002 B1
6353452 Hamada et al. Mar 2002 B1
6355980 Callahan Mar 2002 B1
6356862 Bailey Mar 2002 B2
6356958 Lin Mar 2002 B1
6356960 Jones et al. Mar 2002 B1
6359950 Gossmann et al. Mar 2002 B2
6362697 Pulvirenti Mar 2002 B1
6366174 Berry et al. Apr 2002 B1
6366300 Ohara et al. Apr 2002 B1
6366874 Lee et al. Apr 2002 B1
6366878 Grunert Apr 2002 B1
6369660 Wei et al. Apr 2002 B1
6371878 Bowen Apr 2002 B1
6373954 Malcolm, Jr. et al. Apr 2002 B1
6374370 Bockhaus et al. Apr 2002 B1
6377009 Philipp Apr 2002 B1
6377575 Mullaney et al. Apr 2002 B1
6377646 Sha Apr 2002 B1
6380811 Zarubinsky et al. Apr 2002 B1
6380929 Platt Apr 2002 B1
6380931 Gillespie et al. Apr 2002 B1
6384947 Ackerman et al. May 2002 B1
6385742 Kirsch et al. May 2002 B1
6388109 Schwarz et al. May 2002 B1
6388464 Lacey et al. May 2002 B1
6396302 New et al. May 2002 B2
6397232 Cheng-Hung et al. May 2002 B1
6404204 Farruggia et al. Jun 2002 B1
6404445 Galea et al. Jun 2002 B1
6407953 Cleeves Jun 2002 B1
6408432 Herrmann et al. Jun 2002 B1
6411665 Chan et al. Jun 2002 B1
6411974 Graham et al. Jun 2002 B1
6414671 Gillespie et al. Jul 2002 B1
6417872 Zimmerman et al. Jul 2002 B2
6421698 Hong Jul 2002 B1
6425109 Choukalos et al. Jul 2002 B1
6429882 Abdelnur et al. Aug 2002 B1
6430305 Decker Aug 2002 B1
6433645 Mann et al. Aug 2002 B1
6434187 Beard et al. Aug 2002 B1
6437805 Sojoodi et al. Aug 2002 B1
6438565 Ammirato et al. Aug 2002 B1
6438735 McElvain et al. Aug 2002 B1
6438738 Elayda Aug 2002 B1
6441073 Tanaka et al. Aug 2002 B1
6445211 Saripella Sep 2002 B1
6449628 Wasson Sep 2002 B1
6449755 Beausang et al. Sep 2002 B1
6449761 Greidinger et al. Sep 2002 B1
6452437 Takeuchi et al. Sep 2002 B1
6452514 Philipp Sep 2002 B1
6453175 Mizell et al. Sep 2002 B2
6453461 Chaiken Sep 2002 B1
6456304 Angiulo et al. Sep 2002 B1
6457355 Philipp Oct 2002 B1
6457479 Zhuang et al. Oct 2002 B1
6460172 Insenser Farre et al. Oct 2002 B1
6463488 San Juan Oct 2002 B1
6466036 Philipp Oct 2002 B1
6466078 Stiff Oct 2002 B1
6466898 Chan Oct 2002 B1
6473069 Gerpheide Oct 2002 B1
6473825 Worley et al. Oct 2002 B1
6477691 Bergamashi/Rab et al. Nov 2002 B1
6480921 Mansoorian et al. Nov 2002 B1
6483343 Faith et al. Nov 2002 B1
6487700 Fukushima Nov 2002 B1
6489899 Ely et al. Dec 2002 B1
6490213 Mu et al. Dec 2002 B1
6492834 Lytle et al. Dec 2002 B1
6496971 Lesea et al. Dec 2002 B1
6498720 Glad Dec 2002 B2
6499134 Buffet et al. Dec 2002 B1
6499359 Washeleski et al. Dec 2002 B1
6504403 Bangs et al. Jan 2003 B2
6507214 Snyder Jan 2003 B1
6507215 Piasecki et al. Jan 2003 B1
6507857 Yalcinalp Jan 2003 B1
6509758 Piasecki et al. Jan 2003 B2
6512395 Lacey et al. Jan 2003 B1
6516428 Wenzel et al. Feb 2003 B2
6516452 Meding Feb 2003 B2
6522128 Ely et al. Feb 2003 B1
6523416 Takagi et al. Feb 2003 B2
6525593 Mar Feb 2003 B1
6526556 Stoica et al. Feb 2003 B1
6529791 Takagi Mar 2003 B1
6530065 McDonald et al. Mar 2003 B1
6534970 Ely et al. Mar 2003 B1
6535061 Darmawaskita et al. Mar 2003 B2
6535200 Philipp Mar 2003 B2
6535946 Bryant et al. Mar 2003 B1
6536028 Katsioulas et al. Mar 2003 B1
6539534 Bennett Mar 2003 B1
6542025 Kutz et al. Apr 2003 B1
6542844 Hanna Apr 2003 B1
6542845 Grucci et al. Apr 2003 B1
6552933 Roohparvar Apr 2003 B2
6553057 Sha et al. Apr 2003 B1
6554469 Thomson et al. Apr 2003 B1
6557149 Morrise et al. Apr 2003 B2
6557164 Faustini Apr 2003 B1
6559685 Green May 2003 B2
6560306 Duffy et al. May 2003 B1
6560699 Konkle May 2003 B1
6563391 Mar May 2003 B1
6564179 Belhaj May 2003 B1
6566961 Dasgupta et al. May 2003 B2
6567426 van Hook et al. May 2003 B1
6567932 Edwards et al. May 2003 B2
6570557 Westerman et al. May 2003 B1
6571331 Henry et al. May 2003 B2
6571373 Devins et al. May 2003 B1
6574590 Kershaw et al. Jun 2003 B1
6574739 Kung et al. Jun 2003 B1
6575373 Nakano Jun 2003 B1
6577258 Ruha et al. Jun 2003 B2
6580329 Sander Jun 2003 B2
6581191 Schubert et al. Jun 2003 B1
6587093 Shaw et al. Jul 2003 B1
6587995 Duboc et al. Jul 2003 B1
6588004 Southgate et al. Jul 2003 B1
6590422 Dillon Jul 2003 B1
6590517 Swanson Jul 2003 B1
6591369 Edwards et al. Jul 2003 B1
6592626 Bauchot et al. Jul 2003 B1
6594799 Robertson et al. Jul 2003 B1
6597212 Wang et al. Jul 2003 B1
6597824 Newberg et al. Jul 2003 B2
6598178 Yee et al. Jul 2003 B1
6600346 Macaluso Jul 2003 B1
6600351 Bisanti et al. Jul 2003 B2
6600575 Kohara Jul 2003 B1
6601189 Edwards et al. Jul 2003 B1
6601236 Curtis Jul 2003 B1
6603330 Snyder Aug 2003 B1
6603348 Preuss et al. Aug 2003 B1
6604179 Volk et al. Aug 2003 B2
6606731 Baum et al. Aug 2003 B1
6608472 Kutz et al. Aug 2003 B1
6610936 Gillespie et al. Aug 2003 B2
6611220 Snyder Aug 2003 B1
6611276 Muratori et al. Aug 2003 B1
6611856 Liao et al. Aug 2003 B1
6611952 Prakash et al. Aug 2003 B1
6613098 Sorge et al. Sep 2003 B1
6614260 Welch et al. Sep 2003 B1
6614320 Sullam et al. Sep 2003 B1
6614374 Gustavsson et al. Sep 2003 B1
6614458 Lambert et al. Sep 2003 B1
6615167 Devins et al. Sep 2003 B1
6617888 Volk Sep 2003 B2
6618854 Mann Sep 2003 B1
6621356 Gotz et al. Sep 2003 B2
6624640 Lund et al. Sep 2003 B2
6625765 Krishnan Sep 2003 B1
6628163 Dathe et al. Sep 2003 B2
6628311 Fang Sep 2003 B1
6631508 Williams Oct 2003 B1
6634008 Dole Oct 2003 B1
6636096 Schaffer et al. Oct 2003 B2
6637015 Ogami et al. Oct 2003 B1
6639586 Gerpheide Oct 2003 B2
6642857 Schediwy et al. Nov 2003 B1
6643151 Nebrigic et al. Nov 2003 B1
6643810 Whetsel Nov 2003 B2
6649924 Philipp et al. Nov 2003 B1
6650581 Hong et al. Nov 2003 B2
6658498 Carney et al. Dec 2003 B1
6658633 Devins et al. Dec 2003 B2
6661288 Morgan et al. Dec 2003 B2
6661410 Casebolt et al. Dec 2003 B2
6661724 Snyder et al. Dec 2003 B1
6664978 Kekic et al. Dec 2003 B1
6664991 Chew et al. Dec 2003 B1
6667642 Moyal Dec 2003 B1
6667740 Ely et al. Dec 2003 B2
6670852 Hauck Dec 2003 B1
6673308 Hino et al. Jan 2004 B2
6677814 Low et al. Jan 2004 B2
6677932 Westerman Jan 2004 B1
6678645 Rajsuman et al. Jan 2004 B1
6678877 Perry et al. Jan 2004 B1
6680632 Meyers et al. Jan 2004 B1
6680731 Gerpheide et al. Jan 2004 B2
6681280 Miyake et al. Jan 2004 B1
6681359 Au et al. Jan 2004 B1
6683462 Shimizu Jan 2004 B2
6683930 Dalmia Jan 2004 B1
6686787 Ling Feb 2004 B2
6686860 Gulati et al. Feb 2004 B2
6690224 Moore Feb 2004 B1
6691193 Wang et al. Feb 2004 B1
6691301 Bowen Feb 2004 B2
6697754 Alexander Feb 2004 B1
6701340 Gorecki et al. Mar 2004 B1
6701487 Ogami et al. Mar 2004 B1
6701508 Bartz et al. Mar 2004 B1
6704381 Moyal et al. Mar 2004 B1
6704879 Parrish Mar 2004 B1
6704889 Herrmann et al. Mar 2004 B2
6704893 Bauwens et al. Mar 2004 B1
6705511 Dames et al. Mar 2004 B1
6711226 Williams et al. Mar 2004 B1
6711731 Weiss Mar 2004 B2
6713897 Caldwell Mar 2004 B2
6714066 Gorecki et al. Mar 2004 B2
6714817 Daynes et al. Mar 2004 B2
6715132 Bartz et al. Mar 2004 B1
6717474 Chen et al. Apr 2004 B2
6718294 Bortfeld Apr 2004 B1
6718520 Lautzenheiser et al. Apr 2004 B1
6718533 Schneider et al. Apr 2004 B1
6724220 Snyder et al. Apr 2004 B1
6728900 Meli Apr 2004 B1
6728902 Kaiser et al. Apr 2004 B2
6730863 Gerpheide et al. May 2004 B1
6731552 Perner May 2004 B2
6732068 Bauer et al. May 2004 B2
6732347 Bixler et al. May 2004 B1
6738858 Fernald et al. May 2004 B1
6744323 Moyal et al. Jun 2004 B1
6748569 Brooke et al. Jun 2004 B1
6750852 Gillespie et al. Jun 2004 B2
6750889 Livingston Jun 2004 B1
6754101 Terzioglu et al. Jun 2004 B2
6754723 Kato Jun 2004 B2
6754765 Chang et al. Jun 2004 B1
6754849 Tamura Jun 2004 B2
6757882 Chen et al. Jun 2004 B2
6765407 Snyder Jul 2004 B1
6768337 Kohno et al. Jul 2004 B2
6768352 Maher et al. Jul 2004 B1
6769622 Tournemille et al. Aug 2004 B1
6771552 Fujisawa Aug 2004 B2
6774644 Eberlein Aug 2004 B2
6781456 Pradhan Aug 2004 B2
6782068 Wilson et al. Aug 2004 B1
6784821 Lee Aug 2004 B1
6785881 Bartz et al. Aug 2004 B1
6788116 Cook et al. Sep 2004 B1
6788221 Ely et al. Sep 2004 B1
6788521 Nishi Sep 2004 B2
6791377 Ilchmann et al. Sep 2004 B2
6792584 Eneboe et al. Sep 2004 B1
6798218 Kasperkovitz Sep 2004 B2
6798299 Mar et al. Sep 2004 B1
6799198 Huboi et al. Sep 2004 B1
6806771 Hildebrant et al. Oct 2004 B1
6806782 Motoyoshi et al. Oct 2004 B2
6809275 Cheng et al. Oct 2004 B1
6809566 Xin-LeBlanc Oct 2004 B1
6810442 Lin et al. Oct 2004 B1
6815979 Ooshita Nov 2004 B2
6816544 Bailey et al. Nov 2004 B1
6817005 Mason et al. Nov 2004 B2
6819142 Viehmann et al. Nov 2004 B2
6823282 Snyder Nov 2004 B1
6823497 Schubert et al. Nov 2004 B2
6825689 Snyder Nov 2004 B1
6825869 Bang Nov 2004 B2
6828824 Betz et al. Dec 2004 B2
6829727 Pawloski Dec 2004 B1
6834384 Fiorella, III et al. Dec 2004 B2
6836169 Richmond et al. Dec 2004 B2
6839774 Ahn et al. Jan 2005 B1
6842710 Gehring et al. Jan 2005 B1
6847203 Conti et al. Jan 2005 B1
6850117 Weber et al. Feb 2005 B2
6850554 Sha et al. Feb 2005 B1
6853598 Chevallier Feb 2005 B2
6854067 Kutz et al. Feb 2005 B1
6856433 Hatano et al. Feb 2005 B2
6859884 Sullam Feb 2005 B1
6862240 Burgan Mar 2005 B2
6864710 Lacey et al. Mar 2005 B1
6865429 Schneider et al. Mar 2005 B1
6865504 Larson et al. Mar 2005 B2
6868500 Kutz et al. Mar 2005 B1
6871253 Greeff et al. Mar 2005 B2
6871331 Bloom et al. Mar 2005 B1
6873203 Latham, II et al. Mar 2005 B1
6873210 Mulder et al. Mar 2005 B2
6876941 Nightingale Apr 2005 B2
6880086 Kidder et al. Apr 2005 B2
6888453 Lutz et al. May 2005 B2
6888538 Ely et al. May 2005 B2
6892310 Kutz et al. May 2005 B1
6892322 Snyder May 2005 B1
6893724 Lin et al. May 2005 B2
6894928 Owen May 2005 B2
6895373 Garcia et al. May 2005 B2
6897390 Caldwell et al. May 2005 B2
6898703 Ogami et al. May 2005 B1
6900663 Roper et al. May 2005 B1
6901563 Ogami et al. May 2005 B1
6903402 Miyazawa Jun 2005 B2
6903613 Mitchell et al. Jun 2005 B1
6904570 Foote et al. Jun 2005 B2
6910126 Mar et al. Jun 2005 B1
6911857 Stiff Jun 2005 B1
6917661 Scott et al. Jul 2005 B1
6922821 Nemecek Jul 2005 B1
6924668 Muller et al. Aug 2005 B2
6934674 Douezy et al. Aug 2005 B1
6937075 Lim et al. Aug 2005 B2
6940356 McDonald, II et al. Sep 2005 B2
6941336 Mar Sep 2005 B1
6941538 Hwang et al. Sep 2005 B2
6944018 Caldwell Sep 2005 B2
6949811 Miyazawa Sep 2005 B2
6949984 Siniscalchi Sep 2005 B2
6950954 Sullam et al. Sep 2005 B1
6950990 Rajarajan et al. Sep 2005 B2
6952778 Snyder Oct 2005 B1
6954511 Tachimori Oct 2005 B2
6954904 White Oct 2005 B2
6956419 Mann et al. Oct 2005 B1
6957180 Nemecek Oct 2005 B1
6957242 Snyder Oct 2005 B1
6963233 Puccio et al. Nov 2005 B2
6963908 Lynch et al. Nov 2005 B1
6966039 Bartz et al. Nov 2005 B1
6967511 Sullam Nov 2005 B1
6967960 Bross et al. Nov 2005 B1
6968514 Cooke et al. Nov 2005 B2
6969978 Dening Nov 2005 B2
6970844 Bierenbaum Nov 2005 B1
6971004 Pleis et al. Nov 2005 B1
6973400 Cahill-O'Brien et al. Dec 2005 B2
6975123 Malang et al. Dec 2005 B1
6980060 Boerstler et al. Dec 2005 B2
6981090 Kutz et al. Dec 2005 B1
6988192 Snider Jan 2006 B2
6996799 Cismas et al. Feb 2006 B1
7005933 Shutt Feb 2006 B1
7009444 Scott Mar 2006 B1
7010773 Bartz et al. Mar 2006 B1
7015735 Kimura et al. Mar 2006 B2
7017145 Taylor Mar 2006 B2
7017409 Zielinski et al. Mar 2006 B2
7020854 Killian et al. Mar 2006 B2
7023215 Steenwyk Apr 2006 B2
7023257 Sullam Apr 2006 B1
7024636 Weed Apr 2006 B2
7024654 Bersch et al. Apr 2006 B2
7026861 Steenwyk Apr 2006 B2
7030513 Caldwell Apr 2006 B2
7030656 Lo et al. Apr 2006 B2
7030688 Dosho et al. Apr 2006 B2
7030782 Ely et al. Apr 2006 B2
7034603 Brady et al. Apr 2006 B2
7042301 Sutardja May 2006 B2
7047166 Dancea May 2006 B2
7055035 Allison et al. May 2006 B2
7058921 Hwang et al. Jun 2006 B1
7073158 McCubbrey Jul 2006 B2
7076420 Snyder et al. Jul 2006 B1
7079166 Hong Jul 2006 B1
7086014 Bartz et al. Aug 2006 B1
7088166 Reinschmidt et al. Aug 2006 B1
7089175 Nemecek et al. Aug 2006 B1
7091713 Erdélyi et al. Aug 2006 B2
7092980 Mar et al. Aug 2006 B1
7098414 Caldwell Aug 2006 B2
7099818 Nemecek et al. Aug 2006 B1
7103108 Beard Sep 2006 B1
7109978 Gillespie et al. Sep 2006 B2
7117485 Wilkinson et al. Oct 2006 B2
7119550 Kitano et al. Oct 2006 B2
7119602 Davis Oct 2006 B2
7124376 Zaidi et al. Oct 2006 B2
7127630 Snyder Oct 2006 B1
7129793 Gramegna Oct 2006 B2
7129873 Kawamura Oct 2006 B2
7132835 Arcus Nov 2006 B1
7133140 Lukács et al. Nov 2006 B2
7133793 Ely et al. Nov 2006 B2
7138841 Li et al. Nov 2006 B1
7138868 Sanchez et al. Nov 2006 B2
7139530 Kusbel Nov 2006 B2
7141968 Hibbs et al. Nov 2006 B2
7141987 Hibbs et al. Nov 2006 B2
7149316 Kutz et al. Dec 2006 B1
7150002 Anderson et al. Dec 2006 B1
7151528 Taylor et al. Dec 2006 B2
7152027 Andrade et al. Dec 2006 B2
7154294 Liu et al. Dec 2006 B2
7161936 Barrass et al. Jan 2007 B1
7162410 Nemecek et al. Jan 2007 B1
7171455 Gupta et al. Jan 2007 B1
7176701 Wachi et al. Feb 2007 B2
7178096 Rangan et al. Feb 2007 B2
7180342 Shutt et al. Feb 2007 B1
7185162 Snyder Feb 2007 B1
7185321 Roe et al. Feb 2007 B1
7188063 Snyder Mar 2007 B1
7193901 Ruby et al. Mar 2007 B2
7200507 Chen et al. Apr 2007 B2
7206733 Nemecek Apr 2007 B1
7212189 Shaw et al May 2007 B2
7221187 Snyder et al. May 2007 B1
7227389 Gong et al. Jun 2007 B2
7236921 Nemecek et al. Jun 2007 B1
7250825 Wilson et al. Jul 2007 B2
7256588 Howard et al. Aug 2007 B2
7265633 Stiff Sep 2007 B1
7281846 McLeod Oct 2007 B2
7282905 Chen et al. Oct 2007 B2
7283151 Nihei et al. Oct 2007 B2
7287112 Pleis et al. Oct 2007 B1
7288977 Stanley Oct 2007 B2
7290244 Peck et al. Oct 2007 B2
7295049 Moyal et al. Nov 2007 B1
7298124 Kan et al. Nov 2007 B2
7301835 Joshi et al. Nov 2007 B2
7305510 Miller Dec 2007 B2
7307485 Snyder et al. Dec 2007 B1
7308608 Pleis et al. Dec 2007 B1
7312616 Snyder Dec 2007 B2
7323879 Kuo et al. Jan 2008 B2
7342405 Eldridge et al. Mar 2008 B2
7358714 Watanabe et al. Apr 2008 B2
7367017 Maddocks et al. Apr 2008 B2
7373437 Seigneret et al. May 2008 B2
7376001 Joshi et al. May 2008 B2
7376904 Cifra et al. May 2008 B2
7386740 Kutz et al. Jun 2008 B2
7400183 Sivadasan et al. Jul 2008 B1
7406674 Ogami et al. Jul 2008 B1
7421251 Westwick et al. Sep 2008 B2
7466307 Trent, Jr. et al. Dec 2008 B2
7542533 Jasa et al. Jun 2009 B2
7554847 Lee Jun 2009 B2
7616509 Qureshi et al. Nov 2009 B2
20010002129 Zimmerman et al. May 2001 A1
20010010083 Satoh Jul 2001 A1
20010038392 Humpleman et al. Nov 2001 A1
20010043081 Rees Nov 2001 A1
20010044927 Karniewicz Nov 2001 A1
20010045861 Bloodworth et al. Nov 2001 A1
20020010716 McCartney et al. Jan 2002 A1
20020016706 Cooke et al. Feb 2002 A1
20020023110 Fortin et al. Feb 2002 A1
20020052729 Kyung et al. May 2002 A1
20020059543 Cheng et al. May 2002 A1
20020063688 Shaw et al. May 2002 A1
20020065646 Waldie et al. May 2002 A1
20020068989 Ebisawa et al. Jun 2002 A1
20020073119 Richard Jun 2002 A1
20020080186 Frederiksen Jun 2002 A1
20020085020 Carroll, Jr. Jul 2002 A1
20020091739 Ferlitsch et al. Jul 2002 A1
20020099863 Comeau et al. Jul 2002 A1
20020109722 Rogers et al. Aug 2002 A1
20020116168 Kim Aug 2002 A1
20020121679 Bazarjani et al. Sep 2002 A1
20020122060 Markel Sep 2002 A1
20020129334 Dane et al. Sep 2002 A1
20020133771 Barnett Sep 2002 A1
20020133794 Kanapathippillai et al. Sep 2002 A1
20020138516 Igra Sep 2002 A1
20020144099 Muro, Jr. et al. Oct 2002 A1
20020145433 Morrise et al. Oct 2002 A1
20020152234 Estrada et al. Oct 2002 A1
20020152449 Lin Oct 2002 A1
20020156885 Thakkar Oct 2002 A1
20020156929 Hekmatpour Oct 2002 A1
20020156998 Casselman Oct 2002 A1
20020161802 Gabrick et al. Oct 2002 A1
20020166100 Meding Nov 2002 A1
20020174134 Goykhman Nov 2002 A1
20020174411 Feng et al. Nov 2002 A1
20020188910 Zizzo Dec 2002 A1
20020191029 Gillespie et al. Dec 2002 A1
20030011639 Webb Jan 2003 A1
20030014447 White Jan 2003 A1
20030025734 Boose et al. Feb 2003 A1
20030041235 Meyer Feb 2003 A1
20030056071 Triece et al. Mar 2003 A1
20030058469 Buis et al. Mar 2003 A1
20030061572 McClannahan et al. Mar 2003 A1
20030062889 Ely et al. Apr 2003 A1
20030080755 Kobayashi May 2003 A1
20030097640 Abrams et al. May 2003 A1
20030105620 Bowen Jun 2003 A1
20030126947 Margaria Jul 2003 A1
20030135842 Frey et al. Jul 2003 A1
20030149961 Kawai et al. Aug 2003 A1
20030229482 Cook et al. Dec 2003 A1
20040018711 Madurawe Jan 2004 A1
20040054821 Warren et al. Mar 2004 A1
20040153802 Kudo et al. Aug 2004 A1
20040205553 Hall et al. Oct 2004 A1
20040205617 Light Oct 2004 A1
20040205695 Fletcher Oct 2004 A1
20050024341 Gillespie et al. Feb 2005 A1
20050066152 Garey Mar 2005 A1
20050143968 Odom et al. Jun 2005 A9
20050240917 Wu Oct 2005 A1
20050248534 Kehlstadt Nov 2005 A1
20050280453 Hsieh Dec 2005 A1
20060015862 Odom et al. Jan 2006 A1
20060031768 Shah et al. Feb 2006 A1
20060032680 Elias et al. Feb 2006 A1
20060097991 Hotelling et al. May 2006 A1
20060273804 Delorme et al. Dec 2006 A1
20070139074 Reblewski Jun 2007 A1
20070258458 Kapoor Nov 2007 A1
20080095213 Lin et al. Apr 2008 A1
20080186052 Needham et al. Aug 2008 A1
20080259998 Venkataraman et al. Oct 2008 A1
20080294806 Swindle et al. Nov 2008 A1
20090322305 De Cremoux Dec 2009 A1
Foreign Referenced Citations (23)
Number Date Country
19710829 Sep 1998 DE
0308583 Mar 1989 EP
0308583 Mar 1989 EP
0308583 Mar 1989 EP
368398 May 1990 EP
0450863 Oct 1991 EP
0450863 Oct 1991 EP
0450863 Oct 1991 EP
0499383 Aug 1992 EP
063916 Feb 1995 EP
1170671 Jan 2002 EP
1170671 Jan 2002 EP
1205848 May 2002 EP
1191423 Feb 2003 EP
404083405 Mar 1992 JP
405055842 Mar 1993 JP
06021732 Jan 1994 JP
404095408 Mar 2002 JP
9532478 Nov 1995 WO
9532478 Nov 1995 WO
PCTUS9617305 Jun 1996 WO
PCTUS9834376 Aug 1998 WO
PCTUS9909712 Feb 1999 WO