1. Field of the Invention
The present invention relates to techniques for performing oilfield operations relating to subterranean formations having reservoirs therein. More particularly, the invention relates to techniques for performing drilling operations involving an analysis of drilling equipment, drilling conditions and other oilfield parameters that impact the drilling operations.
2. Background of the Related Art
Oilfield operations, such as surveying, drilling, wireline testing, completions and production, are typically performed to locate and gather valuable downhole fluids. As shown in
As shown in
After the drilling operation is complete, the well may then be prepared for production. As shown in
During the oilfield operations, data is typically collected for analysis and/or monitoring of the oilfield operations. Such data may include, for example, subterranean formation, equipment, historical and/or other data. Data concerning the subterranean formation is collected using a variety of sources. Such formation data may be static or dynamic. Static data relates to formation structure and geological stratigraphy that defines the geological structure of the subterranean formation. Dynamic data relates to fluids flowing through the geologic structures of the subterranean formation. Such static and/or dynamic data may be collected to learn more about the formations and the valuable assets contained therein.
Sources used to collect static data may be seismic tools, such as a seismic truck that sends compression waves into the earth as shown in
Sensors may be positioned about the oilfield to collect data relating to various oilfield operations. For example, sensors in the wellbore may monitor fluid composition, sensors located along the flow path may monitor flow rates and sensors at the processing facility may monitor fluids collected. Other sensors may be provided to monitor downhole, surface, equipment or other conditions. The monitored data is often used to make decisions at various locations of the oilfield at various times. Data collected by these sensors may be further analyzed and processed. Data may be collected and used for current or future operations. When used for future operations at the same or other locations, such data may sometimes be referred to as historical data.
The processed data may be used to predict downhole conditions, and make decisions concerning oilfield operations. Such decisions may involve well planning, well targeting, well completions, operating levels, production rates and other configurations. Often this information is used to determine when to drill new wells, re-complete existing wells or alter wellbore production.
Data from one or more wellbores may be analyzed to plan or predict various outcomes at a given wellbore. In some cases, the data from neighboring wellbores, or wellbores with similar conditions or equipment is used to predict how a well will perform. There are usually a large number of variables and large quantities of data to consider in analyzing wellbore operations. It is, therefore, often useful to model the behavior of the oilfield operation to determine the desired course of action. During the ongoing operations, the operating conditions may need adjustment as conditions change and new information is received.
Techniques have been developed to model the behavior of geological structures, downhole reservoirs, wellbores, surface facilities as well as other portions of the oilfield operation. Examples of modeling techniques are shown in patent/application Nos. U.S. Pat. No. 5,992,519, WO2004049216, WO1999/064896, U.S. Pat. No. 6,313,837, US2003/0216897, US2003/0132934, US20050149307 and US2006/0197759. Typically, existing modeling techniques have been used to analyze only specific portions of the oilfield operation. More recently, attempts have been made to use more than one model in analyzing certain oilfield operations. See, for example, U.S. patent/application Nos. U.S. Pat. No. 5,698,0940, WO04049216, 20040220846, Ser. No. 10/586,283, and U.S. Pat. No. 6,801,197.
Techniques have also been developed to predict and/or plan certain oilfield operations, such as drilling operations. Examples of techniques for generating drilling plans are provided in U.S. Patent/Application Nos. 20050236184, 20050211468, 20050228905, 20050209886, and 20050209836. Some drilling techniques involve controlling the drilling operation. Examples of such drilling techniques are shown in Patent/Application Nos. GB2392931 and GB2411669. Other drilling techniques seek to provide real-time drilling operations. Examples of techniques purporting to provide real-time drilling are described in U.S. Pat. Nos. 7,079,952, 6,266,619, 5,899,958, 5,139,094, 7,003,439 and 5,680,906.
Despite the development and advancement of various aspects of oilfield planning, there remains a need to provide techniques capable of designing and implementing drilling operations based on a complex analysis of a wide variety of parameters affecting oilfield operations. It is desirable that such a complex analysis of oilfield parameters and their impact on the drilling operation be performed in real-time. It is further desirable that such techniques enable real-time data flow to and/or from a variety of sources (i.e. internal and/or external). Such techniques preferably would be capable of one of more of the following, among others: selectively manipulating data to facilitate data flow, automatically and/or manually translating and/or converting the data, providing visualization of data and/or outputs, selectively accessing a given number of a variety of servers, selectively accessing data flow channels, providing integrated processing of selected data in a single operation, enabling direct access to real-time data sources without requiring intermediaries, displaying data and/or outputs in one or more canvases (such as 2D, 3D, Well Section), processing a wide variety of data of various formats, implementing (in an automatic, manual, real-time or other fashion) drilling commands based on data, updating displays of drilling data (locally or remotely) and the earth model as new data is acquired from downhole instruments or based upon the data stored in the servers, and automatically and/or manually tuning the rendering of the live and historical data in other contexts (such as geological, geophysical) in a manner that meets/exceeds the performance needs.
Identifying the risks associated with drilling a well is probably the most subjective process in well planning today. This is based on a person recognizing part of a technical well design that is out of place relative to the earth properties or mechanical equipment to be used to drill the well. The identification of any risks is brought about by integrating all of the well, earth, and equipment information in the mind of a person and mentally sifting through all of the information, mapping the interdependencies, and based solely on personal experience extracting which parts of the project pose what potential risks to the overall success of that project. This is tremendously sensitive to human bias, the individual's ability to remember and integrate all of the data in their mind, and the individuals experience to enable them to recognize the conditions that trigger each drilling risk. Most people are not equipped to do this and those that do are very inconsistent unless strict process and checklists are followed. Some drilling risk software systems are in existence today, but the same human process in required to identify and assess the likelihood of each individual risk and the consequences. Those systems are simply a computer system for manually recording the results of the risk identification process.
Conventional software systems for automatic well planning may include a risk assessment component. This component automatically assesses risks associated with the technical well design decisions in relation to the earth's geology and geomechanical properties and in relation to the mechanical limitations of the equipment specified or recommended for use.
When users have identified and captured drilling risks for drilling a given well, no prescribed standard visualization techniques exist to add value to the risk information already created. Some techniques exist for locating an individual risk event at a specified measured depth or depth interval by using some type of symbol or shape and pattern combination in a three-dimensional (3D) space.
In at least one aspect, the invention relates to a method of performing a drilling operation for an oilfield having a subterranean formation with geological structures and reservoirs therein. The method involves collecting oilfield data, selectively manipulating the oilfield data for real-time analysis according to a defined configuration, comparing the real-time drilling data with oilfield predictions based on the defined configuration and selectively adjusting the drilling operation based on the comparison.
In another aspect, the invention relates to a method of performing a drilling operation for an oilfield having drilling system for advancing a drilling tool into a subterranean formation. The method involves collecting oilfield data, a portion of the oilfield data being real-time drilling data generated from the oilfield during drilling, defining a plurality of oilfield events based on the oilfield data, selectively displaying the plurality of oilfield events about a wellbore image of a display, and updating the display of the plurality of oilfield events during drilling based on the real-time drilling data.
In another aspect, the invention relates to a method of performing a drilling operation for an oilfield having drilling system for advancing a drilling tool into a subterranean formation. The method involves collecting oilfield data, a portion of the oilfield data being real-time drilling data generated from the oilfield during drilling, defining a plurality of oilfield events based on the oilfield data, formatting a display based on a portion of the plurality of oilfield events selected for the display, and selectively reformatting the display in real-time responsive to supplementing the selected portion of the plurality of oilfield events or selectively adjusting the selected portion of the plurality of oilfield events.
In another aspect, the invention relates to a computer readable medium, embodying instructions executable by a computer to perform method steps for performing a drilling operation for an oilfield having drilling system for advancing a drilling tool into a subterranean formation. The instructions includes functionality for collecting oilfield data, at least a portion of the oilfield data being generated from a wellsite of the oilfield, selectively manipulating the oilfield data for real-time analysis according to a defined configuration, comparing the real-time drilling data with oilfield predictions based on the defined configuration, and selectively adjusting the drilling operation based on the comparison.
In another aspect, the invention relates to a system for performing a drilling operation for an oilfield having a subterranean formation with geological structures and reservoirs therein. The system is provided with a surface unit for collecting oilfield data and a modeling tool operatively linked to the surface unit. The modeling tool has a plurality of formatting modules for selectively formatting the oilfield data according to a real-time configuration and a plurality of processing modules for selectively analyzing the oilfield data based on the real-time configuration. Other aspects of the invention will be discernible from the disclosure provided herein.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
The present application contains at least one drawing executed in color. Copies of this patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.
Specific embodiments of the invention will now be described in detail with reference to the accompanying figures. Like elements in the various figures are denoted by like reference numerals for consistency.
In the following detailed description of embodiments of the invention, numerous specific details are set forth in order to provide a more thorough understanding of the invention. In other instances, well-known features have not been described in detail to avoid obscuring the invention.
In general, the present invention relates generally to the integration of geoscience modeling software and the Well Planning System (WPS) to model and display well bore geometry, drilling parameters, risk quantification, and the time and cost to drill a well in a geological context.
The present invention involves applications generated for the oil and gas industry.
The received sound vibration(s) (112) are representative of different parameters (such as amplitude and/or frequency). The data received (120) is provided as input data to a computer (122a) of the seismic recording truck (106a), and responsive to the input data, the recording truck computer (122a) generates a seismic data output record (124). The seismic data may be further processed as desired, for example by data reduction.
A surface unit (134) is used to communicate with the drilling tool and offsite operations. The surface unit is capable of communicating with the drilling tool to send commands to drive the drilling tool, and to receive data therefrom. The surface unit is preferably provided with computer facilities for receiving, storing, processing and analyzing data from the oilfield. The surface unit collects data output (135) generated during the drilling operation. Computer facilities, such as those of the surface unit, may be positioned at various locations about the oilfield and/or at remote locations.
Sensors (S), such as gauges, may be positioned throughout the reservoir, rig, oilfield equipment (such as the downhole tool) or other portions of the oilfield for gathering information about various parameters, such as surface parameters, downhole parameters and/or operating conditions. These sensors preferably measure oilfield parameters, such as weight on bit, torque on bit, pressures, temperatures, flow rates, compositions, measured depth, azimuth, inclination and other parameters of the oilfield operation.
The information gathered by the sensors may be collected by the surface unit and/or other data collection sources for analysis or other processing. The data collected by the sensors may be used alone or in combination with other data. The data may be collected in a database and all or select portions of the data may be selectively used for analyzing and/or predicting oilfield operations of the current and/or other wellbores.
Data outputs from the various sensors positioned about the oilfield may be processed for use. The data may be may be historical data, real-time data or combinations thereof. The real-time data may be used in real-time, or stored for later use. The data may also be combined with historical data or other inputs for further analysis. The data may be housed in separate databases, or combined into a single database.
The collected data may be used to perform analysis, such as modeling operations. For example, the seismic data output may be used to perform geological, geophysical and/or reservoir engineering simulations. The reservoir, wellbore, surface and/or process data may be used to perform reservoir, wellbore, or other production simulations. The data outputs from the oilfield operation may be generated directly from the sensors, or after some preprocessing or modeling. These data outputs may act as inputs for further analysis.
The data is collected and stored at the surface unit (134). One or more surface units may be located at the oilfield, or linked remotely thereto. The surface unit may be a single unit, or a complex network of units used to perform the necessary data management functions throughout the oilfield. The surface unit may be a manual or automatic system. The surface unit may be operated and/or adjusted by a user.
The surface unit may be provided with a transceiver (137) to allow communications between the surface unit and various portions of the oilfield and/or other locations. The surface unit may also be provided with or functionally linked to a controller for actuating mechanisms at the oilfield. The surface unit may then send command signals to the oilfield in response to data received. The surface unit may receive commands via the transceiver or may itself execute commands to the controller. A processor may be provided to analyze the data (locally or remotely) and make the decisions to actuate the controller. In this manner, the oilfield may be selectively adjusted based on the data collected. These adjustments may be made automatically based on computer protocol, or manually by an operator. In some cases, well plans and/or well placement may be adjusted to select optimum operating conditions, or to avoid problems.
The wireline tool may be operatively linked to, for example, the geophones (118) stored in the computer (122a) of the seismic recording truck (106a) of
While only one wellsite is shown, it will be appreciated that the oilfield may cover a portion of land that hosts one or more wellsites. One or more gathering facilities may be operatively connected to one or more of the wellsites for selectively collecting downhole fluids from the wellsite(s).
Throughout the oilfield operations depicted in
While
The oilfield configuration of
The respective graphs of
The models may be used to create an earth model defining the subsurface conditions. This earth model predicts the structure and its behavior as oilfield operations occur. As new information is gathered, part or all of the earth model may need adjustment.
The drilling system (302) includes a drill string (308) suspended within the borehole (306) with a drill bit (310) at its lower end. The drilling system (302) also includes the land-based platform and derrick assembly (312) positioned over the borehole (306) penetrating a subsurface formation (F). The assembly (312) includes a rotary table (314), kelly (316), hook (318) and rotary swivel (319). The drill string (308) is rotated by the rotary table (314), energized by means not shown, which engages the kelly (316) at the upper end of the drill string. The drill string (308) is suspended from hook (318), attached to a traveling block (also not shown), through the kelly (316) and a rotary swivel (319) which permits rotation of the drill string relative to the hook.
The drilling system (302) further includes drilling fluid or mud (320) stored in a pit (322) formed at the well site. A pump (324) delivers the drilling fluid (320) to the interior of the drill string (308) via a port in the swivel (319), inducing the drilling fluid to flow downwardly through the drill string (308) as indicated by the directional arrow (324). The drilling fluid exits the drill string (308) via ports in the drill bit (310), and then circulates upwardly through the region between the outside of the drill string and the wall of the borehole, called the annulus (326). In this manner, the drilling fluid lubricates the drill bit (310) and carries formation cuttings up to the surface as it is returned to the pit (322) for recirculation.
The drill string (308) further includes a bottom hole assembly (BHA), generally referred to as (330), near the drill bit (310) (in other words, within several drill collar lengths from the drill bit). The bottom hole assembly (330) includes capabilities for measuring, processing, and storing information, as well as communicating with the surface unit. The BHA (330) further includes drill collars (328) for performing various other measurement functions.
Sensors (S) are located about the wellsite to collect data, preferably in real-time, concerning the operation of the wellsite, as well as conditions at the wellsite. The sensors (S) of
The drilling system (302) is operatively connected to the surface unit (304) for communication therewith. The BHA (330) is provided with a communication subassembly (352) that communicates with the surface unit. The communication subassembly (352) is adapted to send signals to and receive signals from the surface using mud pulse telemetry. The communication subassembly may include, for example, a transmitter that generates a signal, such as an acoustic or electromagnetic signal, which is representative of the measured drilling parameters. Communication between the downhole and surface systems is depicted as being mud pulse telemetry, such as the one described in U.S. Pat. No. 5,517,464, assigned to the assignee of the present invention. It will be appreciated by one of skill in the art that a variety of telemetry systems may be employed, such as wired drill pipe, electromagnetic or other known telemetry systems.
Typically, the wellbore is drilled according to a drilling plan that is established prior to drilling. The drilling plan typically sets forth equipment, pressures, trajectories and/or other parameters that define the drilling process for the wellsite. The drilling operation may then be performed according to the drilling plan. However, as information is gathered, the drilling operation may need to deviate from the drilling plan. Additionally, as drilling or other operations are performed, the subsurface conditions may change. The earth model may also need adjustment as new information is collected.
The wellsite drilling system (404) and surface unit (402) may be the same as the wellsite drilling system and surface unit of
The controller (414) is enabled to enact commands at the oilfield. The controller (414) may be provided with actuation means that can perform drilling operations, such as steering, advancing, or otherwise taking action at the wellsite. Commands may be generated based on logic of the processor (418), or by commands received from other sources. The processor (418) is preferably provided with features for manipulating and analyzing the data. The processor (418) may be provided with additional functionality to perform oilfield operations.
A display unit (416) may be provided at the wellsite and/or remote locations for viewing oilfield data (not shown). The oilfield data represented by a display unit (416) may be raw data, processed data and/or data outputs generated from various data. The display unit (416) is preferably adapted to provide flexible views of the data, so that the screens depicted may be customized as desired. A user may determine the desired course of action during drilling based on reviewing the displayed oilfield data. The drilling operation may be selectively adjusted in response to the display unit (416). The display unit (416) may include a two dimensional display for viewing oilfield data or defining oilfield events. The display unit (416) may also include a three dimensional display for viewing various aspects of the drilling operation. At least some aspect of the drilling operation is preferably viewed in real-time in the three dimensional display.
The transceiver (420) provides a means for providing data access to and/or from other sources. The transceiver also provides a means for communicating with other components, such as the servers (406), the wellsite drilling system (404), surface unit (402) and/or the modeling tool (408).
The servers (406) may be used to transfer data from one or more wellsites to the modeling tool (408). As shown, the server (406) includes onsite servers (422), a remote server (424) and a third party server (426). The onsite servers (422) may be positioned at the wellsite and/or other locations for distributing data from the surface unit. The remote server (424) is positioned at a location away from the oilfield and provides data from remote sources. The third party server (426) may be onsite or remote, but is operated by a third party, such as a client.
The servers (406) are preferably capable of transferring drilling data, such as logs, drilling events, trajectory, and/or other oilfield data, such as seismic data, historical data, economics data, or other data that may be of use during analysis. The type of server is not intended to limit the invention. Preferably the system is adapted to function with any type of server that may be employed.
The servers (406) communicate with the modeling tool (408) as indicated by the communication links (410). As indicated by the multiple arrows, the servers (406) may have separate communication links (410) with the modeling tool (408). One or more of the servers may be combined or linked to provide a combined communication link (410).
The servers (406) collect a wide variety of data. The data may be collected from a variety of channels that provide a certain type of data, such as well logs. The data from the servers is passed to the modeling tool (408) for processing. The servers (406) may also be used to store and/or transfer data.
The modeling tool (408) is operatively linked to the surface unit (402) for receiving data therefrom. In some cases, the modeling tool (408) and/or server(s) (406) may be positioned at the wellsite. The modeling tool (408) and/or server(s) (406) may also be positioned at various locations. The modeling tool (408) may be operatively linked to the surface unit via the server(s) (406). The modeling tool (408) may also be included in or located near the surface unit (402).
The modeling tool (408) includes an interface (430), a processing unit (432), a modeling unit (448), a data repository (434) and a data rendering unit (436). The interface (430) communicates with other components, such as the servers (406). The interface (430) may also permit communication with other oilfield or non-oilfield sources. The interface (430) receives the data and maps the data for processing. Data from servers (406) typically streams along predefined channels which may be selected by the interface (430).
As depicted in
The processing unit (432) includes formatting modules (440), processing modules (442), coordinating modules (444), and utility modules (446). These modules are designed to manipulate the oilfield data for real-time analysis.
The formatting modules (440) are used to conform the data to a desired format for processing. Incoming data may need to be formatted, translated, converted or otherwise manipulated for use. The formatting modules (440) are configured to enable the data from a variety of sources to be formatted and used so that the data processes and displays in real-time.
As shown, the formatting modules (440) include components for formatting the data, such as a unit converter and the mapping components. The unit converter converts individual data points received from the interface into the format expected for processing. The format may be defined for specific units, provide a conversion factor for converting to the desired units, or allow the units and/or conversion factor to be defined. To facilitate processing, the conversions may be suppressed for desired units.
The mapping component maps data according to a given type or classification, such as a certain unit, log mnemonics, precision, max/min of color table settings, etc. The type for a given set of data may be assigned, particularly when the type is unknown. The assigned type and corresponding map for the data may be stored in a file (ie. XML) and recalled for future unknown data types.
The coordinating modules (444) orchestrate the data flow throughout the modeling tool. The data is manipulated so that it flows according to a choreographed plan. The data may be queued and synchronized so that it processes according to a timer and/or a given queue size. The coordinating modules include the queuing components, the synchronization components, the management component, the modeling tool mediator component, the settings component and the real-time handling component.
The queuing module groups the data in a queue for processing through the system. The system of queues provides a certain amount of data at a given time so that it may be processed in real-time.
The synchronization component links certain data together so that collections of different kinds of data may be stored and visualized in the modeling tool concurrently. In this manner, certain disparate or similar pieces of data may be choreographed so that they link with other data as it flows through the system. The synchronization component provides the ability to selectively synchronize certain data for processing. For example, log data may be synchronized with trajectory data. Where log samples have a depth that extends beyond the wellbore, the samples may be displayed on the canvas using a tangential projection so that, when the actual trajectory data is available, the log samples will be repositioned along the wellbore. Alternatively, incoming log samples that aren't on the trajectory may be cached so that, when the trajectory data is available, the data samples may be displayed. In cases where the log sample cache fills up before the trajectory data is received, the samples may be committed and displayed.
The settings component defines the settings for the interface. The settings component may be set to a desired format, and adjusted as necessary. The format may be saved, for example, in an XML file for future use.
The real-time handling component instantiates and displays the interface and handles its events. The real-time handling component also creates the appropriate requests for channel or channel types, handles the saving and restoring of the interface state when a set of data or its outputs is saved or loaded.
The management component implements the required interfaces to allow the module to be initialized by and integrated for processing.
The mediator component receives the data from the interface. The mediator caches the data and combines the data with other data as necessary. For example, incoming data relating to trajectories, risks, and logs may be added to wellbores stored in the modeling tool. The mediator may also merge data, such as survey and log data.
The utility modules (446) provide support functions to the drilling system. The utility modules (446) include the logging component (not shown) and the user interface (UI) manager component (not shown). The logging component provides a common call for all logging data. This module allows the logging destination to be set by the application. The logging module may also be provided with other features, such as a debugger, a messenger, and a warning system, among others. The debugger sends a debug message to those using the system. The messenger sends information to subsystems, users, and others. The information may or may not interrupt the operation and may be distributed to various locations and/or users throughout the system. The warning system may be used to send error messages and warnings to various locations and/or users throughout the system. In some cases, the warning messages may interrupt the process and display alerts.
The UI manager component creates user interface elements for displays. The UI manager component defines user input screens, such as menu items, context menus, toolbars, and settings windows. The user manager may also be used to handle events relating to these user input screens.
The processing module (442) is used to analyze the data and generate outputs. As described above, the data may include static data, dynamic data, historic data, real-time data, or other types of data. Further, the data may relate to various aspects of the oilfield operations, such as formation structure, geological stratigraphy, core sampling, well logging, density, resistivity, fluid composition, flow rate, downhole condition, surface condition, equipment condition, or other aspects of the oilfield operations.
The processing module (442) may be used to analyze these data for generating earth model and making decisions at various locations of the oilfield at various times. For example, an oilfield event, such as drilling event, risk, lesson learned, best practice, or other types of oilfield events may be defined from analyzing these data. Examples of drilling event include stuck pipe, loss of circulation, shocks observed, or other types of drilling events encountered in real-time during drilling at various depths and lasting for various durations. Examples of risk includes potential directional control issue from formation dips, potential shallow water flow issue, or other types of potential risk issues. For example, the risk issues may be predicted from analyzing the earth model based on historic data compiled prior to drilling or real-time data acquired during drilling. Lessons learned and best practice may be developed from neighboring wellbores with similar conditions or equipments and defined as oilfield events for reference in determining the desired course of action during drilling.
An oilfield event may be generated in various different formats (e.g., Wellsite Information Transfer Standard Markup Language (WITSML), or the like) by the processing module (442). Each oilfield event may include attributes such as start depth, end depth, type, category, severity, probability, description, mitigation, affected personal, or other types of attributes. These attribute may be represented in one or more data fields of the various different formats, such as the WITSML or the like.
An exemplary oilfield event may be defined in the WITSML format with the following data fields:
In a drilling operation in an oilfield, usually a large number of such oilfield events exist that occur along the wellbore trajectory. The oilfield events often overlap each other at over the expanse of certain depths (i.e., start depth and end depth) along the trajectory. The processing module (442) generates these oilfield events which can be shown with positions relative to the wellbore trajectory and event attributes (e.g., severity and probability) annotated for making decisions at various locations of the oilfield at various times. The expanse of certain depths of the oilfield event can also be shown for comparing the event with geological features surrounding the wellbore trajectory.
As noted above, the processing module (442) is used to analyze the data and generate outputs. The processing component includes the trajectory management component.
The trajectory management component handles the case when the incoming trajectory information indicates a special situation or requires special handling (such as the data pertains to depths that are not strictly increasing or the data indicates that a sidetrack borehole path is being created). For example, when a sample is received with a measured depth shallower than the hole depth, the trajectory module determines how to process the data. The trajectory module may ignore all incoming survey points until the MD exceeds the previous MD on the wellbore path, merge all incoming survey points below a specified depth with the existing samples on the trajectory, ignore points above a given depth, delete the existing trajectory data and replace it with a new survey that starts with the incoming survey station, create a new well and set its trajectory to the incoming data, and add incoming data to this new well, and prompt the user for each invalid point. All of these options may be exercised in combinations and can be automated or set manually.
The data repository (434) may store the data for the modeling unit. The data is preferably stored in a format available for use in real-time (e.g., information is updated at approximately the same rate the information is received). The data is generally passed to the data repository from the processing component. The data can be persisted in the file system (e.g., as an extensible markup language (XML) file) or in a database. The system determines which storage is the most appropriate to use for a given piece of data and stores the data in a manner to enable automatic flow of the data through the rest of the system in a seamless and integrated fashion. The system also facilitates manual and automated workflows (such as Modeling, Geological & Geophysical workflows) based upon the persisted data.
The data rendering unit (436) performs rendering algorithm calculation to provide one or more displays for visualizing the data. The displays may be presented to a user at the display unit (416). The data rendering unit (436) may contain a 2D canvas, a 3D canvas, a well section canvas or other canvases as desired.
The data rendering unit (436) may selectively provide displays composed of any combination of one or more canvases. The canvases may or may not be synchronized with each other during display. The data rendering unit (436) is preferably provided with mechanisms for actuating various canvases or other functions in the system. Further, the data rendering unit (436) may be configured to provide displays representing the oilfield events generated from the real-time drilling data acquired in real-time during drilling, the oilfield events generated from historic data of neighboring wellbores compiled over time, the current trajectory of the wellbore during drilling, the earth model generated from static data of subterranean geological features, and/or any combinations thereof. In addition, the data rendering unit (436) may be configured to selectively adjust the displays based on real-time drilling data as the drilling tool of the drilling system (404) advances into a subterranean formation.
Each oilfield event occupies certain space on a canvas as it is represented in the display. To simultaneously display a large number of oilfield events in an intuitive manner (i.e., without cluttering the canvas and the display, obscuring the image of the wellbore trajectory and the earth model, or other arrangements that may degrade the clarity of the display), from time to time a user may select or re-select a portion of the large number of oilfield events for display. The data rendering unit (436) is further configured to perform re-calculation of the rendering algorithms in real-time for optimizing the clarity of the display as the selected portion of the oilfield events is supplemented, selectively adjusted, or otherwise changed. For example, the rendering algorithm may re-use un-occupied space made available after one or more oilfield events are removed from the selected portion of the oilfield events for display. More details of the rendering algorithm are described in reference to
Modeling unit (448) performs the key modeling functions for generating complex oilfield outputs. The modeling unit (448) may be a conventional modeling tool capable of performing modeling functions, such as generating, analyzing and manipulating earth models. The earth models typically contain exploration and production data, such as that shown in
While specific components are depicted and/or described for use in the units and/or modules of the modeling tool (408), it will be appreciated that a variety of components with various functions may be used to provide the formatting, processing, utility and coordination functions necessary to provide real-time processing in the modeling tool (408). The components may have combined functionalities and may be implemented as software, hardware, firmware, or combinations thereof.
Further, components (e.g., the processing modules (442) and the data rendering unit (436)) of the modeling tool (408) may be located in a onsite server (422) or in distributed locations where remote server (424) and/or third party server (426) may be involved. The onsite server (422) may be located within the surface unit (402).
The oilfield data may be collected (502) from a variety of sources. As discussed with respect to
The oilfield data is formatted for real-time processing by a modeling tool (506). The formatting components of the modeling tool may be used to selectively queue the data and stream it through the system. The data is selectively grouped and timed to facilitate data flow in real-time. The data is also translated, synchronized, converted or otherwise formatted so that it may be efficiently processed by the modeling tool.
Once formatted for real-time processing, a new drilling plan may be generated in real-time by selectively analyzing the oilfield data. The formatted data is processed by the processing components of the modeling tool. Preferably, certain types of data are processed so that the drilling plan and other data may be generated in real-time. The drilling data may then be compared with oilfield predictions 508, such as a predefined earth model and/or drilling plan. The data may be stored in the data repository (510).
The oilfield data (processed and/or processed) may be used to generate canvasses for selectively depicting the oilfield data (512). The oilfield data is collected and queued so that it may be displayed in real-time and according to various formats for viewing by a user. The various canvases define layouts for visualization of the data. Data may be displayed in 2D or 3D as it is collected. As the data is processed and various outputs, such as a drilling plan is generated, the processed data may also be displayed.
The processed data may be further analyzed. In one example, the real-time drilling plan may be compared with a predefined earth model. The predefined earth model is typically a plan that is created before the well is drilled for planning oilfield operations, such as the drilling operation. The drilling plan and the earth model may be adjusted based on the drilling data collected. The real-time drilling data may suggest alternative action is necessary to meet the requirements of the oilfield predictions. If so, a decision may be made to adjust the drilling operation based on the real-time data (516).
As depicted in
The start depths of the oilfield events corresponding to oilfield event icon A through oilfield event icon C are indicated by the multiple arrows originating from the start depth (605). The end depths of the oilfield events corresponding to oilfield event icon A through oilfield event icon C are indicated by the multiple arrows originating from the end depth (607).
Each of oilfield event icon A through oilfield event icon C is shaped like a ribbon in this example with the length of the ribbon representing the expanse of a certain depth of the corresponding oilfield event. The start measured depth and end measured depth of the oilfield event corresponding to the oilfield event icon D (634) are the same as indicated by a diamond shaped icon. While shown in
As described in reference to
First, the oilfield events selected for display may be ranked according to a ranking algorithm based on one or more of attributes of the oilfield events. For example, the ranking may be according to the expanse of a certain depth where the oilfield event with a longer depth extend is placed ahead of the other oilfield event with a shorter expanse of a certain depth in a sorted list. In other examples, the oilfield events may be ranked according to other weighted combination of one or more selected attributes. Next an ordered collection of tracks are created with each extending, for example, from the top to the bottom along the wellbore image in the 3D display. Each of these ordered collection of tracks is positioned at increasing offsets from the wellbore image. Then, oilfield event icons are placed into these ordered collection of tracks sequentially according to the ranking of the corresponding oilfield events in the sorted list. In the example of the ranking based on the expanse of a certain depth, the oilfield icon corresponding to the longest expanse of a certain depth is placed first in the track closest to the wellbore image. Other oilfield event icons are placed subsequently into closest available tracks to the wellbore image without overlapping already placed oilfield event icons.
Further to the placement of the oilfield event icons, the color, pattern, or other characteristics of the icon may be configured to represents the attributes of the corresponding oilfield event. As described in reference to
As described in reference to
The display may optionally be a 3D display, in which case the method may involve defining the surface conforming to a path of the wellbore image and substantially planar in an orthogonal direction to the path of the wellbore image (Step 4), displaying the plurality of oilfield events on a surface adjacent to the wellbore image (Step 5), changing a viewing direction of the three dimensional display for analyzing the drilling operation (Step 6), orienting the surface responsive to changing the viewing direction of the 3D display (Step 7) and orienting the surface using the path of the wellbore image as an axis of rotation (Step 8).
The oilfield data may be collected (Step 1) from a variety of sources. As discussed with respect to
The oilfield data may be defined into oilfield events (Step 2) by the processing modules (442 in
As the drilling tool advances into the subterranean formation, a large number of oilfield events are being added from the increasing amount of oilfield data acquired by the downhole sensors (Step 9). The user may also, from time to time, select (or re-select) the portion of oilfield events most relevant for display (Step 9). The data rendering module may re-calculate the rendering algorithm to adjust the placement of the oilfield events display in real-time (Step 10). Desired course of action may be determined based on the updated display to adjust the drilling operation (Step 11).
While these real-time oilfield events are being updated to the display (Step 10), a user may, from time to time, change the viewing direction of the display to observe the wellbore trajectory penetrating the formation toward the reservoir without being obscured. The display of oilfield events may be configured to be on a surface adjacent to the wellbore image (Step 5) where the surface may be a billboard-like object attached to the image of the wellbore trajectory (Step 4). The surface may also be arranged as multiple fin structure to allow the oilfield events to be visible from all viewing directions. Alternatively, the billboard-like object may be rotated around the wellbore trajectory image to present a full view of the oilfield events to the user as the viewing angle is changed (Steps 7, 8). The billboard-like object may be rotated according to the changing viewing direction by the data rendering unit.
The method involves collecting oilfield data, with a portion of the oilfield data being real-time drilling data generated from the oilfield during drilling (Step 21), defining a plurality of oilfield events based on the oilfield data (Step 22), formatting a display based on a portion of the plurality of oilfield events selected for the display (Step 23), and selectively reformatting the display in real-time responsive to supplementing the selected portion of the plurality of oilfield events or selectively adjusting the selected portion of the plurality of oilfield events (Step 24).
The method may optionally involve including a first oilfield event in the portion of the plurality of oilfield events selected for the display, where the first oilfield event is defined based on the real-time drilling data or historic data (Step 25), formatting the display based on a ranking of the first oilfield event in the selected portion of the plurality of oilfield events (Step 27), and reformatting a portion of the display corresponding to the first oilfield event in real-time responsive to adding a second oilfield event to the selected portion of the plurality of oilfield events or removing a third oilfield event from the selected portion of the plurality of oilfield events (Step 28).
The method may also optionally involve displaying each of the plurality of oilfield events as an icon on a surface adjacent to a wellbore image of the display (Step 26), defining each icon based on an attribute of each of the plurality of oilfield events, where the attribute includes start depth, end depth, type, category, severity, or probability (Step 29), placing each icon on the surface based on a ranking of the plurality of oilfield events, wherein the ranking determines placement proximity of each icon relative to the wellbore image (Step 30), defining location, length, color, or pattern of each icon based on the attribute of each of the plurality of oilfield events (Step 31), allocating a plurality of tracks on the surface, the plurality of tracks substantially parallel to a path of the wellbore image (Step 32), and placing each icon into one of the plurality of tracks without overlapping (Step 33).
The oilfield data may be collected (Step 21) from a variety of sources. As discussed with respect to
For example, a first oilfield event may be added to the display (700) of
The oilfield events may be defined in a variety of formats, such as the WITSML or the like. The oilfield events may have attributes such as start depth, end depth, depth extend, type, category, severity, or probability (Steps 29). The oilfield events may be represented in a display by icons having locations, length, color, or patterns defined corresponding to the oilfield attributes (Steps 31). The oilfield events may be ranked in an order for placement purpose in formatting the display (Step 30). The icons representing the oilfield events may be displayed on a surface adjacent to a wellbore image (Step 26) and placed in parallel tracks along the wellbore trajectory without overlapping each other (Steps 32, 33).
As the adjustments are made, the process may be repeated. New oilfield data is collected during the drilling process. The drilling data may be monitored and new drilling plans generated and compared to the earth plan. Further adjustments may be implemented as desired.
The steps of the method are depicted in a specific order. However, it will be appreciated that the steps may be performed simultaneously or in a different order or sequence. Further, throughout the method, the oilfield data may be displayed, the canvases may provide a variety of displays for the various data collected and/or generated, and the display may have user inputs that permit users to tailor the oilfield data collection, processing and display.
It will be understood from the foregoing description that various modifications and changes may be made in the preferred and alternative embodiments of the present invention without departing from its true spirit. For example, the method may be performed in a different sequence, and the components provided may be integrated or separate.
This description is intended for purposes of illustration only and should not be construed in a limiting sense. The scope of this invention should be determined only by the language of the claims that follow. The term “comprising” within the claims is intended to mean “including at least” such that the recited listing of elements in a claim are an open group. “A,” “an” and other singular terms are intended to include the plural forms thereof unless specifically excluded.
This application claims priority under 35 U.S.C. §119 from Provisional Patent Application No. 60/897,942 filed Jan. 29, 2007 and Provisional Patent Application No. 60/920,014 filed Mar. 26, 2007.
Number | Date | Country | |
---|---|---|---|
60897942 | Jan 2007 | US | |
60920014 | Mar 2007 | US |