The present invention relates to systems and methods for platelet collection, and particularly to systems and methods for concentrating and collecting platelets.
Apheresis is a procedure in which individual blood components can be separated and collected from whole blood temporarily withdrawn from a subject. Typically, whole blood is withdrawn through a needle inserted into a vein of the subjects arm and into a cell separator, such as a centrifugal bowl. Once the whole blood is separated into its various components, one or more of the components can be removed from the centrifugal bowl. The remaining components can be returned to the subject along with optional compensation fluid to make up for the volume of the removed component. The process of drawing and returning continues until the quantity of the desired component has been collected, at which point the process is stopped. A central feature of apheresis systems is that the processed but unwanted components are returned to the donor. Blood components separated may include, for example, a high density component such as red blood cells, an intermediate density component such as platelets or white blood cells, and a lower density component such as plasma.
Among various blood component products obtainable through apheresis, the demand for plasma reduced platelet products is rapidly growing. This is particularly because, with the improvement in cancer therapy, there is a need to administrate more and more platelets to patients with lowered hemopoietic function. Platelets are fragments of a large cell located in the marrow called a megakaryocyte and primarily contribute to hemostasis by performing aggregation function, although they also have a role in tissue healing. Normal platelet counts are 150,000-400,000/mm3 in the adult. Platelet counts under 20,000/mm3 can cause various troubles such as spontaneous bleeding.
Platelets have a short half-life of 4-6 days and the number of donors is limited. Therefore, in producing plasma reduced platelet products, it is important to harvest platelets from the whole blood supplied by a donor at a maximum yield and in a required amount. Further, it is known that the contamination of plasma reduced platelet product by white blood cells can lead to serious medial complications, such as GVH reactions. Therefore, it is also very important to keep the level of contamination by white blood cells as low as possible, while efficiently collecting platelets. To this end, various techniques have been developed. For example, using “surge” technology, after whole blood is collected and concentrically separated within a centrifuge into higher density, intermediate density and lower density components and plasma is harvested (so-called “draw” step), the plasma is supplied through the centrifuge at a surge flow rate, that is, a flow rate that increases with time. By performing the surge, platelets can be preferentially displaced from the intermediate density components, which exist as a buffy coat mainly comprising a mixture of platelets and white blood cells, and plasma reduced platelet products can thereby be produced at an increased yield. Instead of using surge technology, the platelet layer can also be extracted from the centrifuge by means of a layer “push” in which anticoagulated whole blood is introduced into the bowl until the platelet layer is pushed out, or by using a combination of surge and push methodologies. After harvesting a desired component or components, the residual blood components mostly comprising red blood cells are returned to the donor (so-called “return” step).
Typically, 450-500 ml of whole blood is processed during one cycle which comprises the above-mentioned successive steps. This amount is based on 15% or less of the total amount of blood in humans and, if more than this amount is taken out of the body at once, the donor may suffer from blood pressure lowering or dizziness. Using surge technology, the concentration of the sequestered platelet product ranges from 0.8×106/μL to 2.6×106/μL (typically 1.5×106/μL), with moderate leukocyte concentration. Pushed platelet product concentration tends to be higher but leads to greater leukocyte and red blood cell residual contamination.
This resulting platelet concentration is often too low for platelet product compatibility with arising pathogen inactivation methods. Additionally, simultaneous plasma collection of one to two additional plasma units may be prevented due to the relatively high volume of plasma captured with the platelet product. The relatively high plasma protein content in the platelet product is also less desirable in terms of recipient tolerance.
In accordance with one embodiment of the invention, a method for collecting plasma reduced platelets from a donor is presented. Whole blood is drawn from the donor, anticoagulated, and introduced into a separation chamber. Platelets are extracted from the separation chamber into a container and the remaining blood components in or out of the separation chamber are returned back to the donor. The steps of drawing whole blood and introducing the whole blood into the separation chamber, extracting platelets from the separation chamber into the container, and returning the remaining components back to the donor are repeated. After a desired quantity of platelets is sequestered into the container, platelets from the container are reintroduced into the separation chamber, whereupon a plasma reduced platelet product is extracted.
In accordance with related embodiments of the invention, extracting platelets and/or the plasma reduced platelet product from the separation chamber may include extracting platelets by surge elutriation or layer push methodologies or a combination of both. Whole anticoagulated blood may be added to the separation chamber prior to reintroducing platelets from the container into the separation chamber, so as to form a cell bed at a periphery of the separation chamber. Additionally or alternatively, whole anticoagulated blood may be added to the separation chamber during platelet reintroduction so as to bring platelet layer towards the elutriation radius, or after platelet reintroduction for perfecting platelet separation and standardizing conditions of initiating platelet extraction. Returning remaining blood components in the separation chamber back to the donor may include returning back to the donor plasma and/or red blood cells.
In further related embodiments of the invention, the steps of drawing whole blood and introducing the whole blood into the separation chamber, extracting platelets from the separation chamber into the container, returning the remaining components in the chamber back to the donor may be repeated until a desired volume of platelets is extracted. In some embodiments, reintroducing the platelets from the container and extracting a plasma reduced platelet product is only done once. However, in other embodiments, the steps may be repeated until a desired volume or concentration of reduced plasma platelet product is obtained. Additionally or alternatively, plasma may be added to the plasma reduced platelet product to adjust the plasma reduced platelet product to a pre-determined volume or predetermined concentration. This plasma can be added through the bowl or via a dedicated plasma line.
In accordance with another embodiment of the invention, a system for collecting plasma reduced platelets from a donor includes means for drawing whole blood from the donor. A separation chamber separates the whole blood into a plurality of components, the components including a platelet component. The platelet component is stored in a container. The system also includes a means for returning at least one of the plurality of components from the bowl back to the to the donor, and a flow means for connecting the means for drawing whole blood, the separation chamber, the container, and the means for returning at least one of the plurality of components. A controller controls the flow means, the means for returning, and the separation chamber so as to repeatedly draw whole blood from the donor into the separation chamber, extract platelets from the separation chamber into the container, and return remaining components in the separation chamber back to the donor. After a predetermined volume of platelets has been sequestered in the container, platelets from the container are reintroduced into the separation chamber so as to extract a plasma reduced platelet product from the separation chamber.
In accordance with yet another embodiment of the invention, a system for collecting plasma reduced platelets from a donor is presented. An apheresis system draws whole blood from a donor and separates the whole blood into a plurality of components including a platelet component and a non-platelet component using a separation chamber. The platelet component is stored into a container while the non-platelet blood components are returned back to the donor. A controller controls the apheresis system such that upon obtaining a predetermined volume of platelets in the container, platelets from the container are reintroduced into the separation chamber so as to extract a plasma reduced platelet product from the separation chamber.
In accordance with another embodiment, a method for plasma reduced blood component collection during blood processing is presented. The method draws blood from a subject through a venous-access device and into a blood component separation device until a predetermined amount of withdrawn blood is in the blood component separation device. The drawn blood is then centrifuged within the blood component separation device such that the withdrawn blood is separated into at least a first blood component and a second blood component. The method then removes the first blood component from the blood component separation device using a surge elutriation method such that the first blood component is transferred to a first component storage container. The method then returns the second blood component to the subject through the venous-access device. The draw and return steps may be repeated one or more times until an appropriate amount of first blood component is removed.
The method then partially fills the blood component separation device with whole blood and reintroduces the removed first blood component into the blood component separation device. Reintroducing the first blood component creates an enlarged layer of the first blood component within the blood component separation device. The enlarged layer of first blood component can be removed from the blood component separation device using a surge elutriation method such that the enlarged layer of first blood component is transferred to the first blood component storage container. The remaining blood components, including the second blood component can be returned to the subject through the venous-access device.
In some embodiments, centrifuging the blood further separates the blood into a third blood component in addition to the first blood component and the second blood component. The first blood component may be platelets, the second blood component may be red blood cells, and the third blood component may be plasma. Additionally, the surge elutriation method may include reintroducing removed plasma (e.g., the third blood component) into the blood component separation device at an increasing rate until the first blood component (e.g., the platelets) is removed from the blood component separation device. Returning the second blood component to the subject may also include returning the plasma reintroduced into the blood component separation device (during the surge process) to the subject.
In still other embodiments, a system for plasma reduced blood component collection during blood processing comprising is presented. The system may include a venous access device for drawing a first volume of whole blood from a subject and returning blood components to the subject. The system may also include a blood component separation device, a return line, and a reintroduction line. The blood component separation device separates the drawn blood into a first blood component and a second blood component. The blood component separation device may also be configured to send the first blood component to a first blood component bag using a surge elutriation method. The return line fluidly connects the venous-access device and the blood component separation device and is used to return the second blood component to the subject. The reintroduction line fluidly connects the first blood component bag and the blood component separation device, and is used to reintroduce the first blood component into the blood component separation device when a second volume of whole blood is withdrawn from the subject. Reintroducing the first blood component creates an enlarged layer of the first blood component within the blood component separation device. The enlarged layer of first blood component may be removed from the blood component separation device using a surge elutriation method.
The foregoing features of the invention will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:
Referring to
A bag or container 16 for storing an anticoagulant is in fluid communication with the venous access device/phlebotomy needle 24 via a bacteria filter F2, a tube 32 and the Y-connector 30. The bacteria filter F2 prevents any bacteria in the anticoagulant (ACD) container 16 from entering the system. Containers 16, 18, 20, and 22 are preferably plastic bags made of a blood compatible material. Peristaltic pumps P1, P2 and P3, together with the valves V1, V2, V3, and V4 control the direction and duration of flow through the apparatus 10 in response to signals generated by a line sensor 14, a donor pressure monitor (DPM) M1, a system pressure monitor (SPM) M2 and air detectors D1, D2 and D3. The air detectors D1, D2 and D3 detect the absence or presence of fluid. The pressure monitors M1 and M2 monitor pressure levels within the apparatus 10. The line sensor 14 is an optical sensor and detects the presence of blood components passing through the line sensor 14 from the output port PT2.
In initial operation, the pumps P1 and P3 are energized to prime the tube 28 of the apparatus 10 with the anticoagulant from the container 16. The anticoagulant passes through the filter F2 and Y-connector 30 before reaching the air detector D1. The air detector D1 senses the presence of the anticoagulant at D1 and terminates the anticoagulant priming operation. During the priming operation, the valve V2 is open and sterile air displaced from bowl 12 by the anticoagulant enters the top port PT3 of the air/plasma container 18. The venous access device 24 is then inserted into the donor and the draw step is ready to be commenced.
The whole blood is introduced into the bottom of the separation device 12 through a feed tube (not shown), step 202 of
Referring to
As the bowl 12 is rotated, centrifugal forces separate the anticoagulated whole blood admitted into the bottom of the bowl into red blood cells (RBC), white blood cells (WBC), platelets and plasma. The number of rotations of the bowl 12 can be selected, for example, within a range of 4,000 to 6,000 rpm, and is typically 4,800 rpm. The blood is separated into different fractions in accordance with the component densities. The higher density component, i.e., RBC 60, is forced to the outer wall 70 of the bowl 12 while the lower density plasma 66 lies nearer the core 72. A buffy coat 61 is formed between the plasma 66 and the RBC 60. The buffy coat 61 is made up of an inner layer of platelets 64, a transitional layer 68 of platelets and WBC and an outer layer of WBC 62. The plasma 66 is the component closest to the outlet port from the separation region and is the first fluid component displaced from the bowl 12 via the outlet port PT2 as additional anticoagulated whole blood enters the bowl 12 through the inlet port PT1.
Returning to
The amount of whole blood processed by the bowl 12 may be varied in response to at least one characteristic associated with the whole blood, such as the hematocrit value, the number of platelets, the total amount of blood or the like of the whole blood, as described in copending U.S. patent application Ser. No. 09/392,880, filed Sep. 9, 1999, entitled Apheresis Apparatus and Method for Producing Blood Products, which is hereby incorporated by reference. This variable control can be implemented under the control of a microcomputer, as aforementioned. Alternatively, each of them can be implemented manually.
The platelets are extracted from the bowl into a container, step 403 of
After the whole blood has been introduced into the centrifuge 11, step 402 of
After dwell, the surge step is commenced. In the surge, the speed of the pump P2 is increased in 5-10 ml/min. increments to recirculate plasma until reaching a platelet surge velocity of about 200-250 ml/min. The platelet surge velocity is the velocity at which platelets can leave the bowl 12 but not red blood cells or white blood cells. The plasma exiting the bowl becomes cloudy with platelets and this cloudiness is detected by the line sensor 14. The line sensor 14 consists of an LED which emits light through blood components leaving the bowl 12 and a photo detector which receives the light after it passes through the components. The amount of light received by the photo detector is correlated to the density of the fluid passing through the line.
When platelets first start leaving the bowl 12, the line sensor output starts to decrease. The valve V3 is opened and the valve V2 is closed and the platelets are collected in container 20. Once the majority of the platelets are removed from the bowl 12, the fluid exiting the bowl becomes less cloudy. This lessening of cloudiness is detected by the line sensor 14, whereupon valve V3 is closed.
After the platelets have been collected, return step 404 (see
Referring to
The platelets in container 20 are then re-introduced into the bowl 12, step 406 of
Using, for example, surge or push methodologies, a plasma reduced platelet concentration is extracted from the layer of platelets that now reside in bowl 12, step 407 of
It should be noted that the surge elutriation technique may use a variety of fluids other than plasma to extract either the platelets or the reduced plasma platelet product from the separation chamber (e.g., saline solution may be used). Additionally, the platelets that are reintroduced into the separation chamber may be re-anticoagulated to prevent the platelets from coagulating and/or clumping. For example, the platelet collection bag 20 or the reduced plasma platelet product bag 22 may be pre-loaded with a quantity of anticoagulant so that the platelets and/or reduced plasma platelet product mix with the anticoagulant as they are drawn from the separation chamber. Additionally or alternatively, sufficient anticoagulant may be added as the whole blood is withdrawn from the subject such that enough anticoagulant is still present in the platelets prior to re-processing. In either scenario, the amount of anticoagulant added the whole blood and/or extracted platelets must be weighed against the safety of the subject. In particular, the amount of anticoagulant should be limited so as to prevent a large quantity of anticoagulant being returned to the subject.
It should also be noted that once the platelets and the reduced plasma platelet product are collected, a platelet preservative solution may be added to help preserve and store the platelets for later use. The preservative solution can be added to the platelets and platelet product after collection (e.g., from a separate bag or storage container), or the platelet collection bag 20 and the reduced plasma platelet product bag 22 may be pre-loaded with the additive solution.
If additional reduced plasma platelet product is required, each of the steps 401-407 may now be repeated until a desired quantity of plasma reduced platelet product is collected. In various embodiments, plasma may be added to the plasma reduced platelet product so as to adjust the plasma reduced product to a predetermined volume or concentration.
As shown in
Additionally, as mentioned above, platelet additive solution may be added to the collected and stored platelets. To facilitate this process, the two-line system 10 and/or the three-line system 500 may include a platelet additive storage container 510 and a platelet additive line 520 that may be fluidly connected to tube 40 at point 530. In a similar manner to the other lines and tubes within the system, the platelet additive line 520 may also include a valve V7 that prevents/allows flow through the platelet additive line 520. Such embodiments may also have a line 540 fluidly connecting the platelet collection bag 20 and the reduced plasma platelet product bag 22. This line may include a valve V4 and a filter 550, such as a leukoreduction filter.
The described embodiments of the invention are intended to be merely exemplary and numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
1025059 | Hatton et al. | Apr 1912 | A |
1611725 | Degerth et al. | Dec 1926 | A |
2087778 | Nelin et al. | Jul 1937 | A |
2661150 | Abbott, Jr. | Dec 1953 | A |
2750107 | More | Jun 1956 | A |
2792172 | Tait | May 1957 | A |
3096283 | Hein | Jul 1963 | A |
3145713 | Latham | Aug 1964 | A |
3239136 | Hein | Mar 1966 | A |
3244362 | Hein | Apr 1966 | A |
3244363 | Hein | Apr 1966 | A |
3409213 | Latham, Jr. | Nov 1968 | A |
3456875 | Hein | Jul 1969 | A |
3489145 | Judson et al. | Jan 1970 | A |
3565330 | Latham, Jr. | Feb 1971 | A |
3655058 | Novak | Apr 1972 | A |
3737096 | Jones et al. | Jun 1973 | A |
3774840 | Boatright | Nov 1973 | A |
3987961 | Sinn et al. | Oct 1976 | A |
4007871 | Jones et al. | Feb 1977 | A |
4010894 | Kellogg et al. | Mar 1977 | A |
4014497 | Spiewok et al. | Mar 1977 | A |
4040965 | Kohlheb | Aug 1977 | A |
4056224 | Lolachi | Nov 1977 | A |
4082217 | Westberg | Apr 1978 | A |
4086924 | Latham, Jr. | May 1978 | A |
4140268 | Lacour | Feb 1979 | A |
4142670 | Ishimaru et al. | Mar 1979 | A |
4151844 | Cullis et al. | May 1979 | A |
4197847 | Djerassi | Apr 1980 | A |
4285464 | Latham, Jr. | Aug 1981 | A |
4300717 | Latham, Jr. | Nov 1981 | A |
4303193 | Latham, Jr. | Dec 1981 | A |
4321921 | Laszczower | Mar 1982 | A |
4387848 | Kellogg et al. | Jun 1983 | A |
4416654 | Schoendorfer et al. | Nov 1983 | A |
4425114 | Schoendorfer et al. | Jan 1984 | A |
4430072 | Kellogg et al. | Feb 1984 | A |
4447221 | Mulzet | May 1984 | A |
4457747 | Tu | Jul 1984 | A |
4464167 | Schoendorfer et al. | Aug 1984 | A |
4466888 | Verkaart | Aug 1984 | A |
4482342 | Lueptow et al. | Nov 1984 | A |
4530691 | Brown | Jul 1985 | A |
4534863 | Bacon et al. | Aug 1985 | A |
4643714 | Brose | Feb 1987 | A |
4647279 | Mulzet et al. | Mar 1987 | A |
4680025 | Kruger et al. | Jul 1987 | A |
4684361 | Feldman et al. | Aug 1987 | A |
4692136 | Feldman et al. | Sep 1987 | A |
4708712 | Mulzet | Nov 1987 | A |
4713176 | Schoendorfer et al. | Dec 1987 | A |
4734089 | Cullis | Mar 1988 | A |
4740202 | Stacey et al. | Apr 1988 | A |
4740313 | Schoendorfer et al. | Apr 1988 | A |
4755300 | Fischel et al. | Jul 1988 | A |
4767396 | Powers | Aug 1988 | A |
4795419 | Yawn et al. | Jan 1989 | A |
4795448 | Stacey et al. | Jan 1989 | A |
4806247 | Schoendorfer et al. | Feb 1989 | A |
4806252 | Brown et al. | Feb 1989 | A |
4808307 | Fischel et al. | Feb 1989 | A |
4850995 | Tie et al. | Jul 1989 | A |
4869812 | Schoendorfer et al. | Sep 1989 | A |
4871462 | Fischel et al. | Oct 1989 | A |
4876013 | Shmidt et al. | Oct 1989 | A |
4889524 | Fell et al. | Dec 1989 | A |
4911833 | Schoendorfer et al. | Mar 1990 | A |
4934995 | Cullis | Jun 1990 | A |
4940543 | Brown et al. | Jul 1990 | A |
4943273 | Pages | Jul 1990 | A |
4968295 | Neumann | Nov 1990 | A |
4983156 | Knelson | Jan 1991 | A |
4983158 | Headley | Jan 1991 | A |
4985153 | Kuroda et al. | Jan 1991 | A |
4994188 | Prince | Feb 1991 | A |
5039401 | Columbus et al. | Aug 1991 | A |
5045048 | Kaleskas et al. | Sep 1991 | A |
5098372 | Jonsson | Mar 1992 | A |
5100372 | Headley | Mar 1992 | A |
5100564 | Pall et al. | Mar 1992 | A |
5112298 | Prince et al. | May 1992 | A |
5114396 | Unger et al. | May 1992 | A |
5135667 | Schoendorfer | Aug 1992 | A |
5141486 | Antwiler | Aug 1992 | A |
5147290 | Jonsson | Sep 1992 | A |
5154716 | Bauman et al. | Oct 1992 | A |
5174894 | Ohsawa et al. | Dec 1992 | A |
5194145 | Schoendorfer | Mar 1993 | A |
5217426 | Bacehowski et al. | Jun 1993 | A |
5217427 | Cullis | Jun 1993 | A |
5234403 | Yoda et al. | Aug 1993 | A |
5234608 | Duff | Aug 1993 | A |
5254248 | Nakamura | Oct 1993 | A |
5273517 | Barone et al. | Dec 1993 | A |
5277701 | Christie et al. | Jan 1994 | A |
5298016 | Gordon | Mar 1994 | A |
5298171 | Biesel | Mar 1994 | A |
5300060 | Nelson | Apr 1994 | A |
5316540 | McMannis et al. | May 1994 | A |
5318512 | Neumann | Jun 1994 | A |
5348533 | Papillon et al. | Sep 1994 | A |
5368542 | McMannis et al. | Nov 1994 | A |
5370802 | Brown | Dec 1994 | A |
5386734 | Pusinelli | Feb 1995 | A |
5387174 | Rochat | Feb 1995 | A |
5387187 | Fell et al. | Feb 1995 | A |
5403272 | Deniega et al. | Apr 1995 | A |
5405308 | Headley et al. | Apr 1995 | A |
5417650 | Gordon | May 1995 | A |
5431814 | Jorgensen | Jul 1995 | A |
5437598 | Antwiler | Aug 1995 | A |
5437624 | Langley | Aug 1995 | A |
5462667 | Wollinsky et al. | Oct 1995 | A |
5470483 | Bene et al. | Nov 1995 | A |
5484396 | Naficy | Jan 1996 | A |
5494592 | Latham et al. | Feb 1996 | A |
5505685 | Antwiler | Apr 1996 | A |
5514070 | Pages | May 1996 | A |
5543062 | Nishimura | Aug 1996 | A |
5551941 | Howell | Sep 1996 | A |
5585007 | Antanavich et al. | Dec 1996 | A |
5607579 | Latham, Jr. et al. | Mar 1997 | A |
5614106 | Payrat et al. | Mar 1997 | A |
5649903 | Deniega et al. | Jul 1997 | A |
5651766 | Kingsley et al. | Jul 1997 | A |
5656163 | Brown | Aug 1997 | A |
5728060 | Kingsley et al. | Mar 1998 | A |
5733253 | Headley et al. | Mar 1998 | A |
5733446 | Holm | Mar 1998 | A |
5733545 | Hood, III | Mar 1998 | A |
5738792 | Schoendorfer | Apr 1998 | A |
5762791 | Deniega et al. | Jun 1998 | A |
5779660 | Kingsley et al. | Jul 1998 | A |
5783085 | Fischel | Jul 1998 | A |
5792351 | Wehrle et al. | Aug 1998 | A |
5865785 | Bischof | Feb 1999 | A |
5882289 | Sakota et al. | Mar 1999 | A |
5919125 | Berch | Jul 1999 | A |
5964724 | Rivera et al. | Oct 1999 | A |
5980760 | Min et al. | Nov 1999 | A |
6007725 | Brown | Dec 1999 | A |
6059979 | Brown | May 2000 | A |
6207063 | Brown | Mar 2001 | B1 |
6234989 | Brierton et al. | May 2001 | B1 |
6296602 | Headley | Oct 2001 | B1 |
6464624 | Pages | Oct 2002 | B2 |
6558307 | Headley | May 2003 | B2 |
6743192 | Sakota et al. | Jun 2004 | B1 |
7270645 | Langley et al. | Sep 2007 | B2 |
7306555 | Dolecek et al. | Dec 2007 | B2 |
20010027156 | Egozy et al. | Oct 2001 | A1 |
20020062100 | Pierce et al. | May 2002 | A1 |
20030094425 | Brandt et al. | May 2003 | A1 |
20050139556 | Bischof | Jun 2005 | A1 |
20060205581 | Chammas | Sep 2006 | A1 |
20060287628 | Hirabuki | Dec 2006 | A1 |
Number | Date | Country |
---|---|---|
0 128 683 | Dec 1984 | EP |
0 171 749 | Feb 1986 | EP |
0 208 061 | Jan 1987 | EP |
0 257 755 | Mar 1988 | EP |
0 578 086 | Jan 1994 | EP |
0 619 145 | Oct 1994 | EP |
0 664 159 | Jul 1995 | EP |
0 799 645 | Oct 1997 | EP |
0 885 619 | Dec 1998 | EP |
0 992 256 | Apr 2000 | EP |
1 057 534 | Dec 2000 | EP |
2 258 898 | Aug 1975 | FR |
2 047 110 | Nov 1980 | GB |
59-006952 | Jan 1984 | JP |
59-069166 | Apr 1984 | JP |
07-075746 | Mar 1995 | JP |
08-131539 | May 1996 | JP |
09-192215 | Jul 1997 | JP |
660718 | May 1979 | SU |
762982 | Sep 1980 | SU |
1146098 | Mar 1985 | SU |
WO 8502561 | Jun 1985 | WO |
WO 9000059 | Jan 1990 | WO |
WO 9007383 | Jul 1990 | WO |
WO 9406535 | Mar 1994 | WO |
WO 9611747 | Apr 1996 | WO |
WO 9633023 | Oct 1996 | WO |
Entry |
---|
European Patent Office, International Search Report and The Written Opinion of the International Searching Authority—Application No. PCT/US2009/040160, dated Aug. 17, 2009 (14 pages). |
Number | Date | Country | |
---|---|---|---|
20090259162 A1 | Oct 2009 | US |