System and method for performing parity checks in disk storage systems

Information

  • Patent Grant
  • 7559009
  • Patent Number
    7,559,009
  • Date Filed
    Friday, September 15, 2006
    18 years ago
  • Date Issued
    Tuesday, July 7, 2009
    15 years ago
Abstract
A cyclic redundancy check (CRC) system for a storage controller comprises a memory that stores first sector data and a corresponding CRC non-zero seed value. A buffer control module includes a CRC module, calculates a CRC value of the first sector data with the CRC module, and combines the CRC value with the CRC non-zero seed value.
Description
FIELD

The present invention relates generally to disk controllers, and more particularly to performing parity checks in disk storage systems using 20 disk controllers.


BACKGROUND

Conventional computer systems typically include several functional components. These components may include a central processing unit (CPU), main memory, input/output (“I/O”) devices, and disk drives. In conventional systems, the main memory is coupled to the CPU via a system bus or a local memory bus. The main memory is used to provide the CPU access to data and/or program information that is stored in main memory at execution time. Typically, the main memory is composed of random access memory (RAM) circuits. A computer system with the CPU and main memory is often referred to as a host system.


The main memory is typically smaller than disk drives and may be volatile. Programming data is often stored on the disk drive and read into main memory as needed. The disk drives are coupled to the host system via a disk controller that handles complex details of interfacing the disk drives to the host system. Communications between the host system and the disk controller is usually provided using one of a variety of standard I/O bus interfaces.


Typically, a disk drive includes one or more magnetic disks. Each disk typically has a number of concentric rings or tracks on which data is stored. The tracks themselves may be divided into sectors, which are the smallest accessible data units. A positioning head above the appropriate track accesses a sector. An index pulse typically identifies the first sector of a track. The start of each sector is identified with a sector pulse. Typically, the disk drive waits until a desired sector rotates beneath the head before proceeding a read or write operation. Data is accessed serially, one bit at a time and typically, each disk has its own read/write head.


The disk drive is connected to the disk controller that performs numerous functions, for example, converting digital data to analog head signals, disk formatting, error checking and fixing, logical to physical address mapping and data buffering. To perform the various functions for transferring data, the disk controller includes numerous components.


A conventional disk drive stores data bytes on disk drive platters in sets of a predetermined length. A disk drive controller or a host computer may generate error correction code (ECC) bytes and cyclic redundancy check (CRC) bytes for each set of data bytes. Sometimes, the host computer generates CRC bytes, and the disk controller generates its own set of CRC bytes. The CRC and the ECC bytes are appended to the end of the set of data bytes. The data bytes, CRC bytes and ECC bytes together make up a ‘sector’, and this sector is stored on the disk platter. When the disk drive controller reads a sector off the disk, the data bytes and CRC bytes are stored in a buffer unit (memory) in the disk drive. An ECC unit detects and corrects errors in the sector read off the platter. These corrections are made to the data bytes and CRC bytes stored in the buffer unit.


Conventional disk array storage systems may have multiple disk drives arranged and coordinated such that a single mass storage system is formed. This allows data to be stored at multiple disks and ensures continued operation if a disk fails. Data may be stored at multiple locations and if one component fails, data may be regenerated from redundant data stored at another component.


One way to achieve this redundancy is by using parity. In parity redundancy, redundant data is stored in one area of the storage system, however, the size of the redundant storage area is less than the remaining storage area used to store the original area.


A RAID (Redundant Array of Independent Disks) storage system is one technique, which is used to store redundant data. RAID includes various architectures, designated as RAID0, RAID1, RAID 2, RAID 3, RAID 4, and RAID 5.


A RAID 0 system is configured without any redundancy. RAID 1 has mirror redundancy.


RAID 2 through RAID 5 involves parity type redundant storage. For example, in RAID 5, the disks are divided into equally sized address areas (“blocks”) and a set of blocks is referred to as “stripes”. Each stripe has N blocks of data and one parity block, which contains redundant information.


Typically, to update a parity drive, old data from a storage media and new data for a write operation is compared (also referred to as XORed). The XOR operation is used to maintain data integrity.



FIG. 2A shows a simple example of a RAID topology that can use one aspect of the present invention, discussed below. FIG. 2 shows a RAID controller 220A coupled to plural disks 301, 302, 303 and 304 using ports 305 and 306. Data may be written from RAID system 300 to a host system 200 or vice-versa via RAID controller 220A.


One way to maintain data integrity is to use the CRC code. A typical circuit employing CRC error checking includes a CRC checker to verify integrity for old data and a CRC generator that generates CRC information for any new data.


Conventional techniques regenerate CRC on XOR data using logical block address (“LBA”) values. CRC is typically seeded with an LBA value that helps protect against mis-positioning errors in ID-less sector formats. Usually the firmware (code operating the disk controller) knows the LBA for the sector involved and can preset a counter that is linearly updated as each sector is XOR'ed. When Skip operations are used, more firmware intervention will be required, since skip operations present discontinuities in the LBA progression. Conventional systems use firmware to handle the complexity involved in skip operations. However, this solution is slow and hence is not commercially desirable.


Another drawback in the conventional techniques is that any failure in the XOR logic goes undetected because CRC is regenerated on XOR data using logical block address (“LBA”) values.


Therefore, what is desired is a system and method for efficiently performing XOR operation for maintaining data integrity.


SUMMARY

In one aspect of the present invention, a system for maintaining cyclic redundancy check (“CRC”) protection of XOR'ed data sectors is provided. The system includes a register that is initialized with a seed value; and logic for XOR combining CRC values of at least two sectors and for storing a result of the combination as modified with a seeded CRC value.


In another aspect, a disk controller that maintains cyclic redundancy check (“CRC”) protection of XOR'ed data sectors is provided. The controller includes, a register that is conditioned with a seed value used for comparing plural sector CRC values; and logic for comparing CRC values of at least two sectors and storing a result of the comparison with a seeded CRC value.


In another aspect of the present invention, a method for maintaining CRC protection of XOR'ed data sectors is provided. The process includes, determining a CRC value (CRC′A) for a first sector with a seed value; determining a CRC value (CRC′B) for a second sector with a seed value; XOR combining the CRC value of the first sector calculated without a seed value (CRCA) with the CRC value of the first sector calculated with a seed value (CRCA); and XOR combining the result with CRC′A and CRC′B.


In one aspect of the present invention, the process does not require any knowledge of LBA values. By XOR′ing the stored CRC values with those recalculated using a zero seed, and combining the result with corresponding CRC values generated for another sector, a high level of confidence is achieved that the data is correct.


In one aspect of the present invention, any errors that occur in the XOR function can be detected when the data is transmitted to a host.


In yet another aspect of the present invention, the process can be easily modeled as an XOR combination of pre-corrected data with a sector of correction data consisting of a zero seed CRC and all zeroes data except in the locations of corrected bits. The correction data CRC can be XOR'ed with the pre-correction data CRC and the result will be the same as a CRC computed on the post-correction data.


In yet another aspect of the present invention, the CRC/XOR technique described above may be used in a RAID environment for maintaining data integrity.


In another aspect of the present invention, a method for maintaining CRC protection on XOR'ed data sectors in RAID systems is provided. The method uses parity without the need for firmware intervention to seed the LBA values into the CRC. This improves performance by reducing the requirement for firmware intervention in seeding the CRC accumulators, which is particularly important for “Skip operations” where LBA values may not increase linearly but may have discontinuities. This provides increased data protection integrity since it can utilize the originally generated CRC values rather than run the risk of re-computing CRC values on data which may be corrupted during the XOR operation.


This brief summary has been provided so that the nature of the invention may be understood quickly. A more complete understanding of the invention can be obtained by reference to the following detailed description of the preferred embodiments thereof concerning the attached drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing features and other features of the present invention will now be described with reference to the drawings of a preferred embodiment. In the drawings, the same components have the same reference numerals. The illustrated embodiment is intended to illustrate, but not to limit the invention. The drawings include the following Figures:



FIG. 1 shows a block diagram of a disk storage system;



FIG. 2A is a block diagram of a RAID topology;



FIG. 2B is a block diagram of a CRC circuit, according to one aspect of the present invention;



FIG. 3 is a block diagram showing seeded CRC values of data sectors, according to one aspect of the present invention; and



FIG. 4 is a flow diagram of executable process steps to XOR CRC vales, according to one aspect of the present invention.





DETAILED DESCRIPTION

To facilitate an understanding of the preferred embodiment, the general architecture and operation of a disk drive will initially be described. The specific architecture and operation of the preferred embodiment will then be described with reference to the general architecture and operation of a disk drive.


The disk drive system of FIG. 1 is an example of an internal (hard) disk drive included in a computer system. The host computer (not shown) and the disk drive communicate via port 102, which is connected to a data bus (not shown). In an alternate embodiment (not shown), the disk drive is an external storage device, which is connected to the host computer via a data bus. The data bus, for example, is a bus in accordance with a Small Computer System Interface (SCSI) specification. Those skilled in the art will appreciate that other communication buses known in the art can be used to transfer data between the disk drive and the host system.


As shown in FIG. 1, the disk drive includes disk controller 101, which is coupled to SCSI port 102, disk port 114, buffer memory 111 and microprocessor 100. Interface 118 serves to couple microprocessor bus 107 to microprocessor 100. A read only memory (“ROM”) omitted from the drawing is used to store firmware code executed by microprocessor 100. Disk port 114 couples disk controller 101 to hard disk assembly (also referred to herein as “disk”) 115.


As is standard in the industry, data is stored on disk 115 in sectors. Each sector is byte structured and includes various fields, referred to as the sector format. A typical sector format includes a logical block address (“LBA”) of about four bytes followed by a data field of about 512 bytes. The LBA contains position information. A field for a CRC checksum of 4 bytes typically follows the data field. A subsequent field for a number of ECC bytes, for example 40-80 bytes, is located at the end of the sector.


Controller 101 can be an integrated circuit (IC) that comprises of various functional modules, which provide for the writing and reading of data stored on disk 115. Microprocessor 100 is coupled to controller 101 via interface 118 to facilitate transfer of data, address, and control information. Buffer memory 111 is coupled to controller 101 via ports to facilitate transfer of data, and address information.


SCSI controller 105 includes programmable registers and state machine sequencers that interface with SCSI port 102 on one side and to a fast, buffered direct memory access (DMA) channel on the other side.


Sequencer 106 supports customized SCSI sequences, for example, by means of an instruction memory that allows users to customize command automation features. Sequencer 106 support's firmware and hardware interrupts schemes.


Disk formatter 112 is a disk interface controller and performs control operations when microprocessor 100 loads all required control information and parameter values into a writable control store (WCS) RAM (not shown) and issues a command. Disk formatter 112 executes the command with no microprocessor 100 intervention.


Buffer controller 108 can be a multi-channel, high speed DMA controller. Buffer controller 108 connects buffer memory 111 to disk formatter 112 and to an ECC channel of ECC module 109, a SCSI channel of SCSI controller 105 and micro-controller bus 107. Buffer controller 108 regulates data movement into and out of buffer memory 111.


To read data from disk 115, a host system sends a read command to disk controller 101, which interrupts Microprocessor 100 which then fetches the command from disk controller 101 and initializes the various functional blocks of disk controller 101. Data is read from disk 115 and is passed through disk formatter 112 simultaneously to buffer controller 108 and to ECC module 109. Thereafter, ECC module 109 provides the ECC correction pattern for correcting errors, which occurred during the read operation, while data is still in buffer controller 108. The error is corrected and corrected data is sent to buffer memory 111, and then passed to the host system.


To write data, a host system (200) sends a write command to disk controller 101 and is stored in buffer 111. Microprocessor 100 reads the command out of buffer 111 and sets up plural registers. Data is transferred from host and is first stored in buffer 111, before being written to disk 115. CRC values are calculated based on the LBA for the sector being written. Data is read out of buffer 111, appended with ECC code and written to disk 115.


XOR Operations

To maintain data integrity, contents of plural buffers (buffers similar to buffer 111 or otherwise; or from multiple disks as in the RAID systems of FIG. 2B) are compared to each other. For example, contents of a first buffer (“New Data Buffer” or buffer 1) sent by the host system is summed modulo 2 to the contents of the second buffer (“Original Data Buffer” or buffer 2).


Modulo two summation is performed by means of an XOR operation and the resulting XOR value is stored in original data buffer (e.g. buffer 111). The purpose of the summation is to prepare the data for a parity drive. The parity drive contains sector by sector modulo-2 summation of data from all the drives included in a redundant drive set. For example in redundant drive set (similar to the drive set of FIG. 2A) may have three drives A, B, and C and a Parity Drive P (could be drive 3303 of FIG. 2A if the set had two drives and a parity drive). Sector n on P drive=Sector n on A+sector n on B+sector n on C taken modulo two. The parity drive thus incorporates the modulo two summation of the redundant drive string taken sector by sector.


When a write operation is performed to one of the drive string, for example, drive A (drive 1301, FIG. 2A), the data on drive A is changed to the “New” data. The Parity drive is also updated accordingly. One way to update is to subtract the “original” data that drive A contained and add the “new” data.


In modulo two arithmetic, addition and subtraction are identical, so the Parity drive is updated with the sum of the new and old data taken modulo 2. This is the XOR of the new and old data.


It is important to maintain the integrity of the data in these operations. The CRC bytes for the sector are stored along with the sector data in various buffers (for example, buffer 111) and can participate in the XOR operation to help evaluate the integrity of the XOR result.


Various registers may be used, according to one aspect of the present invention, to configure the XOR operations, as discussed below:


(1) XOR Buffer 1 Address Register: This register contains address pointer for the New Data Buffer from the host.


(2) XOR Buffer-2 Address: This contains address pointer for the Original Data Buffer.


(3) XOR Block Count: This determines the number of XOR blocks of data to transfer or XOR.


The foregoing registers may be located in buffer controller 108.


To understand the various adaptive aspects of the present invention, a brief understanding of CRC background is provided with respect to FIGS. 2B and 3 of the present invention.


Typically CRC applications are linear using mod-2 arithmetic, which implies that:

f(A)+f(B)=f(A+B) and
f(A)f(B)=f(AB)


CRCs are applied to message words as if the message word were coefficients of a polynomial. In addition, they are applied using mod-2 arithmetic. CRCs are computed by dividing the polynomial defined by the message word with an irreducible polynomial that defines the CRC characteristic. Since the message word is handled in its binary format, all arithmetic is performed by modulo 2, which is the same as modulo 2 subtraction, and is equivalent to the logical XOR operation.


For CRC, XOR operations on two data fields is equal to the modulo-2 addition of coefficients for each of the polynomials represented by data bits in the message words. Since a mod(x)+b mod(x)=(a+b) mod(x), the CRCs for XOR'ed data are equivalent to the XOR'ed values for the CRC of each data word.



FIG. 2B shows an example of a parallel CRC implementation, according to one aspect of the present invention. In the parallel CRC implementation, a CRC register 202 maintains a current CRC residue value. The CRC residue value is XOR'ed (added modulo 2) 204 to a current data value, which may be a 32 bit value. The sum is passed through feedback multiplier circuit 201. The remainder (the result of the modulo polynomial division in the feedback multiplier) is stored as the new residue in CRC register 202.


When CRC register 202 is initialized with a zero seed value, the first data word is passed through unaffected as input to feedback multiplier circuit 201. The existing CRC register 202 value prior to being applied at the feedback multiplier circuit 201 then conditions all subsequent words. The CRC is a running remainder of a division operation. XOR gate 204 subtracts the previous remainder from the next symbol set of the data polynomial prior to performing the modulo polynomial division in the feedback multiplier circuit 201.


When CRC register 202 is primed with a non-zero seed value, the first data word of the message will have that value subtracted from its prior division, as described below with reference to FIG. 3.



FIG. 3 illustrates the linearity of CRC with respect to the application of a seed value. The effect of the seed can be modeled by viewing the Seeded CRC′A value as the sum of an unseeded CRCA on A0:An and the CRC'S on the seed followed by n words of zero.


Impact of non-zero seed values on XOR'ed sectors:


For illustration purposes, if two sectors, A and B are XOR'ed, then the relationship of their CRCs is computed, as described below. Assume that both sectors A and B have the same seed value, then:

CRCA+B=CRCA+CRCB+CRCS+CRCS=CRCA+CRCB

However, the object is to include the seed in the XOR'ed data as well. If the CRC were computed on the XOR data, as performed by conventional techniques, the resulting CRC would again include CRCS. Therefore the CRC recomputed on the XOR data can be computed from the XOR'ed CRC if the value of CRCS is known:

CRCXOR(A,B)=CRCA+CRCB+CRCS=CRCA′+CRCB′+CRCS


CRCS can be determined by calculating CRCA and/or the CRCB value as data is extracted from buffer 111 to be XOR'ed. Once CRCA is known it can be added to CRCA′ (which was stored with sector A in buffer 111 or any other buffer) to obtain CRCS.

CRCS=CRCA+CRCA


The following procedure may be used to compute the CRC for the XOR'ed data that does not require the use of LBA data, as described below with respect to FIG. 4.


In step S400, the process stores sector A and sector B data in buffer 111 or any other buffer, including a XOR FIFO (not shown). The seeded CRC values (CRC′A and CRC′B) are stored along with Sector A and B having been seeded with the appropriate LBA values.


In Step S401, the process conditions CRC module (for example, register 202) with a ‘0’ seed. This is used to compute CRCA.


In step S402, the process reads out sector A with the stored CRC value (CRC′A), and stores it in temporary storage (not shown).


In step S403, the process reads Sector B with CRC′B. Sector B is XORed against any temporary intermediate stored values of Sector A (from step S402). Hence CRC′A and CRC′B are XORed which provides CRC′AB. The XORed result (CRC′AB) is stored in temporary storage.


In step S404, the process reads CRCA, and then XOR's CRCA with CRC′A and CRC′AB. The result is saved as CRCXOR(A,B).


The foregoing process does not require any knowledge of LBA values. By XOR′ing the stored CRC values with those recalculated using a zero seed, and comparing to the same values generated for sector B, a high level of confidence is achieved that the data is correct.


In one aspect of the present invention, any errors that occur in the XOR function can be detected when the data is transmitted to a host.


In another aspect of the present invention, the LBA value can be extracted if sector data and CRCA′ are known.


In yet another aspect, the foregoing CRC adjustment algorithm can be easily modeled as an XOR combination of pre-corrected data with a sector of correction data consisting of a zero seed CRC and all zeroes data except in the locations of corrected bits. The correction data CRC can be XOR'ed with the pre-correction data CRC and the result will be the same as a CRC computed on the post-correction data.


In yet another aspect, the CRC/XOR technique described above may be used in a RAID environment for data maintaining data integrity.


In another aspect, a method for maintaining CRC protection on XOR'ed data sectors in RAID systems is provided. The method uses parity without the need for firmware intervention to seed the LBA values into the CRC. This improves performance by reducing the requirement for firmware intervention in seeding the CRC accumulators, which is particularly important for “Skip operations” where LBA values may not increase linearly but may have discontinuities. This provides increased data protection integrity since it can utilize the originally generated CRC values rather than run the risk of re-computing CRC values on data which may be corrupted during the XOR operation.


The term storage device, system, disk, disk drive and drive are used interchangeably in this description. The terms specifically include magnetic storage devices having rotatable platter(s) or disk(s), digital video disks(DVD), CD-ROM or CD Read/Write devices, removable cartridge media whether magnetic, optical, magneto-optical and the like.


Although the present invention has been described with reference to specific embodiments, these embodiments are illustrative only and not limiting. Many other applications and embodiments of the present invention will be apparent in light of this disclosure and the following claims.

Claims
  • 1. A cyclic redundancy check (CRC) system for a storage controller, comprising: a memory that stores first sector data and a corresponding CRC non-zero seed value;a buffer control module that includes a CRC module, that calculates a CRC value of the first sector data with the CRC module, and that combines the CRC value with the CRC non-zero seed value.
  • 2. The system of claim 1 wherein the buffer control module combines the CRC value with the CRC non-zero seed value based on an exclusive OR (XOR) operation.
  • 3. The system of claim 1 wherein the buffer control module determines a logical block address (LBA) value based on the first sector data and the CRC non-zero seed value.
  • 4. A storage controller comprising the system of claim 1.
  • 5. The system of claim 1 wherein the memory stores second sector data and a corresponding CRC non-zero seed value.
  • 6. The system of claim 5 wherein the buffer control module calculates a CRC value of the second sector data and combines the CRC value of the first sector data with the CRC value of the second sector data.
  • 7. The system of claim 5 wherein the buffer control module combines the first sector data with the second sector data.
  • 8. The system of claim 5 wherein the buffer control module combines the CRC non-zero seed value of the first sector data with at least one of the CRC non-zero seed value of the second sector data and the CRC value of the first sector data.
  • 9. A cyclic redundancy check (CRC) system for a storage controller, comprising: memory means for storing first sector data and a corresponding CRC non-zero seed value;buffer control means for including a CRC module, for calculating a CRC value of the first sector data with the CRC module, and for combining the CRC value with the CRC non-zero seed value.
  • 10. The system of claim 9 wherein the buffer control means combines the CRC value with the CRC non-zero seed value based on an exclusive OR (XOR) operation.
  • 11. The system of claim 9 wherein the buffer control means determines a logical block address (LBA) value based on the first sector data and the CRC non-zero seed value.
  • 12. A storage controller comprising the system of claim 9.
  • 13. The system of claim 9 wherein the memory means stores second sector data and a corresponding CRC non-zero seed value.
  • 14. The system of claim 13 wherein the buffer control means calculates a CRC value of the second sector data and combines the CRC value of the first sector data with the CRC value of the second sector data.
  • 15. The system of claim 13 wherein the buffer control means combines the first sector data with the second sector data.
  • 16. The system of claim 13 wherein the buffer control means combines the CRC non-zero seed value of the first sector data with at least one of the CRC non-zero seed value of the second sector data and the CRC value of the first sector data.
  • 17. A cyclic redundancy check (CRC) method, comprising: storing first sector data and a corresponding CRC non-zero seed value;calculating a CRC value of the first sector data;combining the CRC value with the CRC non-zero seed value based on an exclusive OR operation;storing second sector data and a corresponding CRC non-zero seed value;calculating a CRC value of the second sector data; andcombining the CRC value of the first sector data with the CRC value of the second sector data.
  • 18. The method of claim 17 further comprising combining the first sector data with the second sector data.
  • 19. The method of claim 17 further comprising combining the CRC non-zero seed value of the first sector data with at least one of the CRC non-zero seed value of the second sector data and the CRC value of the first sector data.
  • 20. The method of claim 17 further comprising determining a logical block address (LBA) value based on the first sector data and the CRC non-zero seed value.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 10/429,495 filed on May 5, 2003, which claims the benefit of U.S. Provisional Application No. 60/378,471, filed on May 7, 2002. The disclosures of the above applications are incorporated herein by reference in its entirety.

US Referenced Citations (182)
Number Name Date Kind
3800281 Devore et al. Mar 1974 A
3988716 Fletcher et al. Oct 1976 A
4001883 Strout et al. Jan 1977 A
4016368 Apple, Jr. Apr 1977 A
4050097 Miu et al. Sep 1977 A
4080649 Calle et al. Mar 1978 A
4156867 Bench et al. May 1979 A
4225960 Masters Sep 1980 A
4275457 Leighou et al. Jun 1981 A
4390969 Hayes Jun 1983 A
4451898 Palermo et al. May 1984 A
4486750 Aoki Dec 1984 A
4500926 Yoshimaru et al. Feb 1985 A
4587609 Boudreau et al. May 1986 A
4603382 Cole et al. Jul 1986 A
4625321 Pechar et al. Nov 1986 A
4667286 Young et al. May 1987 A
4777635 Glover Oct 1988 A
4805046 Kuroki et al. Feb 1989 A
4807116 Katzman et al. Feb 1989 A
4807253 Hagenauer et al. Feb 1989 A
4809091 Miyazawa et al. Feb 1989 A
4811282 Masina Mar 1989 A
4812769 Agoston Mar 1989 A
4860333 Bitzinger et al. Aug 1989 A
4866606 Kopetz Sep 1989 A
4881232 Sako et al. Nov 1989 A
4920535 Watanabe et al. Apr 1990 A
4949342 Shimbo et al. Aug 1990 A
4970418 Masterson Nov 1990 A
4972417 Sako et al. Nov 1990 A
4975915 Sako et al. Dec 1990 A
4989190 Kuroe et al. Jan 1991 A
5014186 Chisholm May 1991 A
5023612 Liu Jun 1991 A
5027357 Yu et al. Jun 1991 A
5050013 Holsinger Sep 1991 A
5051998 Murai et al. Sep 1991 A
5068755 Hamilton et al. Nov 1991 A
5068857 Yoshida Nov 1991 A
5072420 Conley et al. Dec 1991 A
5088093 Storch et al. Feb 1992 A
5109500 Iseki et al. Apr 1992 A
5117442 Hall May 1992 A
5127098 Rosenthal et al. Jun 1992 A
5133062 Joshi et al. Jul 1992 A
5136592 Weng Aug 1992 A
5146585 Smith, III Sep 1992 A
5157669 Yu et al. Oct 1992 A
5162954 Miller et al. Nov 1992 A
5193197 Thacker Mar 1993 A
5204859 Paesler et al. Apr 1993 A
5218564 Haines et al. Jun 1993 A
5220569 Hartness Jun 1993 A
5237593 Fisher et al. Aug 1993 A
5243471 Shinn Sep 1993 A
5249271 Hopkinson et al. Sep 1993 A
5257143 Zangenehpour Oct 1993 A
5261081 White et al. Nov 1993 A
5271018 Chan Dec 1993 A
5274509 Buch Dec 1993 A
5276564 Hessing et al. Jan 1994 A
5276662 Shaver, Jr. et al. Jan 1994 A
5276807 Kodama et al. Jan 1994 A
5280488 Glover et al. Jan 1994 A
5285327 Hetzler Feb 1994 A
5285451 Henson et al. Feb 1994 A
5301333 Lee Apr 1994 A
5307216 Cook et al. Apr 1994 A
5315708 Eidler et al. May 1994 A
5339443 Lockwood Aug 1994 A
5361266 Kodama et al. Nov 1994 A
5361267 Godiwala et al. Nov 1994 A
5408644 Schneider et al. Apr 1995 A
5420984 Good et al. May 1995 A
5428627 Gupta Jun 1995 A
5440751 Santeler et al. Aug 1995 A
5465343 Henson et al. Nov 1995 A
5487170 Bass et al. Jan 1996 A
5488688 Gonzales et al. Jan 1996 A
5491701 Zook Feb 1996 A
5500848 Best et al. Mar 1996 A
5506989 Boldt et al. Apr 1996 A
5507005 Kojima et al. Apr 1996 A
5519837 Tran May 1996 A
5523903 Hetzler et al. Jun 1996 A
5544180 Gupta Aug 1996 A
5544346 Amini Aug 1996 A
5546545 Rich Aug 1996 A
5546548 Chen et al. Aug 1996 A
5563896 Nakaguchi Oct 1996 A
5572148 Lytle et al. Nov 1996 A
5574867 Khaira Nov 1996 A
5581715 Verinsky et al. Dec 1996 A
5583999 Sato et al. Dec 1996 A
5588012 Oizumi Dec 1996 A
5592404 Zook Jan 1997 A
5600662 Zook Feb 1997 A
5602857 Zook et al. Feb 1997 A
5615190 Best et al. Mar 1997 A
5623672 Popat Apr 1997 A
5626949 Blauer et al. May 1997 A
5627695 Prins et al. May 1997 A
5640602 Takase Jun 1997 A
5649230 Lentz Jul 1997 A
5664121 Cerauskis Sep 1997 A
5689656 Baden et al. Nov 1997 A
5691994 Acosta et al. Nov 1997 A
5692135 Alvarez, II et al. Nov 1997 A
5692165 Jeddeloh et al. Nov 1997 A
5696775 Nemazie et al. Dec 1997 A
5719516 Sharpe-Geisler Feb 1998 A
5729718 Au Mar 1998 A
5740466 Geldman et al. Apr 1998 A
5745793 Atsatt et al. Apr 1998 A
5754759 Clarke et al. May 1998 A
5758188 Appelbaum et al. May 1998 A
5784569 Miller et al. Jul 1998 A
5794073 Ramakrishnan et al. Aug 1998 A
5801998 Choi Sep 1998 A
5818886 Castle Oct 1998 A
5822142 Hicken Oct 1998 A
5831922 Choi Nov 1998 A
5835930 Dobbek Nov 1998 A
5841722 Willenz Nov 1998 A
5844844 Bauer et al. Dec 1998 A
5850422 Chen Dec 1998 A
5854918 Baxter Dec 1998 A
5890207 Sne et al. Mar 1999 A
5890210 Ishii et al. Mar 1999 A
5907717 Ellis May 1999 A
5912906 Wu et al. Jun 1999 A
5925135 Trieu et al. Jul 1999 A
5937435 Dobbek et al. Aug 1999 A
5950223 Chiang et al. Sep 1999 A
5968180 Baco Oct 1999 A
5983293 Murakami Nov 1999 A
5991911 Zook Nov 1999 A
6029226 Ellis et al. Feb 2000 A
6029250 Keeth Feb 2000 A
6041417 Hammond et al. Mar 2000 A
6065053 Nouri et al. May 2000 A
6067206 Hull et al. May 2000 A
6070200 Gates et al. May 2000 A
6078447 Sim Jun 2000 A
6081849 Born et al. Jun 2000 A
6092231 Sze Jul 2000 A
6094320 Ahn Jul 2000 A
6108812 Born Aug 2000 A
6124994 Malone, Sr. Sep 2000 A
6125469 Zook et al. Sep 2000 A
6134063 Weston-Lewis et al. Oct 2000 A
6157984 Fisher et al. Dec 2000 A
6161165 Solomon et al. Dec 2000 A
6178486 Gill et al. Jan 2001 B1
6192499 Yang Feb 2001 B1
6201655 Watanabe et al. Mar 2001 B1
6223303 Billings et al. Apr 2001 B1
6279089 Schibilla et al. Aug 2001 B1
6297926 Ahn Oct 2001 B1
6330626 Dennin et al. Dec 2001 B1
6381659 Proch et al. Apr 2002 B2
6401149 Dennin et al. Jun 2002 B1
6467060 Malakapalli et al. Oct 2002 B1
6470461 Pinvidic et al. Oct 2002 B1
6480970 DeKoning et al. Nov 2002 B1
6487631 Dickinson et al. Nov 2002 B2
6490635 Holmes Dec 2002 B1
6530000 Krantz et al. Mar 2003 B1
6574676 Megiddo Jun 2003 B1
6662334 Stenfort Dec 2003 B1
6711659 Miller et al. Mar 2004 B2
6721828 Verinsky et al. Apr 2004 B2
6751757 Biskup et al. Jun 2004 B2
6760814 Corrigan Jul 2004 B2
6772289 Corrigan Aug 2004 B1
6826650 Krantz et al. Nov 2004 B1
6915475 Tung et al. Jul 2005 B1
6981171 Hashemi Dec 2005 B2
7111228 Ricci Sep 2006 B1
20010044873 Wilson et al. Nov 2001 A1
20030037225 Deng et al. Feb 2003 A1
Foreign Referenced Citations (8)
Number Date Country
0528273 Feb 1993 EP
0622726 Nov 1994 EP
0718827 Jun 1996 EP
2285166 Jun 1995 GB
63-292462 Nov 1988 JP
01-315071 Dec 1989 JP
03183067 Aug 1991 JP
9814861 Apr 1998 WO
Provisional Applications (1)
Number Date Country
60378471 May 2002 US
Continuations (1)
Number Date Country
Parent 10429495 May 2003 US
Child 11521979 US