The present invention relates generally to a system and method for the automated metering, dispensing, reporting and tracking of dispensing beverages and, more particularly, to an improved metering mechanism including anticipatory control adapted for use therewith.
In the automated beverage dispensing systems of the Related Art, bulk alcoholic beverages such as beer, wine or cocktails have been successfully dispensed in a manner that meters, tracks, controls and continuous dispenses in a faster and more accurate manner. Such systems prevent oxidation of the beverage contents while allowing for necessary and routine delivery line cleaning through several mechanism.
A need exists for improvements in the operation, repeatability and accuracy in the metering mechanism for use with such beverage dispensing systems.
It is thus an object of the present invention to provide for more efficient, optimized fluid flow path metering mechanism for use with beverage dispensing systems.
It is a feature of the present invention to provide such a metering mechanism formed in a manifold style assembly.
The present application provides a dispensing and pour control system for a regulated beverage having a metering system that provides a discharge in a controlled and metered manner. A sensor system uses a Line Control Board (LCB) that detects a piston location inside a metering conduit. A plurality of magnetic sensors are positioned at equal intervals and in the same plane collinear with the movement of a magnetic piston within the metering mechanism conduit. The piston position is detected by obtaining a set of momentary readings of the magnetic sensors and estimating the exact location of the piston by interpolating the distance between the sensors that are adjacent and showing readings of opposing signs.
The anticipated piston location is estimated by processing the set of all sensor readings reported at a given moment in time. The exact piston location algorithm consists of two steps:
An advantage of the present invention to provide a beverage dispensing system metering mechanism improves accuracy and repeatability of the metering function by anticipating the movement of the metering piston using a hardware setup that places multiple identical magnetic (Hall Effects) sensors at equal intervals and same plane, alongside the cylinder with a moving piston containing a magnet. In such a configuration, at equal time intervals readings on all sensors are fed into a function that estimates the magnet's (and therefore piston's) location, relatively to the center of the cylinder.
Further objects, features and advantages of the invention will become apparent in the course of the following description.
The advantages and features of the present invention will become better understood with reference to the following more detailed description and claims taken in conjunction with the accompanying drawings, in which like elements are identified with like symbols, and in which:
The best mode for carrying out the invention is presented in terms of its preferred embodiment, herein depicted within the Figures.
Before explaining the present invention in detail, it is important to understand that the invention is not limited in its application to the details of the construction illustrated and the steps described herein. The invention is capable of other embodiments and of being practiced or carried out in a variety of ways. It is to be understood that the phraseology and terminology employed herein is for the purpose of description and not of limitation. It should be further apparent to a person having ordinary skill in the relevant art, in light of the present teachings, that the discussed enablement being described for use with bulk wine should be considered equivalent for use with any other beverages.
For purposes of the present disclosure the terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one (1) of the referenced items. Further for purposes of the present disclosure the terms “in”, “out”, “left” “right”, “up” or “down” are all spatial and functionally relative directions used to aid in the description to best explain the principles of the invention and its practical application, and to aid others skilled in the art to best utilize the invention and are not meant to be limiting to any particular orientation.
Referring now in conjunction with
The fluid conduit system is formed within each manifold block 12, 14 as series of linear, interacting fluid channels including an upper fluid conduit 16 opposite a lower fluid conduit 18 and a left fluid conduit 20 opposite a right fluid conduit 22. The upper and lower fluid conduits 16, 18 are formed as through drilled conduit spanning through each manifold block 12, 14. While ‘drilling’ in the conventional sense may be used as the method of machining, such a term should be used without limitation to any machining operation and should broadly include any other milling, machining or other process capable of obtaining a functionally broadly equivalent result. The left and right fluid conduits 20, 22 may thereby be formed, one within each manifold block 12, 14 respectively so as to form a continuous hydraulic circuit within the metering mechanism. Each left or right conduit 20, 22 merely needs to connect the upper and lower fluid channels 16, 18 and may be similarly formed by drilling or the equivalent from one side of the respective manifold block 12, 14 with the access orifice closed via a work port plug 26.
A central linear conduit 30 may be formed in a similar manner spanning through each manifold block 12, 14 to hydraulically connect the left and right fluid conduits 20, 22 and forming a third channel parallel to and between the upper charnel 16 and lower channel 18. A stainless-steel cylinder 32 may be formed and positioned as a continuous sleeve liner within the central linear conduit 30. The cylindrical sleeve 32 may be sealed about each open end with an “O”-ring seal 34 to form a hydraulically sealed system when assembled. Similar resilient seals may further be sealed between aligning and connecting fluid channels throughout the system 10.
An inlet port 42 and an outlet port 44 are oppositely formed to provide access to or egress within the fluid channels within the manifold 10. The inlet 42 and outlet 44 are operatively coupled to communicate with a beverage supply (not shown) in further operative connection with the bulk storage and distribution system for carbonated beverages such as, preferably, beer (also not shown). The magnetic piston 40 within the cylinder 32 forms one operative portion of a metering mechanism for providing a metered discharge of beer or beverage between the bulk storage and a tap or spigot in a manner that provides for a beverage specific controlled metered pour into a beverage container. Such a beverage metering, pouring, controlling, and monitoring/reporting system may be of the type described by, anticipated within or equivalent to those described in the above referenced Related Art, all of which are incorporated by reference as if fully rewritten herein. In a preferred embodiment the cylinder of the present invention is shown in greater detail. The metering cylinder 32 and piston 40 combination function as a line pressure powered bi-directional dispenser by redirecting the pressure from one end of the chamber to the other end. Such a chamber 32 allows for accurate, repeatable metering, utilizing, and preserving line pressure without the inclusion of an additional pumping device.
The sensor control system 50 is in operative interaction with the piston 40 for providing piston location sensor data input to an electronic control system in connection with the bulk storage and distribution system. The metering mechanism 10 provides for a metered discharge in fluid communication with the tap or spigot in a manner that provides for a beverage specific controlled metered pour into a beverage container, as best described in the Related Art. Measurement of a location of the piston 40 within the cylinder allows for accurate, repeatable metering, utilizing and preserving line pressure without the inclusion of an additional pumping device. The sensor system 50 may be provided as (describe solid state board)
The sensor system 50 may provide one or more location sensors for providing electronic control signal that corresponds to piston location to a microprocessor controller. A plurality of hall effect sensors may be provided on a Line Control Board (LCB) that detect the piston location inside the cylinder. The control signal may further be provided as to include wireless communication capability, further integrated with or on the LCB, to communicate between a remotely positioned metering system 10 and a centrally located control system. Further communication may be provided with a standard PC or smartphone using the wireless protocol (such as Bluetooth, Wi-Fi, Internet, etc.). Bulk beverages from a number of sources may be metered upon demand as urged through the metering chamber 32 of an identified volume by a single system pressure generated from fluid communication with the bulk beverage container. In addition to eliminating the need to provide an accurate (rather than estimated) dispensed volume of various beverages, the present invention may also provide for the discharge to be dispensed at a temperature correlated as appropriate for the differing dispensed beverages (as described in greater detail below). With such operational characteristics, the present system 10 may provide a unique quality and quantity control can be easily accomplished, tracked, and reported.
As described in greater detail below, an anticipator piston detection method may be implemented on the Line Controller Board 50 based on a hardware setup that places multiple identical magnetic (Hall Effects) sensors at equal intervals and same plane, alongside the cylinder 32 with a moving piston containing a magnet 40. In such a configuration, at equal time intervals readings on all sensors are fed into a function that estimates the magnet's (and therefore piston's) location, relatively to the center of the cylinder.
Referring now further in greater detail in conjunction with
The valve and actuator system provide a number of pneumatic actuators 60 that open and close the beer flow path. The actuators 60 urge the actuator piston 62 and opens the beer flow path. The actuator piston 62 threads or otherwise mates to a poppet spool 70 that forms a valve plug 72, with the corresponding valve seat 74 formed at the end terminus of each upper and lower fluid conduits 16, 18.
As described above, the metering mechanism 10 of the described teachings provides for a fluid communication input from the beverage supply, and a fluid communication discharge to a spigot or tap. The provided manifold design is compact and efficient, eliminating various three-way switching valves and flow splitters.
The actuators 60, in de-energized state, keep the beer flow path closed. When the pour cycle is started, two diagonally opposite pneumatic valves are opened to let air into the actuators. The air retracts the actuator piston 62 and opens the beer flow path. The beer enters flows through the valve into the cylinder 32 and pushes the piston 40. The beer on the other side of the piston 40 is then pushed out of the cylinder 32 through the valve that is diagonally opposite. Once the piston reaches the end of the stroke, the cycle is repeated with the flow reversed using the other two valves.
Using the sensor hardware configuration where multiple identical magnetic (Hall Effects) sensors are positioned at equal intervals and in the same plane collinear with the movement of the magnetic piston, for a given set of momentary readings the sensors to the left and right of the piston will show also show anticipatory readings that are higher in absolute values than those on sensors farther away from the piston. The two readings of the two opposing sensors will also be opposite in sign, relative to an appropriately chosen zero value. (Zero value represents reading on a sensor absent of a magnet). In this particular setup, depending on the exact location of the piston, these two sensors can be adjacent, or have another sensor in between. In the earlier case, the reading on the sensor in the middle will be lower in absolute value than either of the other two, and if the magnet is perfectly aligned with the middle sensor, its reading will be close to the zero value.
A typical distribution of signals on an array of sensors is shown in the graph of
Referring in conjunction to the graph of
By calculating the location of the magnet based on the set of readings reported by the sensors at a given moment of the, the calculated location of the piston may be utilized in the control even when the actual sensor location is questionable. The logic of such a calculation function consists of 2 steps:
The result of the interpolation is reported as the estimated location of the middle of the piston.
The foregoing descriptions of specific embodiments of the present invention are presented for purposes of illustration and description. They are not intended to be exhaustive nor to limit the invention to precise forms disclosed and, obviously, many modifications and variations are possible in light of the above teaching. The embodiments are chosen and described in order to best explain principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and its various embodiments with various modifications as are suited to the particular use contemplated. It is intended that a scope of the invention be defined broadly by the Drawings and Specification appended hereto and to their equivalents. Therefore, the scope of the invention is in no way to be limited only by any adverse inference under the rulings of Warner-Jenkinson Company, v. Hilton Davis Chemical, 520 US 17 (1997) or Festo Corp. v. Shoketsu Kinzoku Kogyo Kabushiki Co., 535 U.S. 722 (2002), or other similar caselaw or subsequent precedent should not be made if any future claims are added or amended subsequent to this or any prior parent patent application.
Number | Name | Date | Kind |
---|---|---|---|
928588 | Cornish | Jul 1909 | A |
3216627 | Best | Nov 1965 | A |
3221936 | Spinuzza | Dec 1965 | A |
3305136 | Harris | Feb 1967 | A |
3370759 | Johansson | Feb 1968 | A |
3380629 | Kontra | Apr 1968 | A |
3524383 | Locke | Aug 1970 | A |
3552606 | Kraft | Jan 1971 | A |
3565287 | Johnston | Feb 1971 | A |
3580425 | DeMan | May 1971 | A |
3677173 | Fogle, Jr. | Jul 1972 | A |
3712514 | LeBlanc | Jan 1973 | A |
3718233 | Nordhoff | Feb 1973 | A |
3790032 | George | Feb 1974 | A |
3831821 | Doyen | Aug 1974 | A |
3870089 | Laub, III | Mar 1975 | A |
3933275 | Metzner | Jan 1976 | A |
3940019 | Kross | Feb 1976 | A |
3949902 | Thompson | Apr 1976 | A |
4004715 | Williams | Jan 1977 | A |
4224959 | Fling | Sep 1980 | A |
4225059 | Kappos | Sep 1980 | A |
4226343 | Fling | Oct 1980 | A |
4386716 | Buck | Jun 1983 | A |
4491248 | Blackwell | Jan 1985 | A |
4518104 | Iannelli | May 1985 | A |
4655374 | Guerette | Apr 1987 | A |
4736873 | Patriquin | Apr 1988 | A |
4886190 | Kirschner | Dec 1989 | A |
4927567 | Rudick | May 1990 | A |
4966306 | Credle, Jr. | Oct 1990 | A |
4979641 | Turner | Dec 1990 | A |
5007560 | Sassak | Apr 1991 | A |
5016786 | Horino | May 1991 | A |
5022557 | Turner | Jun 1991 | A |
5044528 | Becker | Sep 1991 | A |
5121855 | Credle, Jr. | Jun 1992 | A |
5291004 | Frank | Mar 1994 | A |
5360140 | Senghaas | Nov 1994 | A |
5363989 | Zeamer | Nov 1994 | A |
5381926 | Credle, Jr. | Jan 1995 | A |
5390834 | Bitter | Feb 1995 | A |
5431302 | Tulley | Jul 1995 | A |
5454406 | Rejret | Oct 1995 | A |
5564602 | Cleland | Oct 1996 | A |
5730323 | Osborne | Mar 1998 | A |
5750905 | Weimer | May 1998 | A |
5829633 | Emmerich | Nov 1998 | A |
5839483 | Rejret | Nov 1998 | A |
5845824 | Weimer | Dec 1998 | A |
5915602 | Nelson | Jun 1999 | A |
5988859 | Kirk | Nov 1999 | A |
6149032 | Seitz | Nov 2000 | A |
6230761 | Richard | May 2001 | B1 |
6296153 | Bilskie | Oct 2001 | B1 |
6327869 | Shapiro | Dec 2001 | B1 |
6354341 | Saveliev | Mar 2002 | B1 |
6354342 | Gagliano | Mar 2002 | B1 |
6360556 | Gagliano | Mar 2002 | B1 |
6398084 | Maruyama | Jun 2002 | B2 |
6449970 | Gagliano | Sep 2002 | B1 |
6609391 | Davis | Aug 2003 | B2 |
6681594 | Nelson | Jan 2004 | B1 |
6715641 | Torimitsu | Apr 2004 | B2 |
7086566 | Goepfert | Aug 2006 | B2 |
7753231 | Giles | Jul 2010 | B2 |
9809238 | Kincaid | Nov 2017 | B2 |
9926181 | Volftsun | Mar 2018 | B1 |
10167183 | Volftsun | Jan 2019 | B1 |
10294093 | Volftsun | May 2019 | B1 |
10813372 | Cocchi | Oct 2020 | B2 |
20010000107 | Simmons | Apr 2001 | A1 |
20040226960 | Aguirre | Nov 2004 | A1 |
20060113322 | Maser | Jun 2006 | A1 |
20060162370 | Haskayne | Jul 2006 | A1 |
20070095859 | Maser | May 2007 | A1 |
20080189078 | Vok | Aug 2008 | A1 |
20080202148 | Gagliano | Aug 2008 | A1 |
20090194562 | Kessler | Aug 2009 | A1 |
20100089943 | Till | Apr 2010 | A1 |
20100237100 | Broussard | Sep 2010 | A1 |
20100326123 | Johnson | Dec 2010 | A1 |
20110017776 | Metropulos | Jan 2011 | A1 |
20110108240 | Bax | May 2011 | A1 |
20110253746 | O'Keefe, Jr. | Oct 2011 | A1 |
20110298583 | Libby | Dec 2011 | A1 |
20130153684 | Taranta | Jun 2013 | A1 |
20130205881 | Naether | Aug 2013 | A1 |
20140039396 | Geipel | Feb 2014 | A1 |
20140144935 | O'Keefe, Jr. | May 2014 | A1 |
20140151402 | Jannatkhah | Jun 2014 | A1 |
20140209634 | Metropulos | Jul 2014 | A1 |
20140372233 | Knecht | Dec 2014 | A1 |
20150027665 | Cooke | Jan 2015 | A1 |
20150354886 | Sinko | Dec 2015 | A1 |
20160130070 | Orr | May 2016 | A1 |
20160236926 | Leyva | Aug 2016 | A1 |
20160257549 | Volftsun | Sep 2016 | A1 |
20160355389 | Bursey | Dec 2016 | A1 |
20160377067 | Saveliev | Dec 2016 | A1 |
20170029752 | Mitchell | Feb 2017 | A1 |
20170101301 | Volin | Apr 2017 | A1 |
20170107982 | Cedrone | Apr 2017 | A1 |
20170360243 | Crowne | Dec 2017 | A1 |
20180038898 | Shimizu | Feb 2018 | A1 |
20180111173 | Bertness | Apr 2018 | A1 |
20180185836 | Romer | Jul 2018 | A1 |
20190031484 | Allgood | Jan 2019 | A1 |
20190047839 | Giarratano | Feb 2019 | A1 |
20190062140 | Yang | Feb 2019 | A1 |
20190358626 | Romer | Nov 2019 | A1 |
20200051148 | Green | Feb 2020 | A1 |
20200055720 | Volftsun | Feb 2020 | A1 |
20200076275 | Ettinger | Mar 2020 | A1 |
20200095108 | Cook | Mar 2020 | A1 |
20200131016 | Mitchell | Apr 2020 | A1 |
20200166396 | Volftsun | May 2020 | A1 |
20210047169 | Volftsun | Feb 2021 | A1 |
20210087041 | Volftsun | Mar 2021 | A1 |
20210154659 | Romer | May 2021 | A1 |
Entry |
---|
https://cellarcraftuk.com/15-reasons-clean-beer-lines. |
Number | Date | Country | |
---|---|---|---|
62949141 | Dec 2019 | US | |
62794009 | Jan 2019 | US | |
62023899 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16744263 | Jan 2020 | US |
Child | 17120133 | US | |
Parent | 15487488 | Apr 2017 | US |
Child | 16744263 | US | |
Parent | 15424478 | Feb 2017 | US |
Child | 15487488 | US | |
Parent | 15332117 | Oct 2016 | US |
Child | 15424478 | US | |
Parent | 14686820 | Apr 2015 | US |
Child | 15332117 | US |