System and method for performing shard migration to support functions of a cloud-based service

Information

  • Patent Grant
  • 9792320
  • Patent Number
    9,792,320
  • Date Filed
    Monday, July 8, 2013
    11 years ago
  • Date Issued
    Tuesday, October 17, 2017
    7 years ago
Abstract
Systems and methods of maintaining a horizontally scaled database based on data ownership for a cloud-based platform (e.g., cloud-based collaboration and/or storage platform/service) are disclosed. The system database comprises multiple shard databases, and all files and folders owned by a user are stored on a single shard database. When a user transfers ownership of a file and/or a folder to a second user, the transferred file and/or folder is stored on the shard database that stores all of the data for the second user.
Description
BACKGROUND

Typically, when a company first starts storing information in a database, all of the information is stored in a single database. As the company grows, more and more information needs to be stored, and the database grows larger. At the same time, the database becomes less efficient because a bottleneck exists at the server handling all of the data requests for the database.





BRIEF DESCRIPTION OF THE DRAWINGS

Examples of a cloud-based platform (e.g., cloud-based collaboration and/or storage platform/service) that uses multiple shard databases that are partitioned by user are illustrated in the figures. The examples and figures are illustrative rather than limiting.



FIG. 1 illustrates an example diagram of a system where a host server supports horizontally scaled databases for data stored in folders or workspaces in an cloud-based platform (e.g., cloud-based collaboration and/or storage platform/service).



FIG. 2 depicts an example diagram of a web-based or cloud-based platform (e.g., cloud-based collaboration and/or storage platform/service) deployed in an enterprise or other organizational setting for organizing work items and workspaces.



FIG. 3 depicts a block diagram illustrating an example of components in the data access layer (e.g., object relational mapping (ORM)) of the host server of a cloud-based platform (e.g., cloud-based collaboration and/or storage platform/service).



FIG. 4 depicts an example schema layout.



FIG. 5A shows an example folder tree for a database, and FIG. 5B shows a table indicating the parent folder and the path for folders in a folder tree.



FIG. 6 depicts a flow chart illustrating an example process for partitioning an existing database based on ownership of the data.



FIG. 7 depicts a flow chart illustrating an example process for adding a new item to a partitioned database.



FIGS. 8A-8B depict a flow chart illustrating an example process for receiving and executing a request on a horizontally scaled database partitioned based on the owner of the data.



FIG. 9 shows a diagrammatic representation of a machine in the example form of a computer system within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, may be executed.





DETAILED DESCRIPTION

A cloud-based platform (e.g., cloud-based collaboration and/or storage platform/service) is described that uses a database partitioned horizontally into multiple shard databases, where data is divided amongst the shard databases according to ownership of the data, and all data owned by a particular user is co-located in the same shard database. Ownership of data can be changed via user-initiated actions within the cloud-based platform (e.g., cloud-based collaboration and/or storage platform/service), that is, a current owner of data can transfer ownership to a different user of the cloud-based platform (e.g., cloud-based collaboration and/or storage platform/service). When change of ownership of data occurs, the system migrates the data, if necessary, to an appropriate shard database associated with the new owner of the data. Location of data within the shard databases is maintained in a mapping database that maps data object identifications to shard identifications.


Various aspects and examples of the invention will now be described. The following description provides specific details for a thorough understanding and enabling description of these examples. One skilled in the art will understand, however, that the invention may be practiced without many of these details. Additionally, some well-known structures or functions may not be shown or described in detail, so as to avoid unnecessarily obscuring the relevant description.


The terminology used in the description presented below is intended to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific examples of the technology. Certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this Detailed Description section.



FIG. 1 illustrates a diagram of an example system that has a host server 100 with a data access layer 110 that can analyze web application database queries; look up in a mapping database 130 to determine in which of shard database 1, shard database 2, . . . shard database n 120-1, 120-2, . . . 120-n data referenced by a particular query is stored; and move file(s) and/or folder(s) between shard databases based on user-initiated ownership changes. In some embodiments, the data access layer 110 can be an object relational mapping (ORM) layer.


All files and folders that belong to a user are co-located and maintained on a single shard database. In some embodiments, when a user account is associated with an enterprise or a business, all files and folders associated with a single enterprise or business are co-located and maintained on a single shard database. In some embodiments, the host server 100, mapping database 130, and shard databases 120-1 . . . 120-n are directly coupled, rather than coupled through the network 106.


The client devices 102 can be any system and/or device, and/or any combination of devices/systems that is able to establish a connection, including wired, wireless, cellular connections with another device, a server and/or other systems such as host server 100 via, for example, a web application. Client devices 102 will typically include a display and/or other output functionalities to present information and data exchanged between or among the devices 102 and/or the host server 100.


For example, the client devices 102 can include mobile, hand held or portable devices or non-portable devices and can be any of, but not limited to, a server desktop, a desktop computer, a computer cluster, or portable devices including, a notebook, a laptop computer, a handheld computer, a palmtop computer, a mobile phone, a cell phone, a smart phone (e.g., a BlackBerry device such as BlackBerry Z10/Q10, an iPhone, Nexus 4, etc.), a Treo, a handheld tablet (e.g. an iPad, iPad Mini, a Galaxy Note, Galaxy Note II, Xoom Tablet, Microsoft Surface, Blackberry PlayBook, Nexus 7, 10 etc.), a phablet (e.g., HTC Droid DNA, etc.), a wearable smart electronic wireless device (e.g., an electronic glasses—Google glass, a smart watch (e.g., a Google watch), a tablet PC, a thin-client, a hand held console, a hand held gaming device or console (e.g., XBOX live, Nintendo DS, Sony PlayStation Portable, etc.), iOS powered watch, Google Glass, a Chromebook and/or any other portable, mobile, hand held devices, etc. running on any platform or any operating system (e.g., Mac-based OS (OS X, iOS, etc.), Windows-based OS (Windows Mobile, Windows 7, Windows 8, etc.), Android, Blackberry OS, Embedded Linux platforms, Palm OS, Symbian platform, Google Chrome OS, and the like. In one embodiment, the client devices 102, and host server 100 are coupled via a network 106. In some embodiments, the devices 102 and host server 100 may be directly connected to one another.


The input mechanism on client devices 102 can include touch screen keypad (including single touch, multi-touch, gesture sensing in 2D or 3D, etc.), a physical keypad, a mouse, a pointer, a track pad, motion detector (e.g., including 1-axis, 2-axis, 3-axis accelerometer, etc.), a light sensor, capacitance sensor, resistance sensor, temperature sensor, proximity sensor, a piezoelectric device, device orientation detector (e.g., electronic compass, tilt sensor, rotation sensor, gyroscope, accelerometer), or a combination of the above.


Signals received or detected indicating user activity at client devices 102 through one or more of the above input mechanism, or others, can be used in the disclosed technology by various users or collaborators (e.g., collaborators 108) for accessing, through network 106, a cloud-based platform (e.g., cloud-based collaboration and/or storage platform/service) (e.g., hosted by the host server 100). The collaboration environment or platform can have one or more collective settings 125 for an enterprise or an organization to which the users belong, and can provide a user interface 104 for the users to access such platform under the settings 125.


The cloud-based service (e.g, collaboration platform or environment) hosts workspaces with work items that one or more users can access (e.g., view, edit, update, revise, comment, add to discussions, download, preview, tag, or otherwise manipulate, etc.). A work item can generally include any type of digital or electronic content that can be viewed or accessed via an electronic device (e.g., device 102). The digital content can include .PDF files, .doc, slides (e.g., PowerPoint slides), images, audio files, multimedia content, web pages, blogs, etc. A workspace can generally refer to any grouping of a set of digital content in the collaboration platform. The grouping can be created, identified, or specified by a user or through other means. This user may be a creator user or administrative user, for example.


In general, a workspace can be associated with a set of users or collaborators (e.g., collaborators 108) which have access to the content included therein. The levels of access (e.g., based on permissions or rules) of each user or collaborator to access the content in a given workspace may be the same or may vary among the users. Each user may have their own set of access rights to every piece of content in the workspace, or each user may have different access rights to different pieces of content. Access rights may be specified by a user associated with a workspace and/or a user who created/uploaded a particular piece of content to the workspace, or any other designated user or collaborator.


In general, the collaboration platform allows multiple users or collaborators to access or collaborate on efforts on work items such that each user can see, remotely, edits, revisions, comments, or annotations being made to specific work items through their own user devices. For example, a user can upload a document to a workspace for other users to access (e.g., for viewing, editing, commenting, discussing, signing-off, or otherwise manipulating). The user can login to the online platform and upload the document (or any other type of work item) to an existing workspace or to a new workspace. The document can be shared with existing users or collaborators in a workspace. Each document, work item, file, and folder can only be owned by a single user. However, the owner of the document, work item, file, or folder can transfer ownership to another collaborator.


The shard databases 120-1 . . . 120-n are each a sub-database of the system. Each table in the system database is split amongst the shard databases 120-1 . . . 120-n. As an illustration, FIG. 4 shows an example schema layout with two shard databases 120-1 and 120-2. The file table is split between the two shard databases 120-1 and 120-2, and similarly the folder table is also split between the two shard databases 120-1 and 120-2. Determining which of the rows of the file table and the folder table are placed in each shard database depends upon the owner of the particular file and folder, respectively. That is, all of the files and folders that are owned by a particular user are stored in a single shard database.


The mapping database 130 stores mappings, for example, between a user and the shard database on which data objects owned by the user are stored, between an enterprise and the shard database on which data objects owned by all users associated with the enterprise are stored, between a file and the shard database on which the file is stored, and between a folder and the shard database on which the folder is stored.


In some embodiments, client devices 102 communicate with the host server 100 over network 106. In general, network 106, over which the client devices 102 and the host server 100 communicate, may be a cellular network, a telephonic network, an open network, such as the Internet, or a private network, such as an intranet and/or the extranet, or any combination thereof. For example, the Internet can provide file transfer, remote log in, email, news, RSS, cloud-based services, instant messaging, visual voicemail, push mail, VoIP, and other services through any known or convenient protocol, such as, but not limited to, the TCP/IP protocol, Open System Interconnections (OSI), FTP, UPnP, iSCSI, NSF, ISDN, PDH, RS-232, SDH, SONET, etc.


The network 106 can be any collection of distinct networks operating wholly or partially in conjunction to provide connectivity to the client devices 102 and the host server 100 and may appear as one or more networks to the serviced systems and devices. In some embodiments, communications to and from the client devices 102 can be achieved by, an open network, such as the Internet, or a private network, such as an intranet and/or the extranet. In some embodiments, communications can be achieved by a secure communications protocol, such as secure sockets layer (SSL), or transport layer security (TLS).


In addition, communications can be achieved via one or more networks, such as, but are not limited to, one or more of WiMax, a Local Area Network (LAN), Wireless Local Area Network (WLAN), a Personal area network (PAN), a Campus area network (CAN), a Metropolitan area network (MAN), a Wide area network (WAN), a Wireless wide area network (WWAN), enabled with technologies such as, by way of example, Global System for Mobile Communications (GSM), Personal Communications Service (PCS), Digital Advanced Mobile Phone Service (D-Amps), Bluetooth, Wi-Fi, Fixed Wireless Data, 2G, 2.5G, 3G, 4G, IMT-Advanced, pre-4G, 3G LTE, 3GPP LTE, LTE Advanced, mobile WiMax, WiMax 2, WirelessMAN-Advanced networks, enhanced data rates for GSM evolution (EDGE), General packet radio service (GPRS), enhanced GPRS, iBurst, UMTS, HSPDA, HSUPA, HSPA, UMTS-TDD, 1×RTT, EV-DO, messaging protocols such as, TCP/IP, SMS, MMS, extensible messaging and presence protocol (XMPP), real time messaging protocol (RTMP), instant messaging and presence protocol (IMPP), instant messaging, USSD, IRC, or any other wireless data networks or messaging protocols.



FIG. 2 depicts an example diagram of a web-based or cloud-based platform (e.g., cloud-based collaboration and/or storage platform/service) deployed in an enterprise or other organizational setting 250 for organizing workspaces 205, 225, 245 and work items 215, 235, 255, where the work items and workspaces are hosted on shard databases 1, 2, . . . n 120-1, 120-2, . . . 120-n.


The web-based platform for collaborating on projects or jointly working on documents can be used by individual users and shared among collaborators. In addition, the collaboration platform can be deployed in an organized setting including but not limited to, a company (e.g., an enterprise setting), a department in a company, an academic institution, a department in an academic institution, a class or course setting, or any other types of organizations or organized setting.


When deployed in an organizational setting, multiple workspaces (e.g., workspace A, B C) can be created to support different projects or a variety of work flows. Each workspace can have its own associated work items. For example, workspace A 205 may be associated with work items 215, workspace B 225 can be associated with work items 235, and workspace N 245 can be associated with work items 255. The work items 215, 235, and 255 may be unique to each workspace but need not be. For example, a particular word document can be associated with only one workspace (e.g., workspace A 205) or it may be associated with multiple workspaces (e.g., workspace A 205 and workspace B 225, etc.).


In general, each workspace has a set of users or collaborators associated with it. For example, workspace A 205 is associated with multiple users or collaborators 206. In some instances, workspaces deployed in an enterprise may be department specific. For example, workspace B may be associated with department 210 and some users shown as example user A 208, and workspace N 245 can be associated with departments 212 and 216 and users shown as example user B 214.



FIG. 3 depicts a block diagram illustrating an example of components in the data access layer component 110 of the host server 100 of a cloud-based platform (e.g., cloud-based collaboration and/or storage platform/service).


The host server 100 of the cloud-based platform (e.g., cloud-based collaboration and/or storage platform/service) can generally be a cloud-based service. The data access layer 110 of the host server 100 can include, for example, a network interface 302, a code creation engine 310, a request translation module 320, a class engine 330, a look up engine 340, an update engine 350, and/or an execution module 360. The update engine 350 can include a migration module 352, a mapping database update module 354, and/or a rollback module 356. Additional or fewer components/modules/engines can be included in the host server 100, data access layer 110 and each illustrated component.


The network interface 302 can be a networking module that enables the data access layer 110 to mediate data in a network with an entity that is external to the data access layer 110, through any known and/or convenient communications protocol supported by the data access layer 110 (e.g., object relational mapping (ORM)) and the external entity. The network interface 302 can include one or more of a network adaptor card, a wireless network interface card (e.g., SMS interface, WiFi interface, interfaces for various generations of mobile communication standards including but not limited to 1G, 2G, 3G, 3.5G, 4G, LTE, etc.,), Bluetooth, a router, an access point, a wireless router, a switch, a multilayer switch, a protocol converter, a gateway, a bridge, bridge router, a hub, a digital media receiver, and/or a repeater.


As used herein, a “module” or an “engine” includes a general purpose, dedicated or shared processor and, typically, firmware or software modules that are executed by the processor. Depending upon implementation-specific or other considerations, the module or engine can be centralized or its functionality distributed. The module or engine can include general or special purpose hardware, firmware, or software embodied in a computer-readable (storage) medium for execution by the processor. As used herein, a computer-readable medium or computer-readable storage medium is intended to include all mediums that are statutory (e.g., in the United States, under 35 U.S.C. 101), and to specifically exclude all mediums that are non-statutory in nature to the extent that the exclusion is necessary for a claim that includes the computer-readable (storage) medium to be valid. Known statutory computer-readable mediums include hardware (e.g., registers, random access memory (RAM), non-volatile (NV) storage, to name a few), but may or may not be limited to hardware.


Some embodiments of the data access layer 110 include the code creation engine 310 which can create a code representation for each table stored in the collective shard databases 1-n 120-1 . . . 120-n. For example, for a file table that includes stored files, the data access layer 110 creates a type of object that is a file, i.e., a file object, and for a folder table, the data access layer 110 creates a type of object that is a folder, i.e., a folder object. These code objects are manipulated by the web application used by a user to make a database query.



FIG. 4 depicts an example schema layout. The layout can include a mapping database 130, a global application database 135, a shard database 1 120-1, and a shard database 2 120-2.


The mapping database 130 can include a user table that maps a user identification, user_id, to a shard identification, shard_id; an enterprise table that maps an enterprise identification, enterprise_id to a shard_id; a file table that maps a file identification, file_id, to a shard_id; and a folder table that maps a folder identification, folder_id, to a shard_id.


The global application database 135 can include a user table that associates a user_id with a name of the user and other user information; and an enterprise table that associates an enterprise_id with a name of the enterprise and other enterprise information.


The shard database 1 120-1 and the shard database 2 120-2 can each include a file table and a folder table that include respective data in the shard databases. The file table associates a file_id with a user_id and other file information; and the folder table associates a folder_id with a user_id and other folder information.


Some embodiments of the data access layer 110 include the class engine 330 which maps each database table to a class in the code representation, for example, there can be a file class and a folder class. For every class, the class engine 330 defines its database keys. For example, for the file class, defined database keys can be file identification (file_id), file name, parent folder, and owner.


For every class, the class engine 330 also defines mapping keys that can be used to look up in the mapping database where a particular object is located, that is, a shard identification location. For example, because all of a user's files and folders are co-located on the same shard database, whichever shard database that a user is mapped to, the content owned by that user will be located there. Thus, user identification (user_id) is a mapping key that can be used for the file class and the folder class.


As an example, if a query for a particular file identification is received, rather than going to the shard databases to look for the file identification, the data access layer 110 goes to the mapping database 130 to determine which shard database that particular file is stored in. Then the data access layer 110 goes directly to the identified shard database to retrieve the information in response to the request.


Some embodiments of the data access layer 110 include the request translation module 120 which receives database requests via a web application from a user and translates the request to a query on the shard databases 120-1 . . . 120-n. The request translation module 120 also determines whether the fields of the received request are merely regular keys or are mapping keys.


If the request translation module 120 determines that the received request includes a mapping key, the mapping key is used by the look up engine 340 to look up in the mapping database 130 where the queried object is currently located and where objects belonging to the new owner reside. From this information, the look up engine 340 further determines whether the location of the object needs to be moved to a different shard database, i.e., an online shard migration.


As an example, if the received request is file set_owner (new_owner), i.e., setting a new owner for a file, the request translation module 120 determines that new_owner is a mapping key. Subsequently, the look up engine 340 finds in the mapping database the current owner of the file and then compares the assigned shard database for the current owner and the new owner. If the assigned shard database is different for the current owner and the new owner, the file needs to be moved with an online shard migration process. If the assigned shard database is the same, the file location remains in its current shard database location.


If the request translation module 120 determines that the received request only uses regular keys, not mapping keys, there is no need to consider whether the requested object needs to be moved to a different shard database. For example, if the user wants to modify a file and the request translation module 120 receives a file set_date request, the request translation module 120 identifies that no mapping keys are used in the fields of the request. Then the execution module 360 executes the database request and simply makes the modification because it does not involve an online shard migration.


The update engine 350 performs the online shard migration to move the location of objects within the shard databases. Within the cloud-based platform (e.g., cloud-based collaboration and/or storage platform/service), this can arise when two users collaborate on a folder. With collaboration, a user can have access to a folder located on a shard database different from the shard database in which objects owned by that user are stored. Further, a user can move a file into a collaborator's folder, thus transferring ownership of the file to the collaborator. When ownership of a file or folder changes, if the assigned shard database of the transferor (current owner) is different from the assigned shard database of the transferee (new owner), an online shard migration needs to be performed.


The online shard migration process involves transactions on three databases, the original shard database, the new shard database, and the mapping database. The migration module 352 copies items from a first shard to a second shard during an online shard migration and subsequently removes the copied items from the first shard, and the mapping database update module 354 updates the corresponding mapping in the mapping database when an online shard migration is performed.


The online shard migration process starts by opening a first transaction on the mapping database, a second transaction on the original source shard, and a third transaction on the new destination shard. When these transactions are begun, the contents of the rows of the three databases that will be involved in the shard migration process are locked to block access to the data during the process.


Then the appropriate rows on the original source shard are selected for updating, and the corresponding rows in the mapping database are updated to the new destination shard. Next, the new rows are inserted in the new destination shard, and finally, the content is deleted on the original source shard. The transaction on the destination shard is committed first, then the transaction on the mapping database is committed, and last, the transaction on the source shard is committed.


The rollback module 356 monitors the online shard migration process and erases any changes made to the three databases if any problems arise during the shard migration process.


Shard migration has been discussed above with respect to files. With folders that can contain files and other folders, the process is slightly different. If the data access layer 110 receives a request folder set_owner (new_owner), i.e., setting a new owner for a folder, the mapping process is similar to setting a new owner for a file, but in this case, if the shard database on which data owned by the new owner is different from the shard database on which the folder is currently stored, not only does the folder migrate to the new shard database but other folders stored within the folder migrate as well. All the related objects should be copied over to the new shard database to maintain co-location of the stored objects for each user.



FIG. 5A shows an example folder tree for a database. Folder B and folder C are contained in folder A, and folder D is contained in folder C. For each folder stored in the shard databases, two pieces of information are stored, the parent folder and a path in the folder tree that indicates where the folder is located. This information is shown in a table in FIG. 5B. Because folder A is at the top of the folder tree, the parent is the root, and the path for folder A is the top-level, indicated by a forward slash in the table in FIG. 5B. For both folders B and C, the parent folder is folder A, and the path is under folder A. And for folder D, the parent folder is folder C, and the path to folder D is from the root through folder A and then through folder C.


With this information, a tree-based prefix query can be performed for all folders having a path in, for example, folder A's tree. With a prefix query, the identification for a particular file and folder is not looked up in the mapping database, rather, all folders that match the path with folder A are located in the same database as folder A. These folders will need to be moved along with folder A to maintain co-location of objects that belong to a particular user.



FIG. 6 depicts a flow chart illustrating an example process for partitioning an existing database based on ownership of the data.


At block 605, the data access layer (e.g., object relational mapping (ORM)) identifies all items owned by one selected user out of all the users for which the database stores data. Then at decision block 610, the data access layer determines whether the user is associated with an enterprise account provided by a cloud-based platform. If the user is not associated with an enterprise account (block 610—No), at block 615, the data access layer moves all items owned by the selected user to a single shard database.


If the user is associated with an enterprise account (block 610—Yes), at block 620, the data access layer moves all items owned by the selected user to a shard database associated with the enterprise account. Then at decision block 625, the data access layer determines if there are any more users in the list of users for which the data access layer needs to evaluate for the partitioning process. If data for all users using the database have been partitioned (block 625—No), at block 630 the data access layer creates a mapping database. The mapping database maintains a listing of which shard database the data owned by each user is located in. And at block 635, the data access layer identifies the parent and path for each folder and stores this information.


If there is another user to be evaluated for the partitioning process (block 625—Yes), the process returns to block 605 where all items owned by the next user are identified.



FIG. 7 depicts a flow chart illustrating an example process for adding a new item to a partitioned database.


At block 705, the data access layer receives a new item (file, folder, or combination) for storage in the database. Then at decision block 710, the data access layer determines whether the user who owns the new item is a new user. If the database already stores items owned by the user (block 710—No), at block 715, the data access layer looks up the shard identification for the shard database that stores the items owned by the user. Then at block 717, the data access layer stores the new item in the identified shard database.


If the user does not already have items stored in the database (block 710—Yes), then at decision block 720, the data access layer determines whether the user is associated with a particular enterprise account. If the user is not associated with an enterprise account (block 720—No), at block 725, the data access layer identifies a shard database that has free space for storing the new items. Then at block 717, the data access layer stores the new item in the identified shard database.


If the user is associated with an enterprise account (block 720—Yes), at block 730, the data access layer identifies the shard database associated with the enterprise account of the new user, and the process continues to block 717.



FIGS. 8A-8B depict a flow chart illustrating an example process for receiving and executing a request on a horizontally scaled database partitioned based on the owner of the data.


At block 805, the data access layer receives a database request, for example, the database request can be ‘file set data’ or ‘file set owner.’ Then at decision block 810, the data access layer determines whether one of the fields of the request is a mapping key. If none of the fields of the request is a mapping key (block 810—No), the request will not entail consideration as to whether the data needs to be moved to a different shard database. And at block 815, the data access layer executes the received request.


If one of the fields of the request is a mapping key (block 810—Yes), at block 820, the identified mapping key is used with the mapping database to find the shard database in which data for the new owner is stored.


Then at decision block 825, the data access layer determines if the shard database in which data for the new owner is stored is different from the shard database storing data for the current owner. If the shard database is the same (block 825—No), at block 815, the data access layer executes the request. If the shard database is different (block 825—Yes), an online shard migration process ensues.


At block 830, the data access layer begins the transaction on the mapping database, and access to rows or items in the mapping database that will be effected are locked; at block 835, the transaction on the source shard database begins, and access to rows or items in the source shard database that will be effected are locked; and at block 840, the transaction on the destination shard database begins, and access to rows or items in the destination shard database that will be effected are locked.


Then at block 840, the rows on the source shard database are selected for updating. Next, at block 850, the appropriate rows or items in the mapping database are updated to indicate the new destination shard database. Then, at block 855, the new rows of data or items are inserted into the appropriate table of the destination shard database. And at block 860, the copied content is deleted from the source shard database.


Then at block 865, the transaction on the destination shard database is committed, and the lock on the rows or items in the destination shard database is released; at block 870, the transaction on the mapping database is committed, and the lock on the rows or items in the mapping database is released; and at block 875 the transaction on the source shard database is committed, and the lock on the rows or items in the source shard database is released.



FIG. 9 shows a diagrammatic representation of a machine in the example form of a computer system within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, may be executed.


In alternative embodiments, the machine operates as a standalone device or may be connected (e.g., networked) to other machines. In a networked deployment, the machine may operate in the capacity of a server or a client machine in a client-server network environment, or as a peer machine in a peer-to-peer (or distributed) network environment.


The machine may be a server computer, a client computer, a personal computer (PC), a user device, a tablet PC, a laptop computer, a set-top box (STB), a personal digital assistant (PDA), a cellular telephone, an iPhone, an iPad, a wearable smart electronic wireless device (e.g., an electronic glasses—Google glass, a smart watch (e.g., a Google watch), a Blackberry, a processor, a telephone, a web appliance, a network router, switch or bridge, a console, a hand-held console, a (hand-held) gaming device, a music player, any portable, mobile, hand-held device, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine.


While the machine-readable medium or machine-readable storage medium is shown in an exemplary embodiment to be a single medium, the term “machine-readable medium” and “machine-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable medium” and “machine-readable storage medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the presently disclosed technique and innovation.


In general, the routines executed to implement the embodiments of the disclosure may be implemented as part of an operating system or a specific application, component, program, object, module or sequence of instructions referred to as “computer programs.” The computer programs typically comprise one or more instructions set at various times in various memory and storage devices in a computer that, when read and executed by one or more processing units or processors in a computer, cause the computer to perform operations to execute elements involving the various aspects of the disclosure.


Moreover, while embodiments have been described in the context of fully functioning computers and computer systems, those skilled in the art will appreciate that the various embodiments are capable of being distributed as a program product in a variety of forms, and that the disclosure applies equally regardless of the particular type of machine or computer-readable media used to actually effect the distribution.


Further examples of machine-readable storage media, machine-readable media, or computer-readable (storage) media include but are not limited to recordable type media such as volatile and non-volatile memory devices, floppy and other removable disks, hard disk drives, optical disks (e.g., Compact Disk Read-Only Memory (CD ROMS), Digital Versatile Disks, (DVDs), etc.), among others, and transmission type media such as digital and analog communication links.


Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” As used herein, the terms “connected,” “coupled,” or any variant thereof, means any connection or coupling, either direct or indirect, between two or more elements; the coupling of connection between the elements can be physical, logical, or a combination thereof. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word “or,” in reference to a list of two or more items, covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.


The above detailed description of embodiments of the disclosure is not intended to be exhaustive or to limit the teachings to the precise form disclosed above. While specific embodiments of, and examples for, the disclosure are described above for illustrative purposes, various equivalent modifications are possible within the scope of the disclosure, as those skilled in the relevant art will recognize. For example, while processes or blocks are presented in a given order, alternative embodiments may perform routines having steps, or employ systems having blocks, in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified to provide alternative or sub-combinations. Each of these processes or blocks may be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed in parallel, or may be performed at different times. Further any specific numbers noted herein are only examples: alternative implementations may employ differing values or ranges.


The teachings of the disclosure provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various embodiments described above can be combined to provide further embodiments.


Any patents and applications and other references noted above, including any that may be listed in accompanying filing papers, are incorporated herein by reference. Aspects of the disclosure can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further embodiments of the disclosure.


These and other changes can be made to the disclosure in light of the above Detailed Description. While the above description describes certain embodiments of the disclosure, and describes the best mode contemplated, no matter how detailed the above appears in text, the teachings can be practiced in many ways. Details of the system may vary considerably in its implementation details, while still being encompassed by the subject matter disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the disclosure should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the disclosure with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the disclosure to the specific embodiments disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the disclosure encompasses not only the disclosed embodiments, but also all equivalent ways of practicing or implementing the disclosure under the claims.


While certain aspects of the disclosure are presented below in certain claim forms, the inventors contemplate the various aspects of the disclosure in any number of claim forms. For example, while only one aspect of the disclosure is recited as a means-plus-function claim under 35 U.S.C. §112, ¶6, other aspects may likewise be embodied as a means-plus-function claim, or in other forms, such as being embodied in a computer-readable medium. (Any claims intended to be treated under 35 U.S.C. §112, ¶6 will begin with the words “means for.”) Accordingly, the applicant reserves the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the disclosure.

Claims
  • 1. A method of database partitioning within a collaborative environment hosted by a cloud-based platform, the method comprising: partitioning a database into multiple shard databases based upon ownership of one or more objects stored in the database, wherein the one or more objects are stored within a given one of the multiple shard databases based upon an association of the one or more objects with a user identification;mapping within a mapping database, a first user identification to a first shard database and a second user identification to a second shard database, wherein the mapping database, the first shard database, and the second shard database are associated with the cloud-based platform that supports collaboration between a first user having the first user identification and a second user having the second user identification;providing, via the cloud-based platform, to the second user, access to a collaboration folder that is owned by the first user, wherein the collaboration folder is located in the first shard database, wherein the collaboration folder is identifiable by a parent folder and a path that indicates a location of the collaboration ion folder within a folder tree;receiving a request to transfer the association of the one or more objects and the collaboration folder from the first user identification to the second user identification;migrating ownership of the one or more objects and the collaboration folder from the first shard database of the cloud-based platform to the second shard database of the cloud-based platform, wherein the migrating includes migrating the collaboration folder and one or more folders stored within the collaboration folder;inserting an access lock on the one or more objects and the collaboration folder in the mapping database, the first shard database, and the second shard database;updating a status of the one or more objects and a status of the collaboration folder in the mapping database to point to the second shard database;moving the one or more objects and the collaboration folder from the first shard database associated with the first user identification to the second shard database associated with the second user identification;deleting the one or more objects and the collaboration folder from the first shard database; andreleasing the access lock on the one or more objects and the collaboration folder in the second shard database, the mapping database, and the first shard database.
  • 2. The method of claim 1, wherein at least a subset of users of the database are associated with an enterprise account provided by a cloud-based platform, and further wherein the one or more objects associated with the subset of users are stored in the single shard database.
  • 3. The method of claim 2, further comprising: permitting an administrator of the enterprise account to query database objects associated with the subset of users associated with the enterprise account.
  • 4. The method of claim 1, further comprising: receiving a database-related request for a first object, the first object included in the one or more objects;upon determining that the database-related request involves transfer of association of the first object from the first user identification to the second user identification, identifying a third shard database that stores objects associated with the first user identification and a fourth shard database that stores objects associated with the second user identification, wherein the third shard database and the fourth shard database are included in the multiple shard databases;moving the first object from the third shard database to the fourth shard database, upon determining that the third shard database is different from the fourth shard database; andupdating the mapping database to reflect the movement of the first object to the fourth shard database.
  • 5. The method of claim 4, wherein determining that the database-related request involves transfer of association includes: identifying a field of the database-related request as a mapping key used by the mapping database to identify a shard database included in the multiple shard databases that stores the first object.
  • 6. The method of claim 4, wherein the first object is a folder, the method further comprising: determining one or more objects stored within the first object;moving the one or more objects stored within the first object to the fourth shard database, upon determining the third shard database is different from the fourth shard database.
  • 7. The method of claim 6, wherein determining that the one or more objects are stored within the first object comprises using a prefix query with the first object.
  • 8. The method of claim 6, wherein a parent for the folder and a path for the folder are stored for use in responding to the prefix query.
  • 9. The method of claim 1, further comprising: receiving a database-related request for a second object;upon determining that the database-related request does not involve transfer of association of the second object, executing the database-related request.
  • 10. The method of claim 9, wherein the determining that the database-related request does not involve transfer of association comprises determining that fields of the database-related request do not include a mapping key, wherein the mapping key is used with the mapping database to determine in which one of the multiple shard databases a particular object is stored.
  • 11. The method of claim 10, wherein the multiple shard databases are used to store data for a cloud-based platform.
  • 12. The method of claim 1, wherein the one or more objects stored in the database have a single owner.
  • 13. A method of performing shard migration within a collaborative environment hosted by a cloud-based platform, the method comprising: mapping within a mapping database, a first user identification to a first shard database and a second user identification to a second shard database, wherein the mapping database, the first shard database, and the second shard database are associated with the cloud-based platform that supports collaboration between a first user having the first user identification and a second user having the second user identification, wherein one or more objects are stored in the first shard database and associated with the first user identification;receiving a request that involves change of association of the one or more items stored in one of multiple shard databases in the cloud-based platform;providing, via the cloud-based platform, to the second user, access to a collaboration folder that is owned by the first user, wherein the collaboration folder is located in the first shard database, wherein the collaboration folder is identifiable by a parent folder and a path that indicates a location of the collaboration folder within a folder tree;migrating ownership of the one or more objects and the collaboration folder from the first shard database of the cloud-based platform to the second shard database of the cloud-based platform, wherein the migrating includes migrating the collaboration folder and one or more folders stored within the collaboration folder; andmoving the one or more items and the collaboration folder from a source shard database associated with a first user identification to a destination shard database associated with a second user identificationupdating a status of the one or more items and a status of the collaboration folder in the mapping database to point to the destination shard database;inserting the one or more items and the collaboration folder from the source shard database into the destination shard database;deleting the one or more items and the collaboration folder from the source shard database.
  • 14. The method of claim 13, wherein access to the one or more items in the source shard database, the mapping database, and the destination shard database are locked while moving the one or more items.
  • 15. The method of claim 13, further comprising: upon determining that there is a problem with moving the one or more items from the source shard database to the destination shard database, reinstating a state of the mapping database, the source shard database, and the destination shard database to a state prior to the moving of the one or more items.
  • 16. The method of claim 13, wherein the multiple shard databases are used to store the items for collaboration via the cloud-based platform.
  • 17. The method of claim 13, wherein each of the one or more items stored in the multiple shard databases has a single owner.
  • 18. A system for performing shard migration to support functions of a cloud-based platform, the system comprising: a processor;a memory having stored thereon instructions which, when executed by the processor, causes the system to: map, within a mapping database, a first user identification to a first shard database and a second user identification to a second shard database, wherein the mapping database, the first shard database, and the second shard database are associated with the cloud-based platform that supports collaboration between a first user having a first user identification and a second user having a second user identification, wherein one or more objects are stored in the first shard database and associated with the first user identification;receive a request that involves change of association of the one or more objects stored in one of multiple shard databases;provide, via the cloud-based platform, to the second user, access to a collaboration folder that is owned by the first user, wherein the collaboration folder is located in the first shard database, wherein the collaboration folder is identifiable by a parent folder and a path that indicates a location of the collaboration folder within a folder tree;migrate ownership of the one or more objects and the collaboration folder from the first shard database of the cloud-based platform to the second shard database of the cloud-based platform, wherein the migrating includes migrating the collaboration folder and one or more folders stored within the collaboration folder;move the one or more objects and the collaboration folder from a source shard database associated with a first user identification to a destination shard database associated with a second user identification, wherein upon the move the one or more objects appear in the destination shard database and are removed from the source shard database; andupdate a status of the one or more objects and a status of the collaboration folder in the mapping database to point to the destination shard database.
  • 19. The system of claim 18, wherein moving the one or more objects comprises: inserting the one or more objects from the source shard database into the destination shard database; anddeleting the one or more objects from the source shard database.
  • 20. The system of claim 19, wherein the system is further caused to: lock access to the source shard database, the mapping database, and the destination shard database while moving the one or more objects.
  • 21. The system of claim 18, wherein the system is further caused to: upon encountering a problem with moving the one or more objects from the source shard database to the destination shard database, return the mapping database, the source shard database, and the destination shard database to a state prior to the moving of the one or more objects.
  • 22. A non-transitory machine-readable storage medium having stored thereon instructions which, when executed by a processor, cause the processor to: partition a database into multiple shard databases based upon ownership of objects stored in the database, wherein the objects are stored within one of the multiple shard databases based upon an association of the objects with a user identification, wherein the user identification uniquely corresponds to a single shard database in the multiple shard databases;map, within a mapping database, a first user identification to a first shard database and a second user identification to a second shard database, wherein the mapping database, the first shard database, and the second shard database are associated with a cloud-based platform that supports collaboration between a first user having the first user identification and a second user having the second user identification, wherein the one or more objects are stored in the first shard database and associated with the first user identification;provide, via the cloud-based platform, to the second user, access to a collaboration folder that is owned by the first user, wherein the collaboration folder is located in the first shard database, wherein the collaboration folder is identifiable by a parent folder and a path that indicates a location of the collaboration folder within a folder tree;receive a request to transfer the association of the objects and the collaboration folder from the first user identification to the second user identification; andmigrate ownership of the one or more objects and the collaboration folder from the first shard database of the cloud-based platform to the second shard database of the cloud-based platform, wherein the migrating includes migrating the collaboration folder and one or more folders stored within the collaboration folder;move the one or more objects and the collaboration folder from the first shard database associated with the first user identification to the second shard database associated with the second user identification, wherein upon the move, the one or more objects appear in the second shard database and are removed from the first shard database; andupdate a status of the one or more objects and a status of the collaboration folder in the mapping database to point to the second shard database.
  • 23. The non-transitory machine-readable storage medium of claim 22, wherein the instructions further cause the processor to: maintain a key in the mapping database, wherein the key maps the objects stored in the database to the multiple shard databases.
  • 24. The non-transitory machine-readable storage medium of claim 22, wherein the instructions further cause the processor to: receive a request pertaining to a first database object, the first database object included in the objects;upon determining that the request involves transfer of association of the first database object from a first user to a second user, identifying a third shard database that stores objects associated with the first user and a fourth shard database that stores objects associated with the second user;moving the first database object from the third shard database to the fourth shard database, upon determining that the third shard database is different from the fourth shard database; andupdating the mapping database to reflect the movement of the first object to the fourth shard database.
  • 25. The non-transitory machine-readable storage medium of claim 24, wherein the first database object is a folder, and wherein the instructions further cause the processor to: determine one or more objects stored within the first database object;move the one or more database objects stored within the first database object to the fourth shard database, upon determining that the third shard database is different from the fourth shard database.
  • 26. The non-transitory machine-readable storage medium of claim 22, wherein the instructions further cause the processor to: receive a request pertaining to a second database object;upon determining that the request does not involve transfer of association of the second database object, execute the request.
  • 27. An apparatus for performing shard migration for a cloud-based collaboration platform, the apparatus performing the operations of: a memory having stored thereon instructions and coupled to a processor;the processor configured for: mapping, based on mapping metadata, a user identification to a shard database included in multiple databases that store one or more items based upon an association of the one or more items with the user identification, wherein the user identification uniquely corresponds to a single shard database in the multiple shard databases, wherein the mapping metadata identifies a first user having a first user identification and a second user having a second user identification, wherein the one or more items are stored in the first shard database and associated with the first user identification;receiving a request and determining whether the request involves a change of association of one or more items in the cloud-based collaboration platform; andproviding, via the cloud-based collaboration platform, to the second user, access to a collaboration folder that is owned by the first user, wherein the collaboration folder is located in a first shard database, wherein the collaboration folder is identifiable by a parent folder and a path that indicates a location of the collaboration folder within a folder tree, wherein the first shard database and the second shard database are included in the multiple databases;migrating ownership of the one or more items and the collaboration folder from the first shard database of the cloud-based collaboration platform to the second shard database of the cloud-based collaboration platform, wherein the migrating includes migrating the collaboration folder and one or more folders stored within the collaboration folder; andmoving the one or more items and the collaboration folder from the first shard database of the cloud-based collaboration platform to the second shard database of the cloud-based collaboration platform responsive to the request wherein the second shard database is different from the first shard database; andupdating the mapping metadata that maps the one or more items and the collaboration folder in the cloud-based collaboration platform to the user identification for determining whether the first shard database or the second shard database stores the one or more items.
  • 28. The apparatus of claim 27, further performing the operations of: executing the request upon determining that the request does not involve a change of association in the cloud-based collaboration platform.
CROSS-REFERENCE TO RELATED APPLICATIONS AND EFFECTIVE FILING DATE ENTITLEMENT

This application claims the benefit of and/or the right of priority to U.S. Provisional Patent Application No. 61/668,626 entitled “ONLINE SHARD MIGRATION,” which was filed on Jul. 6, 2012, the contents of which are incorporated by reference in their entirety herein.

US Referenced Citations (420)
Number Name Date Kind
5799320 Klug Aug 1998 A
5848415 Guck Dec 1998 A
5999908 Abelow Dec 1999 A
6034621 Kaufman Mar 2000 A
6055543 Christensen et al. Apr 2000 A
6073161 DeBoskey et al. Jun 2000 A
6098078 Gehani et al. Aug 2000 A
6233600 Salas et al. May 2001 B1
6289345 Yasue Sep 2001 B1
6292803 Richardson et al. Sep 2001 B1
6336124 Alam et al. Jan 2002 B1
6341340 Tsukerman Jan 2002 B1
6342906 Kumar et al. Jan 2002 B1
6345386 Delo et al. Feb 2002 B1
6370543 Hoffert et al. Apr 2002 B2
6374260 Hoffert et al. Apr 2002 B1
6385606 Inohara et al. May 2002 B2
6396593 Laverty et al. May 2002 B1
6515681 Knight Feb 2003 B1
6539381 Prasad et al. Mar 2003 B1
6584466 Serbinis et al. Jun 2003 B1
6636872 Heath et al. Oct 2003 B1
6654737 Nunez Nov 2003 B1
6662186 Esquibel et al. Dec 2003 B1
6687878 Eintracht et al. Feb 2004 B1
6714968 Prust Mar 2004 B1
6735623 Prust May 2004 B1
6742181 Koike et al. May 2004 B1
6760721 Chasen et al. Jul 2004 B1
6947162 Rosenberg et al. Sep 2005 B2
6952724 Prust Oct 2005 B2
6996768 Elo et al. Feb 2006 B1
7010752 Ly Mar 2006 B2
7020697 Goodman et al. Mar 2006 B1
7039806 Friedman et al. May 2006 B1
7069393 Miyata et al. Jun 2006 B2
7130831 Howard et al. Oct 2006 B2
7133834 Abelow Nov 2006 B1
7149787 Mutalik et al. Dec 2006 B1
7152182 Ji et al. Dec 2006 B2
7155483 Friend et al. Dec 2006 B1
7165107 Pouyoul et al. Jan 2007 B2
7222078 Abelow May 2007 B2
7275244 Charles Bell et al. Sep 2007 B1
7296025 Kung et al. Nov 2007 B2
7346778 Guiter et al. Mar 2008 B1
7353252 Yang et al. Apr 2008 B1
7370269 Prabhu et al. May 2008 B1
7401117 Dan et al. Jul 2008 B2
7469257 Parlin Dec 2008 B2
7543000 Castro et al. Jun 2009 B2
7581221 Lai et al. Aug 2009 B2
7620565 Abelow Nov 2009 B2
7647559 Yozell-Epstein et al. Jan 2010 B2
7650367 Arruza Jan 2010 B2
7661088 Burke Feb 2010 B2
7665093 Maybee et al. Feb 2010 B2
7676542 Moser et al. Mar 2010 B2
7698363 Dan et al. Apr 2010 B2
7734600 Wise et al. Jun 2010 B1
7756843 Palmer Jul 2010 B1
7774412 Schnepel Aug 2010 B1
7814426 Huesken et al. Oct 2010 B2
7886287 Davda Feb 2011 B1
7890964 Vogler-Ivashchanka et al. Feb 2011 B2
7937663 Parker et al. May 2011 B2
7958453 Taing Jun 2011 B1
7979296 Kruse et al. Jul 2011 B2
7996374 Jones et al. Aug 2011 B1
8027976 Ding et al. Sep 2011 B1
RE42904 Stephens, Jr. Nov 2011 E
8065739 Bruening et al. Nov 2011 B1
8090361 Hagan Jan 2012 B2
8103662 Eagan et al. Jan 2012 B2
8117261 Briere et al. Feb 2012 B2
8140513 Ghods et al. Mar 2012 B2
8151183 Chen et al. Apr 2012 B2
8185830 Saha et al. May 2012 B2
8214747 Yankovich et al. Jul 2012 B1
8230348 Peters et al. Jul 2012 B2
8347276 Schadow Jan 2013 B2
8358701 Chou et al. Jan 2013 B2
8429540 Yankovich et al. Apr 2013 B1
8464161 Giles et al. Jun 2013 B2
8549066 Donahue et al. Oct 2013 B1
8549511 Seki et al. Oct 2013 B2
8607306 Bridge et al. Dec 2013 B1
20010027492 Gupta Oct 2001 A1
20020091738 Rohrabaugh et al. Jul 2002 A1
20020099772 Deshpande et al. Jul 2002 A1
20020133509 Johnston et al. Sep 2002 A1
20020147770 Tang Oct 2002 A1
20020194177 Sherman et al. Dec 2002 A1
20030041095 Konda et al. Feb 2003 A1
20030084306 Abburi et al. May 2003 A1
20030093404 Bader et al. May 2003 A1
20030108052 Inoue et al. Jun 2003 A1
20030110264 Whidby et al. Jun 2003 A1
20030135536 Lyons Jul 2003 A1
20030135565 Estrada Jul 2003 A1
20030154306 Perry Aug 2003 A1
20030204490 Kasriel Oct 2003 A1
20030217171 Von Stuermer et al. Nov 2003 A1
20040021686 Barberis Feb 2004 A1
20040088647 Miller et al. May 2004 A1
20040103147 Flesher et al. May 2004 A1
20040111415 Scardino et al. Jun 2004 A1
20040117438 Considine et al. Jun 2004 A1
20040122949 Zmudzinski et al. Jun 2004 A1
20040128359 Horvitz et al. Jul 2004 A1
20040177138 Salle et al. Sep 2004 A1
20040181579 Huck et al. Sep 2004 A1
20040230624 Frolund et al. Nov 2004 A1
20040246532 Inada Dec 2004 A1
20040267836 Armangau et al. Dec 2004 A1
20050005276 Morgan Jan 2005 A1
20050010860 Weiss et al. Jan 2005 A1
20050022229 Gabriel et al. Jan 2005 A1
20050028006 Leser et al. Feb 2005 A1
20050039001 Hudis Feb 2005 A1
20050050228 Perham et al. Mar 2005 A1
20050063083 Dart et al. Mar 2005 A1
20050097225 Glatt et al. May 2005 A1
20050108406 Lee et al. May 2005 A1
20050114305 Haynes et al. May 2005 A1
20050114378 Elien et al. May 2005 A1
20050182966 Pham et al. Aug 2005 A1
20050198299 Beck et al. Sep 2005 A1
20050198452 Watanabe Sep 2005 A1
20050234864 Shapiro Oct 2005 A1
20050234943 Clarke Oct 2005 A1
20050261933 Magnuson Nov 2005 A1
20060005163 Huesken et al. Jan 2006 A1
20060026502 Dutta Feb 2006 A1
20060026535 Hotelling et al. Feb 2006 A1
20060036568 Moore et al. Feb 2006 A1
20060041603 Paterson et al. Feb 2006 A1
20060047804 Fredricksen et al. Mar 2006 A1
20060053088 Ali et al. Mar 2006 A1
20060053380 Spataro et al. Mar 2006 A1
20060070083 Brunswig et al. Mar 2006 A1
20060075071 Gillette Apr 2006 A1
20060123062 Bobbitt et al. Jun 2006 A1
20060133340 Rybak et al. Jun 2006 A1
20060168550 Muller et al. Jul 2006 A1
20060174051 Lordi et al. Aug 2006 A1
20060174054 Matsuki Aug 2006 A1
20060179070 George et al. Aug 2006 A1
20060242204 Karas et al. Oct 2006 A1
20060259524 Horton Nov 2006 A1
20060265719 Astl et al. Nov 2006 A1
20060271510 Harward et al. Nov 2006 A1
20070016680 Burd et al. Jan 2007 A1
20070038934 Fellman Feb 2007 A1
20070100830 Beedubail et al. May 2007 A1
20070115845 Hochwarth et al. May 2007 A1
20070118598 Bedi et al. May 2007 A1
20070124460 McMullen et al. May 2007 A1
20070124737 Wensley et al. May 2007 A1
20070124781 Casey et al. May 2007 A1
20070126635 Houri Jun 2007 A1
20070130143 Zhang et al. Jun 2007 A1
20070130163 Perez et al. Jun 2007 A1
20070198609 Black et al. Aug 2007 A1
20070208878 Barnes-Leon et al. Sep 2007 A1
20070214180 Crawford Sep 2007 A1
20070220016 Estrada et al. Sep 2007 A1
20070220590 Rasmussen et al. Sep 2007 A1
20070240057 Satterfield et al. Oct 2007 A1
20070256065 Heishi et al. Nov 2007 A1
20070282848 Kiilerich et al. Dec 2007 A1
20070283443 McPherson et al. Dec 2007 A1
20070288290 Motoyama et al. Dec 2007 A1
20080005135 Muthukrishnan et al. Jan 2008 A1
20080005195 Li Jan 2008 A1
20080016146 Gan et al. Jan 2008 A1
20080021959 Naghi et al. Jan 2008 A1
20080028323 Rosen et al. Jan 2008 A1
20080040173 Aleong et al. Feb 2008 A1
20080046828 Bibliowicz et al. Feb 2008 A1
20080059656 Saliba et al. Mar 2008 A1
20080063210 Goodman et al. Mar 2008 A1
20080065881 Dawson et al. Mar 2008 A1
20080077631 Petri Mar 2008 A1
20080091763 Devonshire et al. Apr 2008 A1
20080091790 Beck Apr 2008 A1
20080104277 Tian May 2008 A1
20080114720 Smith et al. May 2008 A1
20080133674 Knauerhase et al. Jun 2008 A1
20080140732 Wilson et al. Jun 2008 A1
20080147790 Malaney et al. Jun 2008 A1
20080151817 Fitchett et al. Jun 2008 A1
20080154873 Redlich et al. Jun 2008 A1
20080182628 Lee et al. Jul 2008 A1
20080183467 Yuan et al. Jul 2008 A1
20080184130 Tien et al. Jul 2008 A1
20080194239 Hagan Aug 2008 A1
20080215883 Fok et al. Sep 2008 A1
20080222654 Xu et al. Sep 2008 A1
20080243855 Prahlad et al. Oct 2008 A1
20080250333 Reeves et al. Oct 2008 A1
20080250348 Alimpich et al. Oct 2008 A1
20080263099 Brady-Kalnay et al. Oct 2008 A1
20080271095 Shafton Oct 2008 A1
20080276158 Lim et al. Nov 2008 A1
20090015864 Hasegawa Jan 2009 A1
20090019093 Brodersen et al. Jan 2009 A1
20090019426 Baeumer et al. Jan 2009 A1
20090030710 Levine Jan 2009 A1
20090037679 Kaushik Feb 2009 A1
20090044128 Baumgarten et al. Feb 2009 A1
20090049131 Lyle et al. Feb 2009 A1
20090125469 McDonald et al. May 2009 A1
20090132651 Roger et al. May 2009 A1
20090138808 Moromisato et al. May 2009 A1
20090150417 Ghods et al. Jun 2009 A1
20090150627 Benhase et al. Jun 2009 A1
20090158142 Arthursson et al. Jun 2009 A1
20090164438 Delacruz Jun 2009 A1
20090171983 Samji et al. Jul 2009 A1
20090193107 Srinivasan et al. Jul 2009 A1
20090193345 Wensley et al. Jul 2009 A1
20090198772 Kim et al. Aug 2009 A1
20090210459 Nair et al. Aug 2009 A1
20090214115 Kimura et al. Aug 2009 A1
20090235167 Boyer et al. Sep 2009 A1
20090235181 Saliba et al. Sep 2009 A1
20090235189 Aybes et al. Sep 2009 A1
20090240664 Dinker Sep 2009 A1
20090249224 Davis et al. Oct 2009 A1
20090254589 Nair et al. Oct 2009 A1
20090260060 Smith et al. Oct 2009 A1
20090271708 Peters et al. Oct 2009 A1
20090276771 Nickolov et al. Nov 2009 A1
20090282212 Peterson Nov 2009 A1
20090300356 Crandell Dec 2009 A1
20090300527 Malcolm et al. Dec 2009 A1
20090327358 Lukiyanov et al. Dec 2009 A1
20090327961 De Vorchik et al. Dec 2009 A1
20100011292 Marinkovich et al. Jan 2010 A1
20100011447 Jothimani Jan 2010 A1
20100017262 Iyer et al. Jan 2010 A1
20100030995 Wang Feb 2010 A1
20100036929 Scherpa et al. Feb 2010 A1
20100042720 Stienhans et al. Feb 2010 A1
20100057560 Skudlark et al. Mar 2010 A1
20100057785 Khosravy et al. Mar 2010 A1
20100076946 Barker et al. Mar 2010 A1
20100082634 Leban Apr 2010 A1
20100083136 Komine et al. Apr 2010 A1
20100088150 Mazhar et al. Apr 2010 A1
20100092126 Kaliszek et al. Apr 2010 A1
20100093310 Gbadegesin et al. Apr 2010 A1
20100107225 Spencer et al. Apr 2010 A1
20100131868 Chawla et al. May 2010 A1
20100151431 Miller Jun 2010 A1
20100162365 Del Real Jun 2010 A1
20100162374 Nair Jun 2010 A1
20100179940 Gilder et al. Jul 2010 A1
20100185463 Noland et al. Jul 2010 A1
20100191689 Cortes et al. Jul 2010 A1
20100198783 Wang et al. Aug 2010 A1
20100198871 Stiegler et al. Aug 2010 A1
20100198944 Ho et al. Aug 2010 A1
20100205537 Knighton et al. Aug 2010 A1
20100223378 Wei Sep 2010 A1
20100229085 Nelson et al. Sep 2010 A1
20100235526 Carter et al. Sep 2010 A1
20100235539 Carter et al. Sep 2010 A1
20100241611 Zuber Sep 2010 A1
20100241972 Spataro et al. Sep 2010 A1
20100250120 Waupotitsch et al. Sep 2010 A1
20100251340 Martin et al. Sep 2010 A1
20100257457 De Goes Oct 2010 A1
20100262582 Garcia-Ascanio et al. Oct 2010 A1
20100267588 Nelson et al. Oct 2010 A1
20100274765 Murphy et al. Oct 2010 A1
20100274772 Samuels Oct 2010 A1
20100281118 Donahue et al. Nov 2010 A1
20100290623 Banks et al. Nov 2010 A1
20100306379 Ferris Dec 2010 A1
20100322252 Suganthi et al. Dec 2010 A1
20100325155 Skinner et al. Dec 2010 A1
20100325655 Perez Dec 2010 A1
20100332401 Prahlad et al. Dec 2010 A1
20100333116 Prahlad et al. Dec 2010 A1
20110001763 Murakami Jan 2011 A1
20110016409 Grosz et al. Jan 2011 A1
20110022559 Andersen et al. Jan 2011 A1
20110022812 van der Linden et al. Jan 2011 A1
20110029883 Lussier et al. Feb 2011 A1
20110040812 Phillips Feb 2011 A1
20110041083 Gabai et al. Feb 2011 A1
20110047413 McGill et al. Feb 2011 A1
20110047484 Mount et al. Feb 2011 A1
20110052155 Desmarais et al. Mar 2011 A1
20110054968 Galaviz Mar 2011 A1
20110055299 Phillips Mar 2011 A1
20110055721 Jain et al. Mar 2011 A1
20110061045 Phillips Mar 2011 A1
20110061046 Phillips Mar 2011 A1
20110065082 Gal et al. Mar 2011 A1
20110066951 Ward-Karet et al. Mar 2011 A1
20110083167 Carpenter et al. Apr 2011 A1
20110093567 Jeon et al. Apr 2011 A1
20110099006 Sundararaman et al. Apr 2011 A1
20110119313 Sung et al. May 2011 A1
20110137991 Russell Jun 2011 A1
20110142410 Ishii Jun 2011 A1
20110145744 Haynes et al. Jun 2011 A1
20110161289 Pei et al. Jun 2011 A1
20110167125 Achlioptas Jul 2011 A1
20110167353 Grosz et al. Jul 2011 A1
20110167435 Fang Jul 2011 A1
20110185292 Chawla et al. Jul 2011 A1
20110202424 Chun et al. Aug 2011 A1
20110202599 Yuan et al. Aug 2011 A1
20110208958 Stuedi et al. Aug 2011 A1
20110209064 Jorgensen et al. Aug 2011 A1
20110213765 Cui et al. Sep 2011 A1
20110219419 Reisman Sep 2011 A1
20110225417 Maharajh et al. Sep 2011 A1
20110238458 Purcell et al. Sep 2011 A1
20110238621 Agrawal Sep 2011 A1
20110238759 Spataro et al. Sep 2011 A1
20110239135 Spataro et al. Sep 2011 A1
20110246294 Robb et al. Oct 2011 A1
20110246950 Luna et al. Oct 2011 A1
20110252320 Arrasvuori et al. Oct 2011 A1
20110258461 Bates Oct 2011 A1
20110258561 Ladouceur et al. Oct 2011 A1
20110282710 Akkiraju et al. Nov 2011 A1
20110289433 Whalin et al. Nov 2011 A1
20110296022 Ferris et al. Dec 2011 A1
20110307450 Hahn Dec 2011 A1
20110313803 Friend et al. Dec 2011 A1
20110320197 Conejero et al. Dec 2011 A1
20120036370 Lim et al. Feb 2012 A1
20120064879 Panei Mar 2012 A1
20120072436 Pierre et al. Mar 2012 A1
20120079095 Evans et al. Mar 2012 A1
20120089659 Halevi et al. Apr 2012 A1
20120110005 Kuo et al. May 2012 A1
20120110436 Adler, III et al. May 2012 A1
20120117626 Yates et al. May 2012 A1
20120124306 Abercrombie et al. May 2012 A1
20120124547 Halbedel May 2012 A1
20120130900 Tang et al. May 2012 A1
20120134491 Liu May 2012 A1
20120136936 Quintuna May 2012 A1
20120150888 Hyatt et al. Jun 2012 A1
20120151551 Readshaw et al. Jun 2012 A1
20120158908 Luna et al. Jun 2012 A1
20120159178 Lin et al. Jun 2012 A1
20120159310 Chang et al. Jun 2012 A1
20120173625 Berger Jul 2012 A1
20120179981 Whalin et al. Jul 2012 A1
20120185355 Kilroy Jul 2012 A1
20120185913 Martinez et al. Jul 2012 A1
20120192055 Antebi et al. Jul 2012 A1
20120192086 Ghods et al. Jul 2012 A1
20120203908 Beaty et al. Aug 2012 A1
20120204032 Wilkins et al. Aug 2012 A1
20120214444 McBride et al. Aug 2012 A1
20120218885 Abel et al. Aug 2012 A1
20120221789 Felter Aug 2012 A1
20120226767 Luna et al. Sep 2012 A1
20120233155 Gallmeier et al. Sep 2012 A1
20120233205 McDermott Sep 2012 A1
20120240061 Hillenius et al. Sep 2012 A1
20120263166 Cho et al. Oct 2012 A1
20120266203 Elhadad et al. Oct 2012 A1
20120284638 Cutler et al. Nov 2012 A1
20120284664 Zhao Nov 2012 A1
20120291011 Quine Nov 2012 A1
20120309540 Holme et al. Dec 2012 A1
20120311157 Erickson et al. Dec 2012 A1
20120317239 Mulder et al. Dec 2012 A1
20120317487 Lieb et al. Dec 2012 A1
20120328259 Seibert, Jr. et al. Dec 2012 A1
20120331177 Jensen Dec 2012 A1
20120331441 Adamson Dec 2012 A1
20130007245 Malik et al. Jan 2013 A1
20130007471 Grab et al. Jan 2013 A1
20130007894 Dang et al. Jan 2013 A1
20130013560 Goldberg et al. Jan 2013 A1
20130014023 Lee et al. Jan 2013 A1
20130042106 Persaud et al. Feb 2013 A1
20130055127 Saito et al. Feb 2013 A1
20130067232 Cheung et al. Mar 2013 A1
20130073403 Tuchman et al. Mar 2013 A1
20130080919 Kiang et al. Mar 2013 A1
20130117337 Dunham May 2013 A1
20130124638 Barreto et al. May 2013 A1
20130138608 Smith May 2013 A1
20130138615 Gupta et al. May 2013 A1
20130159411 Bowen Jun 2013 A1
20130163289 Kim et al. Jun 2013 A1
20130167253 Seleznev et al. Jun 2013 A1
20130185347 Romano Jul 2013 A1
20130185558 Seibert et al. Jul 2013 A1
20130191339 Haden et al. Jul 2013 A1
20130198600 Lockhart et al. Aug 2013 A1
20130212486 Joshi et al. Aug 2013 A1
20130239049 Perrodin et al. Sep 2013 A1
20130246932 Zaveri et al. Sep 2013 A1
20130262210 Savage et al. Oct 2013 A1
20130262862 Hartley Oct 2013 A1
20130268480 Dorman Oct 2013 A1
20130268491 Chung et al. Oct 2013 A1
20130275398 Dorman et al. Oct 2013 A1
20130275429 York et al. Oct 2013 A1
20130275509 Micucci et al. Oct 2013 A1
20130305039 Gauda Nov 2013 A1
20140033277 Xiao et al. Jan 2014 A1
20140033291 Liu Jan 2014 A1
20140052939 Tseng et al. Feb 2014 A1
20140068589 Barak Mar 2014 A1
20140156373 Roberts et al. Jun 2014 A1
20140172595 Beddow et al. Jun 2014 A1
Foreign Referenced Citations (40)
Number Date Country
2724521 Nov 2009 CA
101997924 Mar 2011 CN
102264063 Nov 2011 CN
0921661 Jun 1999 EP
1349088 Oct 2003 EP
1528746 May 2005 EP
2372574 Oct 2011 EP
2610776 Jul 2013 EP
2453924 Apr 2009 GB
2471282 Dec 2010 GB
09-101937 Apr 1997 JP
11-025059 Jan 1999 JP
2003273912 Sep 2003 JP
2004310272 Nov 2004 JP
09-269925 Oct 2007 JP
2008250944 Oct 2008 JP
20020017444 Mar 2002 KR
20040028036 Apr 2004 KR
20050017674 Feb 2005 KR
20060070306 Jun 2006 KR
20060114871 Nov 2006 KR
20070043353 Apr 2007 KR
20070100477 Oct 2007 KR
20100118836 Nov 2010 KR
20110074096 Jun 2011 KR
20110076831 Jul 2011 KR
WO-0007104 Feb 2000 WO
WO-0219128 Mar 2002 WO
WO-2004097681 Nov 2004 WO
WO-2006028850 Mar 2006 WO
WO-2007024438 Mar 2007 WO
WO-2007035637 Mar 2007 WO
WO-2008011142 Jan 2008 WO
WO-2008076520 Jun 2008 WO
WO-2011109416 Sep 2011 WO
WO-2012167272 Dec 2012 WO
WO-2013009328 Jan 2013 WO
WO-2013013217 Jan 2013 WO
WO-2013041763 Mar 2013 WO
WO-2013166520 Nov 2013 WO
Non-Patent Literature Citations (106)
Entry
“Database Scalability, Elasticity, and Autonomy in the Cloud” Agrawal et al. (Jan. 2011).
Extended Search Report for EP131832800, Applicant: Box, Inc. Mailed Aug. 25, 2014, 7 pages.
Extended Search Report for EP141509422, Applicant: Box, Inc. Mailed Aug. 26, 2014, 12pages.
Search Report for EP 13189144.2 Applicant: Box, Inc. Mailed Sep. 1, 2014, 9 pages.
Exam Report for GB1312874.9 Applicant: Box, Inc. Mailed Sep. 26, 2014, 2 pages.
Exam Report for GB1415126.0 Applicant: Box, Inc. Mailed Oct. 2, 2014, 8 pages.
Exam Report for GB1415314.2 Applicant: Box, Inc. Mailed Oct. 7, 2014, 6 pages.
Exam Report for GB1309209.3 Applicant: Box, Inc. Mailed Oct. 7, 2014, 3 pages.
Exam Report for GB1315232.7 Applicant: Box, Inc. Mailed Oct. 9, 2014, 5 pages.
Exam Report for GB1318789.3 Applicant: Box, Inc. Mailed Oct. 30, 2014, 6 pages.
Microsoft Windows XP Professional Product Documentation: How Inheritance Affects File and Folder Permissions, Apr. 11, 2014, 2 pages.
Exam Report for GB1317393.5 Applicant: Box, Inc. Mailed Nov. 7, 2014, 6 pages.
Exam Report for GB1311417.8 Applicant: Box, Inc. Mailed Nov. 7, 2014, 2 pages.
Exam Report for GB1311421.0 Applicant: Box, Inc. Mailed Nov. 7, 2014, 4 pages.
Exam Report for GB1316682.2 Applicant: Box, Inc. Mailed Nov. 19, 2014, 6 pages.
Exam Report for GB1312095.1 Applicant: Box, Inc. Mailed Nov. 19, 2014, 5 pages.
Exam Report for GB1313559.5 Applicant: Box, Inc. Mailed Nov. 4, 2014, 2 pages.
“Conceptboard”, One-Step Solution for Online Collaboration, retrieved from websites http://conceptboard.com and https://www.youtube.com/user/ConceptboardApp?feature=watch, printed on Jun. 13, 2013, 9 pages.
“How-to Geek, How to Sync Specific Folders With Dropbox,” downloaded from the internet http://www.howtogeek.com, Apr. 23, 2013, 5 pages.
“Microsoft Office SharePoint 2007 User Guide,” Feb. 16, 2010, pp. 1-48.
“Understanding Metadata,” National Information Standards Organization, NISO Press, 2004, 20 pages.
Cisco, “FTP Load Balancing on ACE in Routed Mode Configuration Example,” DocWiki, Jun. 2011, 7 pages.
Conner, “Google Apps: The Missing Manual,” Published by O'Reilly Media, May 27, 2008, 24 pages.
Exam Report for EP13158415.3. Applicant: Box, Inc. Mailed Jun. 4, 2013, 8 pages.
Exam Report for GB1300188.8. Applicant: Box, Inc. Mailed May 31, 2013, 8 pages.
Exam Report for GB1306011.6. Applicant: Box, Inc. Mailed Apr. 18, 2013, 8 pages.
International Search Report and Written Opinion for PCT/US2008/012973 dated Apr. 30, 2009, pp. 1-11.
International Search Report and Written Opinion for PCT/US2010/070366, Applicant: Box, Inc., Mailed Mar. 24, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2011/039126 mailed on Oct. 6, 2011, pp. 1-13.
International Search Report and Written Opinion for PCT/US2011/041308 Mailed Jul. 2, 2012, pp. 1-16.
International Search Report and Written Opinion for PCT/US2011/047530, Applicant: Box, Inc., Mailed Mar. 22, 2013, pp. 1-10.
International Search Report and Written Opinion for PCT/US2011/056472 mailed on Jun. 22, 2012, pp. 1-12.
International Search Report and Written Opinion for PCT/US2012/057938, Applicant: Box, Inc., Mailed Mar. 29, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2011/060875 Mailed Oct. 30, 2012, pp. 1-10.
International Search Report and Written Opinion for PCT/US2012/056955, Applicant: Box, Inc., Mailed Mar. 27, 2013, pp. 1-11.
International Search Report and Written Opinion for PCT/US2012/063041, Applicant: Box, Inc., Mailed Mar. 29, 2013, 12 pages.
International Search Report and Written Opinion for PCT/US2012/065617, Applicant: Box, Inc., Mailed Mar. 29, 2013, 9 pages.
International Search Report and Written Opinion for PCT/US2012/067126, Applicant: Box, Inc., Mailed Mar. 29, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2013/020267, Applicant: Box, Inc., Mailed May 7, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2013/023889, Applicant: Box, Inc., Mailed Jun. 24, 2013, 13 pages.
International Search Report and Written Opinion for PCT/US2013/029520, Applicant: Box, Inc., Mailed Jun. 26, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2013/034662, Applicant: Box, Inc., Mailed May 31, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2013/035404, Applicant: Box, Inc., Mailed Jun. 26, 2013, 13 pages.
Internet Forums, http://web.archive.org/web/2010052819550/http://en.wikipedia.org/wiki/Internet—forums, Wikipedia, May 30, 2010, pp. 1-20.
Langfeld L. et al., “Microsoft SharePoint 2003 Unleashed,” Chapters 11 and 15, Jun. 2004, pp. 403-404, 557-561, 578-581.
Lars, “35 Very Useful Online Tools for Improving your project Management and Team Collaboration,” Apr. 31, 2010, tripwiremagazine.com. pp. 1-32.
Palmer, “Load Balancing FTP Servers.” BlogNav, Oct. 2008, 2 pages.
Parr, “Google Docs Improves Commenting, Adds E-mail Notifications,” Apr. 16, 2011, mashable.com, pp. 1-6.
Partial International Search Report for PCT/US2011/041308 dated Feb. 27, 2012, pp. 1-2.
Supplementary European Search Report European Application No. EP 08 85 8563 dated Jun. 20, 2011 pp. 1-5.
Wayback, “Wayback machine,” Wayback, Jun. 1, 2011, 1 page.
Wiki, http://web.archive.org/web/20100213004936/http://en.wikipedia.org/wiki/Wiki, Feb. 13, 2010, pp. 1-16.
Yahoo! Groups, http://web.archive.org/web/20090320101529/http://en.wikipedia.org/wiki/Yahoo!—Groups, Wikipedia, Mar. 20, 2009, pp. 1-6.
Exam Report for GB1410569.6 Applicant: Box, Inc. Mailed Jul. 11, 2014, 9 pages.
“Revolving sync conflicts; frequently asked questions,” Microsoft Tech Support, Jul. 16, 2012, retrieved from the internet: http://web.archive.org/web, 2 pages.
“Troubleshoot sync problems,” Microsoft Tech Support: May 2, 2012, retrieved from the internet, http://web. Archive.org/web, 3 pages.
“Tulsa TechFest 2012—Agenda,” retrieved from the website, http://web.archive.org, Oct. 2, 2012, 2 pages.
Cohen, “Debating the Definition of Cloud Computing Platforms,” retrieved from the internet, http://forbes.com, Feb. 3, 2014, 7 pages.
Delendik, “Evolving with Web Standards—The Story of PDF .JS,” retrieved from the internet, http://people.mozilla.org, Oct. 12, 2012, 36 pages.
Delendik, “My PDF .js talk slides from Tulsa TechFest,” retrieved from the internet, http://twitter.com, Oct. 12, 2012, 2 pages.
Duffy, “The Best File-Syncing Services,” pcmag.com, retrieved from the internet: http://www.pcmag.com, Sep. 28, 2012, 7 pages.
Exam Report for EP13177108.1, Applicant: Box, Inc. Mailed May 26, 2014, 6 pages.
Exam Report for GB1318792.7, Applicant: Box, Inc. Mailed May 22, 2014, 2 pages.
Partial Search Report for EP131832800, Applicant: Box, Inc. Mailed May 8, 2014, 5 pages.
Pyle et al., “How to enable Event logging for Offline Files (Client Side Caching) in Windows Vista,” Feb. 18, 2009, retrieved from the internet: http://blogs.technet.com, 3 pages.
Rao, “Box Acquires Crocodoc To Add HTML5 Document Converter And Sleek Content Viewing Experience To Cloud Storage Platform,” retrieved from the internet, http://techcrunch.com, May 9, 2013, 8 pages.
Search Report for EP13187217.8, Applicant: Box, Inc. Mailed Apr. 15, 2014, 12 pages.
Search Report for EP141509422, Applicant: Box, Inc. Mailed May 8, 2014, 7 pages.
Sommerer, “Presentable Document Format: Improved On-demand PDF to HTML Conversion,” retrieved from the internet, http://research.microsoft.com, Nov. 2004, 8 pages.
Tulloch et al., “Windows Vista Resource Kit,” Apr. 8, 2007, Microsoft Press, XP055113067, 6 pages.
Walker, “PDF.js project meeting notes,” retrieved from the internet, http://groups.google.com, May 15, 2014, 1 page.
John et al., “Always Sync Support Forums—View topic—Allway sync funny behavior,” Allway Sync Support Forum at http://sync-center.com, Mar. 28, 2011, XP055109680, 2 pages.
Search Report for EP14151588.2, Applicant: Box, Inc. Mailed Apr. 15, 2014, 12 pages.
“PaperPort Professional 14,” PC Mag. Com review, published Feb. 2012, Ziff Davis, Inc., 8 pages.
“PaperPort.” Wikipedia article (old revision), published May 19, 2012. Wikipedia Foundation, 2 pages.
“Quickoffice Enhances Android Mobile office Application for Improved Productivity on latest Smartphone and Table Devices,” QuickOffice Press Release, Nov. 21, 2011, QuickOffice Inc., 2 pages.
“QuickOffice,” Wikipedia Article (old revision). published May 9, 2012, Wikipedia Foundation, 2 pages.
Exam Report for EP13168784.0, Applicant: Box, Inc. Mailed Nov. 21, 2013, 7 pages.
Exam Report for GB1309209.3, Applicant: Box, Inc. Mailed Oct. 30, 2013, 11 pages.
Exam Report for GB1310566.1, Applicant: Box, Inc. Mailed Aug. 30, 2013, 10 pages.
Exam Report for GB1312095.1, Applicant: Box, Inc. Mailed Dec. 12, 2013, 7 pages.
Exam Report for GB1312874.9, Applicant: Box, Inc. Mailed Dec. 20, 2013, 11 pages.
Exam Report for GB1313559.5, Applicant: Box, Inc. Mailed Aug. 22, 2013, 19 pages.
Exam Report for GB1316532.9, Applicant: Box, Inc. Mailed Oct. 31, 2013, 10 pages.
Exam Report for GB1316533.7, Applicant: Box, Inc. Mailed Oct. 8, 2013, 9 pages.
Exam Report for GB1316971.9, Applicant: Box, Inc. Mailed Nov. 26, 2013, 10 pages.
Exam Report for GB1317600.3, Applicant: Box, Inc. Mailed Nov. 21, 2013, 8 pages.
Exam Report for GB1318373.6, Applicant: Box, Inc. Mailed Dec. 17, 2013, 4 pages.
Exam Report for GB1320902.8, Applicant: Box, Inc. Mailed Dec. 20, 2013, 4 pages.
Gedymin, “Cloud computing with an empahsis on Google App Engine,” Master Final Project, Sep. 2011, 146 pages.
Google Docs, http://web.Archive.org/web/20100413105756/http://en.wikipedia.org/wiki/Google—docs, Apr. 13, 2010, 6 pages.
International Search Report and Written Opinion for PCT/US2013/039782, Applicant: Box, Inc., Mailed Aug. 28, 2013, 15 pages.
Patent Court Document of Approved Judgement for GB0602349.3 and GB0623571.7; Mar. 3, 2009, 17 pages.
Exam Report for GB1311417.8, Applicant: Box, Inc. Mailed Dec. 20, 2013, 5 pages.
International Search Report and Written Opinion for PCT/US2013/034765, Applicant: Box, Inc., Mailed Jan. 20, 2014, 15 pages.
Exam Report for EP13185269.1. Applicant: Box, Inc. Mailed Jan. 28, 7 pages.
“Avergae Conversion Time for a D60 RAW file?” http://www.dpreview.com, Jul. 22, 2002, 4 pages.
Burns, “Developing Secure Mobile Applications for Android,” Oct. 2008, Version 1.0, 1-28 pages.
Cornes, “MediaXchange User's Manual,” Version 1.15.15, Feb. 1, 2009, pp. 1-90.
Exam Report for GB1308642.2, Applicant: Box, Inc. Mailed Mar. 10, 2014, 4 pages.
Exam Report for GB1312264.3, Applicant: Box, Inc. Mailed Mar. 24, 2014, 7 pages.
Exam Report for GB1314771.5, Applicant: Box, Inc. Mailed Feb. 17, 2014, 7 pages.
John et al., “Always Sync Support Forums—View topic—Allway sync funny behavior,” Allway Sync Support Forum at http://sync.center.com, Mar. 28, 2011, XP055109680, 2 pages.
Exam Report for EP 11729851.3, Applicant: Box, Inc. Mailed Feb. 7, 2014, 9 pages.
Exam Report for EP14151588.2, Applicant: Box, Inc. Mailed Apr. 15, 2014, 12 pages.
Exam Report for EP14153783.7, Applicant: Box, Inc. Mailed Mar. 24, 2014, 7 pages.
Related Publications (1)
Number Date Country
20140012814 A1 Jan 2014 US
Provisional Applications (1)
Number Date Country
61668626 Jul 2012 US