Embodiments relate to power distribution systems.
Power distribution systems, such as a power strip or a multiple outlet device, may include one or more electrical sockets. The power strip, or multiple outlet device, may include an input and one or more outputs, each having a similar power. However, users may require inputs and outputs configured to receive and output different powers.
Thus, one embodiment provides a power distribution system including a first power module and a second power module. The first power module including a first power input receiving an input power, a first rectifier receiving the input power and outputting a rectified power, and a first power output configured to output the input power. The first power module further including a second power output configured to output the rectified power, a pass-through output configured to output input power, and a first circuit breaker configured to provide overcurrent protection before the input power is received by the first rectifier and the first power output. The second power module including a second power input receiving the input power, from the pass-through output of the first power module, a second rectifier receiving the input power and outputting a second rectified power, and a third power output configured to output the input power. The second power module further including a fourth power output configured to output the second rectified power, and a second circuit breaker configured to provide overcurrent protection before the input power is received by the second rectifier and the third power output and provide overcurrent protection after the input power is output from the pass-through output.
Another embodiment provides a method of distributing power. The method including receiving, via an input power, an input power, rectifying, via a first rectifier, the input power into a rectified power, and outputting, via a first power output, the input power. The method further including outputting, via a second power output, the rectified power, outputting, via a pass-through output, the input power, and providing, via a first circuit breaker within a first housing of a first power module, overcurrent protection before the input power is received by the first rectifier and the first power output. The method further including receiving, via a second power input, the input power from the pass-through output, rectifying, via a second rectifier, the input power from third power input into a second rectified power, and outputting, via a third power output, the input power from the third power input. The method further including outputting, via a fourth power output, the rectified power from the second rectifier, and providing, via a second circuit breaker within a second housing of a second power module, overcurrent protection before the input power is received by the second transformer and the third power output and provide overcurrent protection after the input power is output from the pass-through output.
Other aspects of the application will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the application are explained in detail, it is to be understood that the application is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The application is capable of other embodiments and of being practiced or of being carried out in various ways.
The transformer 205 is configured to transform the input power to a transformed power. In some embodiments, the transformer 205 is a step up & down transformer. In such an embodiment, the transformer 205 is configured to receive an input power of approximately 120 VAC and output a transformed power of approximately 220 VAC. Additionally, in such an embodiment, the transformer 205 is configured to receive an input power of approximately 220 VAC and output a transformed power of approximately 120 VAC.
In some embodiments, such as the one illustrated, the transformer 205 is located within the power module housing 200. However, in other embodiments, the transformer 205 may be located outside the power module housing 200 and includes its own transformer housing.
In some embodiments, the power outputs 210, 215, 220 are power receptacles configured to receive a power plug. In some embodiments, power outputs 210, 215, 220 are similar power receptacles configured to output similar power, while in other embodiments, power outputs 210, 215, 220 are different power receptacles configured to output power having different characteristics (for example, different voltage amplitudes and/or magnitudes, different voltage frequencies, alternating current, or direct current). In the illustrated embodiments, the first power output 210 is a European power receptacle configured to output power having approximately 220 VAC, the second power output 215 is a North American power receptacle configured to output power having approximately 120 VAC, and the third power output 220 is a Universal Serial Bus (USB) power output configured to output approximately 5 VDC. However, in other embodiments, the outputs 210, 215, and 220 may be different.
In embodiments including a USB power output, such as the one illustrated, the power module 110 further includes a rectifier 225, or other converter. The rectifier 225 may be configured to receive the input power, rectify the input power from AC to DC, and output the rectified DC power. In the illustrated embodiment, the rectifier 225 outputs the rectified DC power to the third power output 220.
Circuit breaker 230 is configured to provide overcurrent protection to the power module 110. In operation, the circuit breaker 230 senses an overcurrent condition (for example, from an overload or short circuit) and interrupts current flow to power outputs 210, 215, 220 upon sensing the overload condition. In such an embodiment, the power module 110 may further include one or more user-interfaces 235 for operating the circuit breaker 230. For example, the user-interfaces 235 may be a RESET button and a TEST button.
In embodiments having two or more power modules 110 electrically coupled together, a first power module (for example, power module 110a (
The input power is received via the input power 105 of a first power module 110 (for example, power module 110a of
The input power output via the pass-through output 240 is then received by a second power module 110 (for example, power module 110b of
Thus, the application provides, among other things, a system and method for distributing power. Various features and advantages of the application are set forth in the following claims.
This application claims priority to U.S. patent application Ser. No. 15/912,870, filed Mar. 6, 2018, which claims priority to U.S. Provisional Patent Application No. 62/467,432, filed Mar. 6, 2017, the entire contents of all of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4285023 | Kalivas | Aug 1981 | A |
5894392 | McDonald | Apr 1999 | A |
6753622 | Oughton, Jr. | Jun 2004 | B2 |
6857896 | Rupert et al. | Feb 2005 | B2 |
7057108 | Sodemann et al. | Jun 2006 | B1 |
7358625 | Cheng et al. | Apr 2008 | B2 |
7426126 | Lai | Sep 2008 | B1 |
7607928 | Schriefer et al. | Oct 2009 | B2 |
8033867 | Kessler et al. | Oct 2011 | B1 |
8350406 | Byrne et al. | Jan 2013 | B2 |
8373958 | Yeo | Feb 2013 | B2 |
8971083 | Johnson | Mar 2015 | B1 |
9652014 | Warwick et al. | May 2017 | B2 |
11387658 | Bonilla | Jul 2022 | B2 |
20060087872 | Barsun | Apr 2006 | A1 |
20070258202 | Cooley et al. | Nov 2007 | A1 |
20100079001 | Lee et al. | Apr 2010 | A1 |
20100296326 | Unger | Nov 2010 | A1 |
20110088941 | Ty et al. | Apr 2011 | A1 |
20120295483 | Smed | Nov 2012 | A1 |
20130015714 | Kwok | Jan 2013 | A1 |
20130119772 | Byrne | May 2013 | A1 |
20130313896 | Gless et al. | Nov 2013 | A1 |
20140054966 | Jain | Feb 2014 | A1 |
20140055080 | Ishikura | Feb 2014 | A1 |
20140077607 | Clark et al. | Mar 2014 | A1 |
20140268937 | Krishnamoorthy | Sep 2014 | A1 |
20150108833 | Ito et al. | Apr 2015 | A1 |
20150162157 | Luebke et al. | Jun 2015 | A1 |
20150261231 | Jiang et al. | Sep 2015 | A1 |
20170041152 | Sheffield | Feb 2017 | A1 |
20180131283 | Ono | May 2018 | A1 |
20180248404 | Pinewski et al. | Aug 2018 | A1 |
20180351360 | Pinewski et al. | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
202282534 | Jun 2012 | CN |
202282534 | Jun 2012 | CN |
Entry |
---|
PCT/US2018/021030 International Search Report and Written Opinion dated May 10, 2018 (12 pages). |
Chinese Patent Application No. 2018800202442.2 Second Office Action issued by the China National Intellectual Property Administration (and translation) dated Jul. 22, 2021. |
Office Action issued in Chinese Patent Application No. 201880020244.2 dated Mar. 24, 2022 (8 pages). |
Number | Date | Country | |
---|---|---|---|
20220294233 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
62467432 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15912870 | Mar 2018 | US |
Child | 17830793 | US |