The present invention relates generally to wireless communication systems, and more particularly to a system and method for power control.
Wireless communication systems are widely used to provide voice and data services for multiple users using a variety of access terminals such as cellular telephones, laptop computers and various multimedia devices. Such communications systems can encompass local area networks, such as IEEE 801.11 networks, cellular telephone and/or mobile broadband networks. The communication system can use a one or more multiple access techniques, such as Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA) and others. Mobile broadband networks can conform to a number of system types or partnerships such as, General Packet Radio Service (GPRS), 3rd-Generation standards (3G), Worldwide Interoperability for Microwave Access (WiMAX), Universal Mobile Telecommunications System (UMTS), the 3rd Generation Partnership Project (3GPP), Evolution-Data Optimized EV-DO, or Long Term Evolution (LTE).
An illustration of a conventional mobile broadband system 100 is illustrated in
In communication systems such as CDMA and LTE, bandwidth is shared among terminal devices or UEs in the uplink communications channel. Because bandwidth is shared, power control is used in the uplink communications to address the near-far effect. This means that UE 114 at the cell edge with higher path loss PL2 to base station 102 will generally transmit with a higher power than UE 116 with lower path loss PL1 so that each respective transmission is received at a reasonable level above noise and interference.
The prior art has addressed the power control in a couple of ways. Under the full power control (FPC) scheme, the received signal level of all UEs are about the same at the base station in order to provide equal signal to noise and interference ratio (SNIR) for all users. Under FPC, the UE power is set to fully compensate for the channel loss, thus all users have same received signal level Po at the base station:
P0={10*log 10(N+I0)+SNIRTARG}, (1)
where, I0 is the estimated total interference power at the base station, N is the thermal noise power, and SNIRTARG is the target SNIR. The transmit power at the UE under FPC is given by:
Pƒ={Pmax,P0+PL}, (2)
Where Pmax is a maximum transmit power a UE is allowed to transmit and PL is the path loss. It can be seen that using FPC, all UEs have the same SNIR if the target SNIR is the same for all UEs and if UE power is not limited by Pmax. When FPC is used, however, the same modulation and coding scheme (MCS) level is typically used by all the UEs, which potentially results in a reduced system throughput because higher MCS levels are not used.
The fractional power control (FrPC) scheme proposed in the LTE standard allows users with lower path loss to use a higher power level than would be otherwise required to maintain a minimum SNIR threshold. The allowed margin above the cell edge SNIR is inversely proportional to the path loss of the user, so that a user in closer proximity to the base station can obtain a higher SNIR and a higher MCS level. The transmitter power of a UE under FrPC is expressed as:
Ptx{Pmax,P′0+α.PL} and P′0=P0+Δ0,
where α is a multiplier that is less than 1, and Δ0 is a power increase factor set such that the cell-edge UEs still achieves the target SNIR. (When α is equal to 1, the system operates as a FPC system.) Under FrPC, UEs that are closer to the base station can boost power above the point that would have been set by FPC, where the increase in power ΔP is given by:
ΔP=(1−α)×(PL−PLcell
so that Ptx=ΔP+Pƒ
where PLcell
UEs closer to the base station, therefore, have a higher SNIR than UEs farther from the base station. While FrPC shows some improvement over FPC schemes, FrPC chooses UE transmission levels based on a UE path loss and not based on the actual interference level being caused by the UE. Consequently, FrPC power control may not effectively reduce interference in some cases.
What is needed are systems and method of power control for multiple access wireless networks that increase throughput and minimize interference.
In accordance with an embodiment of the present invention, a method of operating a base station includes determining a first transmit power of a UE, which includes determining a serving base station receive power, determining a path loss of the user equipment (UE) to the base station, determining a downlink signal to noise and interference ratio (SNIR) at the UE, and forming the first UE transmit power. Forming the first UE transmit power comprises summing the serving base station receive power, the path loss of the UE to the base station and the downlink SNIR. The method further includes instructing the UE to transmit at the first UE transmit power.
In accordance with another embodiment of the present invention, a method of operating base station, includes determining a first transmit power of a UE. Determining the transmit power includes determining a serving base station receive power, determining a path loss of the user equipment (UE) to the base station, determining a total mean interference the UE causes to neighboring base stations, determining a power adjustment, and calculating the first UE transmit power. Determining the power adjustment includes subtracting the total mean interference the UE causes to neighboring base stations from the serving base station receive power to form a first difference, where the power adjustment includes the first difference. Calculating the first UE transmit power includes calculating summing the serving base station receive power, the path loss of the UE to the base station and the power adjustment. The method further includes instructing the UE to transmit at the first UE transmit power.
In accordance with yet another embodiment, a wireless base station includes a transmitter and a receiver. The base station is configured to determine a serving base station receive power at the receiver, determine a path loss of a user equipment (UE) to the base station, determine a total mean interference the UE causes to neighboring base stations, determine a first adjustment factor, determine a second adjustment factor, and determine a power adjustment. Determining the power adjustment includes subtracting the total mean interference the UE causes to neighboring base stations from the serving base station receive power to form a first difference, multiplying the first difference with the first adjustment factor to form the power adjustment. The first UE transmit power is calculated by summing the serving base station receive power, the path loss of the UE to the base station, the power adjustment, and the second adjustment factor. The UE is then instructed to transmit at the first UE transmit power via the transmitter.
In accordance with another embodiment, wireless base station includes a transmitter and a receiver. The base station is configured to determine a serving base station receive power at the receiver, determine a path loss of a user equipment (UE) to the base station, determine a downlink SNIR at the UE, determine a first adjustment factor, and determine a second adjustment factor. A first UE transmit power level is calculated by summing the serving base station receive power, the path loss of the UE to the base station, and the downlink SNIR. The UE is then instructed to transmit at the first UE transmit power level via the transmitter.
The foregoing has outlined rather broadly the features of an embodiment of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of embodiments of the invention will be described hereinafter, which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated. The figures are drawn to clearly illustrate the relevant aspects of the embodiments and are not necessarily drawn to scale.
The making and using of various embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
The present invention will be described with respect to various embodiments in a specific context, namely power control in a broadband wireless networks. The invention may also be applied to power control in other types of networks.
In embodiments of the present invention, power control systems and method are implemented that control the uplink transmit power of UEs based on total interference pollution to other cells. The impact of a UE's interference on the throughput of other cells is taken into account when determining UE transmit power. In embodiments, total interference pollution is calculated by summing UE generated interference to every other cell normalized by the expected mean interference level of the cell receiving the interference. This expected mean interference is used as a loading factor for each cell, which is measured and shared with neighboring cells so that the UEs in the neighbor cells can use that as target interference level for that cell.
In an embodiment used for inter-cell interference coordination (ICIC) for different resource blocks (RBs), different interference target levels are derived for different eNB groups and/or different groups of base stations, which are known apriori by the neighboring cells. The ratio of the target interference level for a specific resource block to the nominal reference target interference level in the system is used to normalize the total interference to these different eNB groups. The interference to other cells is to be measured using downlink measurements if the reciprocity of the channel for medium signal level is valid, or using specific uplink sounding signals.
In embodiments, the UE uplink power is adjusted so as not to exceed a target interference over thermal noise level (TIOT) in an adjacent sector. In some embodiments that account for multiple sectors having multiple target level, for example multi-TIOT ICIC schemes, embodiment power control systems and methods are used to maximize throughput.
It can be seen that the impact of adding an extra interference (q0) to a base station with a higher interference level T1, T2 is smaller than the impact on a base station with a lower interference level. This is because, 10*log 10((q0+T1)/T1)<10*log 10((q0+T2)/T2) if T1>T2. Therefore, in an embodiment, when determining the total interference pollution level, interference is weighted according to the average/target interference level existed/expected before the addition.
In an embodiment of the present invention, it is assumed that different base stations have different interference tolerance levels, T0 in a given RB, which is decided by each base station or dynamically changed under a radio resource management (RRM) scheme, where other neighboring base stations aware of these thresholds.
In an embodiment the power of the UE is set to be:
Pƒ+ΔP,
where Pƒ is the FPC transmit level defined in equations (1) and (2) and ΔP is an offset from the FPC transmit level.
In an embodiment, ΔP is set to be.
where qi is the respective interference levels caused by the UE, β and Δ2 are parameters to be found using simulations and depend on the environmental conditions and cell planning; λi is the ratio between target interference at ith cell and a reference interference level, T0. In an embodiment, if the thermal noise is taken as a reference level, λi is the target interference power over target thermal power (IOT) of the cell.
A more general expression for ΔP is:
ΔP=ƒ(δP), where
In an embodiment, ƒ is a monotonic function chosen to keep UE power levels within a specified range and to achieve a desired tradeoff between cell edge performance and cell center throughput. For example, ƒ can be in the form of
ƒ(x)=βxn, so that
where δPmin is the minimum value of δP over all the UEs in the cell and δPmax is the maximum value of δP over all the UEs in the cell. Examples of various curves for ƒ(x)=βxn is illustrated in
In another embodiment, an adaptive algorithm dynamically adjusts the parameter β. Neighboring cells inform the base station when the average interference level over a some period exceeds a margin. Depending on the margin, β is adjusted to increase or decrease the interference to the neighboring cells. This adjustment may be done to the users which generate high levels of interference to particular neighboring cells.
In an embodiment an adaptive method uses simulations to achieve a specified fairness. A system throughput is measured, and if the local base station fairness is better/worse than a specified fairness, then beta is increased or decreased by a certain amount. The results of the simulation are used to fix a start value, and the adaptive method is used to adjust the simulation dynamically. The amount by which the simulation is adjusted is determined according to simulation techniques known in the art.
In another embodiment, an adaptive method uses simulations that are changed dynamically for a given base station for one value of Δ2. If a neighboring base station wants to change the operating point by changing its interference, only a Δ2 value of a UE is changed that interferes with a neighboring base station. If the neighboring base station wants to reduce or increase interference to it, Δ2 is increased or decreased by a small amount. The amount by which Δ2 is increased or decreased by a small amount is determined according to simulation techniques known in the art.
In an embodiment, where target interference levels are the same in adjoining cells, δP can be simplified as:
δP=Sƒ−10*log 10(Σ(qi/λi))=Sƒ−10*log 10(Σ(qi))+Δ3.
Without loss of generality, Δ3 can be set to be 0. Therefore,
ΔP=β.(Sƒ−10*log 10(Σ(qi))−Δ2,
where Σ(qi) is the total mean interference a UE causes to all the other cells. The above adjustment, ΔP can be directly estimated from a mean downlink SNIR:
where pDL is the downlink transmit power of the base stations, ld is the downlink path loss from the serving cell li is downlink path loss from the ith neighbor base station, and N0 is the thermal noise. Therefore, δP=SNIRDL (in dB). When n=1, the power transmitted at the UE is:
Ptx=Pƒ+βSNIRDL−Δ2. This will be referred to an embodiment Geometry Based Power Control (GPC) scheme.
In alternative embodiments, GPC schemes can be modified. For example, in order to increase the cell-edge throughput with minimal impact to overall system throughput, the UE transmit power can be adjusted when ΔP is positive (i.e. δP=max(δP,0). In an embodiment, the total UE transmit power is determined according to:
Ptx=Pƒ+βSINRDL−Δ2, β.SNIRDL≧Δ2
Ptx=Pƒ, β.SNIRDL<Δ2.
This will be referred to as an embodiment capped Geometry Based Power Control (GPC-Cap) scheme. In a further embodiment, a MTPC-cap scheme can be defined as a method where if the overall power adjustment factor ΔP is negative, ΔP is set to zero.
In an embodiment, there are several groups of base stations, each group of which share a common interference threshold level. For a system with three base station groups:
δP=Sƒ−10*log 10((Σ(q1j)/λ1)+Σ(q2j)/λ2)+Σ(q3j)/λ3)),
where λ1, λ2, and λ3 are the relative TIOT levels associated with each BS group, and (Σ(q1j)/λ1), (Σ(q2j)/λ2) and (Σ(q3j)/λ3) represent the impact of the total interference a UE causes to each base station group weighted by their target interference levels. In an embodiment, these interferences can be evaluated using downlink pilot power measurements or special pilot arrangements (e.g. introducing common pilots to each base station group). This will be referred to as an embodiment Multi-Target Power Control (MTPC) scheme.
In an embodiment, at least one of the neighboring base stations adjusts its pilot power level according to a mean interference over threshold level IOT of another one of the neighboring base stations. The expression
is then evaluated using the downlink SNIR of the pilot signal.
In an embodiment, neighboring base stations use a common pilot signal, and the UE measures a total power of the common pilot signal I, and a desired signal level S from the serving base station. The downlink SNIR is then evaluated according to the expression, SNIR=S/(I−S).
In another embodiment, an iterative scheme is used to follow the interference pollution based scheme in a way that makes less assumptions for all UEs. For example, an optimum power level at which the increase in power of a UE would cause decrease in total throughput is found such that increase in throughput is lower than the decrease of throughput in the other cells. The total throughput of all the cells is determined as:
where p is the UE uplink transmit power, L0 is the uplink path loss to the serving station, q0 is total interference plus noise received by the serving base station from the UEs in the neighbor base stations, Li is uplink path loss to the ith neighboring base station Si is the expected received signal level for a UE served by the ith neighboring station, and Ti is the total interference plus noise power, received by the ith neighboring base station.
Let,
Therefore,
An iterative scheme is then used to find the optimum power for each UE assuming fixed target Si and known Ti's for all the other cells.
In an embodiment, each UE (or eNB) starts the above iteration with initial value (n=1) of p(n−1)=p(0)=pƒ (transmit power under full power control). Then, p(n=2) is evaluated. Similarly p(n) is found for larger values of n until the change is small. A fixed target Si and known Ti's are assumed for the other cells.
In an iterative embodiment, a fairness requirement is not considered when the optimum power level is determined through iteration. It considered in the case when throughput gain of the desired cell is greater than the sum of the throughput losses in other cells, or
where C(i) is the throughput for the UE in cell i. Instead, when a fairness requirement is considered,
is used for the iterative scheme, where w(i) is a weighting factor for the ith cell.
Throughput Gain=log2(1+(S0+Δs)/q0)−log2(1+S/q0)≈log2((S0+ΔS0)/S0),
assuming S0>>q0.
(desired link)=log2(1+ΔS0/S0)=log2(1+ΔP/P),
where {S0=P/L0, ΔS0=(P+ΔP)/L0−P/L0=ΔP/L0}.
A block diagram of an embodiment base station 1100 is illustrated in
A block diagram of an embodiment user device 1200 is illustrated in
User device 1200 can be further configured to emit a sounding signal.
Although present embodiments and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. For example, many of the features and functions discussed above can be implemented in software, hardware, or firmware, or a combination thereof.
Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Number | Name | Date | Kind |
---|---|---|---|
6351461 | Sakoda et al. | Feb 2002 | B1 |
6788687 | Bao et al. | Sep 2004 | B2 |
7103350 | Au et al. | Sep 2006 | B2 |
7412254 | Senarath et al. | Aug 2008 | B2 |
7609661 | Chae et al. | Oct 2009 | B2 |
7733977 | Kuri et al. | Jun 2010 | B2 |
8116805 | Das et al. | Feb 2012 | B2 |
8160602 | Wu et al. | Apr 2012 | B2 |
8311055 | Senarath et al. | Nov 2012 | B2 |
20040141483 | Zeira et al. | Jul 2004 | A1 |
20050220176 | Zeira et al. | Oct 2005 | A1 |
20060094363 | Kang et al. | May 2006 | A1 |
20060094372 | Ahn et al. | May 2006 | A1 |
20060209767 | Chae et al. | Sep 2006 | A1 |
20070189234 | Heo et al. | Aug 2007 | A1 |
20070254652 | Khan et al. | Nov 2007 | A1 |
20080069028 | Richardson | Mar 2008 | A1 |
20080096568 | Jeong | Apr 2008 | A1 |
20080130527 | Huh et al. | Jun 2008 | A1 |
20080146154 | Claussen et al. | Jun 2008 | A1 |
20080166976 | Rao | Jul 2008 | A1 |
20080232332 | Kaminski et al. | Sep 2008 | A1 |
20080280638 | Malladi et al. | Nov 2008 | A1 |
20090125363 | Frederiksen et al. | May 2009 | A1 |
20090196192 | Lim et al. | Aug 2009 | A1 |
20090258665 | Bourlas et al. | Oct 2009 | A1 |
20090285160 | Cheng et al. | Nov 2009 | A1 |
20100027688 | Suh et al. | Feb 2010 | A1 |
20100128687 | Oteri et al. | May 2010 | A1 |
20100173638 | Aiba et al. | Jul 2010 | A1 |
20100189080 | Hu et al. | Jul 2010 | A1 |
20100210295 | Koc et al. | Aug 2010 | A1 |
20100304776 | Wu et al. | Dec 2010 | A1 |
20110039569 | Narasimha et al. | Feb 2011 | A1 |
20110039589 | Skov | Feb 2011 | A1 |
20110103287 | Ma et al. | May 2011 | A1 |
20110111766 | Yang et al. | May 2011 | A1 |
20110136533 | Senarath et al. | Jun 2011 | A1 |
20110177821 | Senarath et al. | Jul 2011 | A1 |
20110310879 | Wu et al. | Dec 2011 | A1 |
20120252524 | Gora et al. | Oct 2012 | A1 |
20120270582 | Mese et al. | Oct 2012 | A1 |
20130188576 | Chao et al. | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
1344445 | Apr 2002 | CN |
1545217 | Nov 2004 | CN |
101272172 | Sep 2008 | CN |
101272388 | Sep 2008 | CN |
101305538 | Nov 2008 | CN |
101370240 | Feb 2009 | CN |
101371459 | Feb 2009 | CN |
101378299 | Mar 2009 | CN |
101399572 | Apr 2009 | CN |
101584129 | Nov 2009 | CN |
101626260 | Jan 2010 | CN |
1811686 | Jul 2007 | EP |
2056614 | Jun 2009 | EP |
2510729 | Oct 2012 | EP |
2008072722 | Mar 2008 | JP |
2008533923 | Aug 2008 | JP |
2009523358 | Jun 2009 | JP |
0057576 | Sep 2000 | WO |
WO2008073013 | Jun 2008 | WO |
WO2008076940 | Jun 2008 | WO |
2008107930 | Sep 2008 | WO |
WO2009100567 | Aug 2009 | WO |
WO2009138841 | Nov 2009 | WO |
Entry |
---|
“3rd Generation Partnership Project; LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures,” Technical Specification 136.213, Feb. 2009, pp. 1-75, vol. 8.5.0. |
“3rd Generation Partnership Project, Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification,” Techincal Specification 136.321, Jan. 2009, pp. 1-44, vol. 8.4.0. |
Jalali, A., et al., “Data Throughput of CDMA-HDR a High Efficiency-High Data Rate Personal Communication Wireless System,” IEEE 51st Vehicular Technology Conference Proceedings, 2000, pp. 1854-1858, vol. 3. |
Myung, H. G., et al. “Single Carrier FDMA for Uplink Wireless Transmission,” IEEE Vehicular Technology Magazine, Sep. 2006, pp. 30-38. |
Dahlman, E., et al. “Key Features of the LTE Radio Interface,” Ericsson Review No. 2, 2008, pp. 77-80. |
“3rd Generation Partnership Project; Technical Specification 36.213 Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer Procedures, Release 8,” Technical Spicification, 3GPP TS 36.213, vol. 8.6.0, Mar. 2009, pp. 1-77. |
PCT International Search Report and Written Opinion, PCT/CN2011/070890, Huawei Technologies Co., Ltd. et al., mailed May 19, 2011; 9 pages. |
Written Opinion of the International Searching Authority, PCT/CN2011/070409, Huawei Technologies Co. Ltd. et al., mailed Apr. 12, 2011, 4 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority or the Declaration, PCT/CN2011/070409, Huawei Technologies, Co. Ltd., et al., mailing date Apr. 21, 2011, 3 pages. |
PCT International Search Report, PCT/CN2011/070409, Huawei Technologies Co., Ltd. et al., mailed Apr. 12, 2011, 3 pages. |
PCT International Search Report, PCT/CN2010/079496, Huawei Technologies, Co., Ltd. et al., mailed Mar. 17, 2011, 11 pages. |
Senarah, G. et al., “Power Control and ICIC for Uplink in LTE,” Huawei Technologies, Co., Ltd., Aug. 14, 2009, 8 pages. |
Yates, R. et al., “Integrated Power Control and Base Station Assignment,” IEEE Transactions on Vehicular Technology, vol. 44, No. 3, Aug. 1995, pp. 638-644. |
Xiao, W. et al., “Uplink Power Control, Interference Coordination and Resource Allocation for 3GPP E-UTRA,” IEEE Vehicular Technology Conference, Sep. 2006, 5 pages. |
Gjendemsjo, A. et al., “Binary Power Control for Sum Rate Maximization over Multiple Interfering Links,” IEEE Transactions on Wireless Communications, vol. 7, No. 8, Aug. 2008, pp. 3164-3173. |
Hande, P. et al., “Distributed Uplink Power Control for Optimal SIR Assignment in Cellular Data Networks,” IEEE Communications Society, Proceedings IEEE Infocom, 2006, 13 pages. |
Yates, R. “A Framework for Uplink Power Control in Cellular Radio Systems,” IEEE Journal on Selected Areas in Communications, vol. 13, No. 7, Sep. 1995, pp. 1341-1347. |
Zander, J. “Performance of Optimum Transmitter Power Control in Cellular Radio System,” IEEE Transactions on Vehicular Technology, vol. 41, No. 1, Feb. 1992, pp. 57-62. |
Halpern, S. W., “Reuse Partitioning in Cellular Systems,” Proceedings of 33rd IEEE Vehicular Technology Conference, vol. 33, May 1983, pp. 322-327. |
Foschini, G. J. et al., “A Simple Distributed Autonomous Power Control Algorithm and its Convergence,” IEEE Transactions on Vehicular Technology, vol. 42, No. 4, Nov. 1993, pp. 641-646. |
3GPP Lte ETSI, ETSI TS 136 213, V8.8.0, “Evolved Universal Terrestial Radio Access (E-UTRA): Physical layer procedures (3GPP TS 36.213 Release 8),” Oct. 2009, 79 pages. |
Knopp, R. “Information Capacity and Power Control in Single-Cell Multiuser Communications,” Proceedings of IEEE International Conference on Communications, vol. 1, 1995, pp. 331-335. |
Senarath, G. et al., “Multi-hop Relay System Evaluation Methodology (Channel Model and Performance Metric),” IEEE 802.16 Broadband Wireless Access Working Group, http://ieee802.org/16>, Feb. 2007, 1 page. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, Huawei Technologies Co., Ltd., et al., PCT/CN/2010/079496 mailed Mar. 17, 2011, 11 pages. |
Extended European Search Report and Supplementary European Search Report received in European Application No. 10835481, mailed Dec. 13, 2012, 9 pages. |
Kim, D., et al., “Proposed Modification on Power Control Section (AWD-15.3.9.4),” IEEE 802.16 Broadband Wireless Access Working Group, IEEE C802.16m-09/ 1524r1, Jul. 6, 2009, 6 pages. |
Extended European Search Report from European Patent Application No. 11734371.5-2412/2471327, PCT/CN2011/070409 mailed Jun. 6, 2012, 9 pages. |
Muller, Andreas, “Cooperative Interference Prediction for Enhanced Link Adaptation in the 3GPP LTE Uplink,” IEEE, 2010, 6 pages. |
“3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 8),” 3GPP TS 36.213 V8.8.0, Sep. 2009, 77 pages. |
CHTTL, “Further Simulation Results of User Grouping Methods for Downlink Inter-cell interference coordination,” R1-083104, 3GPP TSG-RAN WG1 #54, Jeju, Korea, Aug. 18-22, 2008, 6 pages. |
International Search Report and Written Opinion received in International Application No. PCT/US13/22143 mailed Mar. 29, 2013, 8 pages. |
Notice of Reasons for Rejection received in Japanese Application No. 2012-542348 mailed Oct. 29, 2013, 4 pages. |
First Chinese Office Action received in Chinese Application No. 201080055385.1 mailed Oct. 13, 2014, 6 pages. |
International Search Report received in Chinese Application No. 201080055385.1, mailed Sep. 22, 2014, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20110136533 A1 | Jun 2011 | US |