Non-volatile memory systems, such as flash memory, have been widely adopted for use in consumer products. Flash memory may be found in different forms, for example in the form of a portable memory card that can be carried between host devices or as a solid state disk (SSD) embedded in a host device. Flash memory generally provides highest performance when the number of data bits per cell is lowest, such as binary flash, also known as single level cell (SLC) flash that stores one bit per cell. Flash memory that is configured to store more than one bit per cell, known as multi-level cell (MLC) flash, can store two or more bits of information per cell. While SLC flash memory is generally known for having better read and write performance (e.g., speed and endurance) than MLC flash, MLC flash provides more storage capacity and is generally less expensive to produce. The endurance and performance of MLC flash tends to decrease as the number of bits per cell of a given MLC configuration increases.
In a number of existing non-volatile memory systems, SLC and MLC are used together to try and capitalize on the advantages of each type of memory. The SLC memory may be used for its faster performance and the MLC for its greater storage density. For example, an SLC portion of a memory may be used as a buffer for data being written to the MLC memory, to support fast burst writes of data received from a host, and as the storage area of choice for frequently updated data in a memory system. Regardless of the type of non-volatile memory, the responsiveness of a non-volatile memory system may be affected by its ability to manage internal maintenance operations to generate or maintain enough free blocks to handle subsequent host write requests.
By way of introduction, the below embodiments relate to systems and methods for managing programming data in non-volatile memory so that impact on responsiveness to host commands may be reduced. As set forth in greater detail below, the concept of foreground maintenance schedule cycles is introduced where foreground maintenance operations to generate free space in a given non-volatile memory die of a memory system are interleaved with host data writes. A predetermined number of schedule cycle types, some that do not require maintenance operations and others that require interleaving maintenance operations with host write operations, may be preset for a given type of non-volatile memory die. Each schedule cycle type that includes maintenance operations may be based on freeing one block of previously programmed data rather than on writing any fixed amount of host data. Interleaving techniques for the maintenance and host write operations of schedule types having both host write and maintenance operations are disclosed including a technique for more precise control of interleaving between host data and maintenance data writes using multiple interleave groups having integer interleave ratios.
In one embodiment, a method of managing data in a non-volatile memory system having a non-volatile memory and a controller in communication with the non-volatile memory is provided The method includes selecting a previously programmed source block in the non-volatile memory for a maintenance operation, and determining a maximum amount of a type of host data to program into the non-volatile memory during the maintenance operation, where the maximum amount of the type of host data is an amount equal to a difference between a full block of data and a total amount of valid data in the selected source block. When a greater of the maximum amount of the type of host data or the total amount of valid data divided by a lesser of the maximum amount of the type of host data or the total amount of valid data results in a non-integer number, the method includes determining a plurality of different integer interleave ratios for interleaving writes of the total amount of valid data with writes of the maximum amount of the type of host data in the non-volatile memory. The method further includes writing, according to a first of the different integer interleave ratios, a first portion of the maximum amount of the type of host data and a first portion of the total amount of valid data, to the non-volatile memory. Additionally, the method includes writing, according to a second of the different interleave ratios, a second portion of the maximum amount of the type of host data and a second portion of the total amount of valid data, to the non-volatile memory.
In another embodiment, a memory system is described. The memory system includes at least one non-volatile memory having a plurality of memory blocks and a controller in communication with the at least one non-volatile memory. The controller is configured to select a previously programmed block in the non-volatile memory for use in a scheduling cycle, the scheduling cycle being an interleaved write of valid data from the previously programmed block and an amount of the host data, where the amount of the host data equals a difference between a capacity of a block in the non-volatile memory and an amount of valid data in the selected previously programmed block. When a greater of the amount of the host data or the amount of valid data divided by a lesser of the amount of host data or the amount of valid data is a non-integer amount, the controller is further configured to automatically generate a multiple interleave groups, each of the interleave groups having a whole number of interleave cycles, where each interleave cycle in a particular one of the interleave groups has a same integer ratio of a single page of a lesser of the amount of host data or the amount of valid data to a plurality of pages of the greater of the amount of host data or the amount of valid data, and where each of the different interleave groups has a different integer interleave ratio. The controller is further configured to execute all interleave cycles of a first of the interleave groups to write a first portion of the amount of host data and of the amount of valid data to the non-volatile memory according to a first integer interleave ratio associated with the first of the interleave groups. Subsequent to executing all interleave cycles of the first of the interleave groups, the controller is configured to execute all interleave cycles of a second of the interleave groups according to a second integer interleave ratio associated with the second interleave group.
In yet another embodiment, a method of managing data in a non-volatile memory system having a non-volatile memory and a controller in communication with the non-volatile memory includes selecting a previously programmed block in the non-volatile memory. Based on an amount of valid data present in the selected previously programmed block, a maximum amount of host data to program into the non-volatile memory is determined so that a total of the amount of valid data in the selected previously programmed block and of the maximum amount of host data is equal to one full block of data in the non-volatile memory. When a greater of the maximum amount of host data or the amount of valid data divided by a lesser of the maximum amount of the type of host data or the total amount of valid data results in a non-integer number, then multiple interleave groups are automatically generated, each of the interleave groups having a whole number of interleave cycles and each interleave cycle in a particular one of the plurality of interleave groups has a same integer ratio of a single page of the lesser of the amount of host data or the amount of valid data and a plurality of pages of the greater of the amount of host data or the amount of valid data, and each of the different interleave groups comprises a different integer interleave ratio. The method continues with then writing a first portion of the amount of host data and of the amount of valid data to the non-volatile memory according to a first integer interleave ratio associated with the first of the interleave groups, and writing a second portion of the amount of host data and of the amount of valid data to the non-volatile memory according to a second integer interleave ratio associated with a second of the interleave groups.
In some embodiments, the non-volatile memory is a non-volatile memory die having a plurality of layers contained within the non-volatile memory die, each of the plurality of layers having a different bit-per-cell data capacity and a plurality of the memory blocks, and where the controller is further configured to identify a destination layer in the plurality of layers, and a destination block in that destination layer, for writing host data.
In some embodiments, the memory is a three-dimensional memory and/or the memory system is embedded in a host or is removably connected to a host.
Other embodiments are possible, and each of the embodiments can be used alone or together in combination. Accordingly, various embodiments will now be described with reference to the attached drawings.
Exemplary Embodiments
Described herein are systems and methods for managing programming schedules in non-volatile memory so that impact on responsiveness to host commands may be reduced. As set forth in greater detail below, the concept of schedule cycles is introduced where foreground maintenance operations to generate more free space in a given non-volatile memory die of a memory system are interleaved with host data writes. A predetermined number of schedule cycle types, some that do not require maintenance operations and others that require interleaving maintenance operations with host write operations, may be preset for a given type of non-volatile memory die. Each schedule cycle type that includes maintenance operations may be based on freeing one block of previously programmed data rather than on writing any fixed amount of host data. Methods for selecting the die and the schedule cycle type needed for the selected die are disclosed, as well as interleaving techniques for the maintenance and host write operations of schedule types having both host write and maintenance operations.
Examples of suitable non-volatile memory arrangements in which the systems and methods disclosed herein may be used are illustrated in
The controller 102 (which may be a flash memory controller) can take the form of processing circuitry, a microprocessor or processor, and a computer-readable medium that stores computer-readable program code (e.g., software or firmware) executable by the (micro)processor, logic gates, switches, an application specific integrated circuit (ASIC), a programmable logic controller, and an embedded microcontroller, for example. The controller 102 can be configured with hardware and/or firmware to perform the various functions described below and shown in the flow diagrams. Also, some of the components shown as being internal to the controller can also be stored external to the controller, and other components can be used. Additionally, the phrase “operatively in communication with” could mean directly in communication with or indirectly (wired or wireless) in communication with through one or more components, which may or may not be shown or described herein.
As used herein, a flash memory controller is a device that manages data stored on flash memory and communicates with a host, such as a computer or electronic device. A flash memory controller can have functionality in addition to the specific functionality described herein. For example, the flash memory controller can format the flash memory to ensure the memory is operating properly, map out bad flash memory cells, and allocate spare cells to be substituted for future failed cells. Some part of the spare cells can be used to hold firmware to operate the flash memory controller and implement other features. In operation, when a host needs to read data from or write data to the flash memory, it will communicate with the flash memory controller. If the host provides a logical address to which data is to be read/written, the flash memory controller can convert the logical address received from the host to a physical address in the flash memory. (Alternatively, the host can provide the physical address). The flash memory controller can also perform various memory management functions, such as, but not limited to, wear leveling (distributing writes to avoid wearing out specific blocks of memory that would otherwise be repeatedly written to) and garbage collection (after a block is full, moving only the valid pages of data to a new block, so the full block can be erased and reused).
Non-volatile memory die 104 may include any suitable non-volatile storage medium, including NAND flash memory cells and/or NOR flash memory cells. The memory cells can take the form of solid-state (e.g., flash) memory cells and can be one-time programmable, few-time programmable, or many-time programmable. The memory cells can also be single-level cells (SLC), multiple-level cells (MLC), triple-level cells (TLC), or use other memory technologies, now known or later developed. Also, the memory cells can be arranged in a two-dimensional or three-dimensional fashion.
The interface between controller 102 and non-volatile memory die 104 may be any suitable flash interface, such as Toggle Mode 200, 400, or 800. In one embodiment, memory system 100 may be a card based system, such as a secure digital (SD) or a micro secure digital (micro-SD) card. In an alternate embodiment, memory system 100 may be part of an embedded memory system.
Although, in the example illustrated in
A module may take the form of a packaged functional hardware unit designed for use with other components, a portion of a program code (e.g., software or firmware) executable by a (micro)processor or processing circuitry that usually performs a particular function of related functions, or a self-contained hardware or software component that interfaces with a larger system, for example.
Modules of the controller 102 may include a data management module 112 present on the die of the controller 102. As explained in more detail below in conjunction with
Referring again to modules of the controller 102, a buffer manager/bus controller 114 manages buffers in random access memory (RAM) 116 and controls the internal bus arbitration of controller 102. A read only memory (ROM) 118 stores system boot code. Although illustrated in
Front end module 108 includes a host interface 120 and a physical layer interface (PHY) 122 that provide the electrical interface with the host or next level storage controller. The choice of the type of host interface 120 can depend on the type of memory being used. Examples of host interfaces 120 include, but are not limited to, SATA, SATA Express, SAS, Fibre Channel, USB, PCIe, and NVMe. The host interface 120 typically facilitates transfer for data, control signals, and timing signals.
Back end module 110 includes an error correction controller (ECC) engine 124 that encodes the data bytes received from the host, and decodes and error corrects the data bytes read from the non-volatile memory. A command sequencer 126 generates command sequences, such as program and erase command sequences, to be transmitted to non-volatile memory die 104. A RAID (Redundant Array of Independent Drives) module 128 manages generation of RAID parity and recovery of failed data. The RAID parity may be used as an additional level of integrity protection for the data being written into the memory device 104. In some cases, the RAID module 128 may be a part of the ECC engine 124. A memory interface 130 provides the command sequences to non-volatile memory die 104 and receives status information from non-volatile memory die 104. In one embodiment, memory interface 130 may be a double data rate (DDR) interface, such as a Toggle Mode 200, 400, or 800 interface. A flash control layer 132 controls the overall operation of back end module 110.
Additional components of system 100 illustrated in
The non-volatile flash memory array 142 may be arranged in blocks of memory cells. A block of memory cells is the unit of erase, i.e., the smallest number of memory cells that are physically erasable together. For increased parallelism, however, the blocks may be operated in larger metablock units. One block from each of at least two planes of memory cells may be logically linked together to form a metablock. Referring to
The individual blocks are in turn divided for operational purposes into pages of memory cells, as illustrated in
Referring now to
Also, as explained in greater detail with respect to
For example, a first memory layer 502 may be configured as binary layer having blocks of non-volatile memory cells with a single bit per cell capacity, also referred to herein as a single level cell (SLC) or X1 layer. A second memory layer 504 may be configured with blocks of non-volatile memory cells having more than one bit per cell storage capacity, sometimes referred to as multi-level cell (MLC) flash memory. In one implementation the MLC memory layer 504 may be a two bit per cell memory, also referred to herein as X2 memory, while in other embodiments the MLC memory layer 504 may be three bit per cell memory, also referred to herein as X3 memory. Other combinations of bit per cell capacity layers are also contemplated. More than two layers are also contemplated in other implementations.
In one implementation, the separate layers 502, 504 are not fixed in size and may be dynamically resized through block reclaim operations and retasking free blocks from the free block pool 503 into either of the layers at the appropriate bit per cell capacity utilized by each respective layer. Alternatively, the layers may be fixed in size and each have a separate free block pool 503 exclusively associated with that particular layer. Also, as used herein, the die layers 502, 504 refer to groups of blocks having memory cells configured in a particular bit-per-cell capacity and do not require any particular physical arrangement of the cells or layers with respect to one another.
Referring to
Referring to
A single independently managed set of die is shown in
Referring again to the generic representation in
It is contemplated that the mapping tables 510 and memory layer distribution data structure 512 may be specific to each non-volatile memory die 104 or metadie 514. Additionally, the free block pool 503 present in each die 104 or metadie 514 may be a single pool such that any block from the free block pool may be assigned to a particular layer, reconfiguring the free block as necessary for use at the appropriate bit-per-cell capacity of the destination layer. In embodiments where one or more portions of the non-volatile memory in the non-volatile memory system 100 are organized as a metadie 514 as in
Although a small group of individually managed non-volatile memory die 104, and an individual metadie 514, are shown in
Asynchronous Management
In order to increase performance of a memory system, the memory system may operate each of the non-volatile memory die or metadie asynchronously and independently of each other non-volatile memory die or metadie. Referring to
In a multiple controller embodiment, such as shown in
The data management module 112 in the controller 102 may include an asynchronous die algorithm, in which write transactions throughout the system 100 relate to the programming parallelism of one die, designated a die-page. Metablocks are formed across planes within a single die 104. Multiple die can operate concurrently on contiguous operations, or can operate asynchronously with each performing unrelated operations.
Each write transaction for data from a host may be issued to the relevant die layer 502, 504 in any die 104. The die that will allow highest data throughput to be maintained may be selected, based on status information about the die layer. The asynchronous die algorithm is designed to provide reduced latency for execution of host commands and improved performance with workloads having irregular I/O size or mixed read/write characteristics. Unlike controllers configured for synchronous operations that utilize metablocks spanning multiple die, asynchronous die operations can allow all good metablocks within each die to be used and can make use of the full physical overhead available to it, thereby maximizing the performance of the memory system.
For ease of illustration, and to avoid repetition, the features described below are generally explained in the context of the multiple controller arrangement of
In one embodiment of the present invention, each controller instance 508 includes an asynchronous die algorithm, in which data programming parallelism and write transactions throughout the system 100 are managed in units of the maximum programming parallelism achievable within one die, which is typically 32 KB in a 2-plane die. Each controller instance 508 is associated with die on only one channel 602, rather than die on separate channels as in a synchronous architecture. In this manner, multiple die can operate fully in parallel when required, or can operate asynchronously with each performing unrelated operations. Additionally, the asynchronous operation permits the controller instance for each set of die it manages on the same channel 602 (bank 604) to select the die that is best suited for receiving the data, for example the die having the shortest queue of data to be written. In a single controller embodiment, the controller 102 would manage all die an all channels 602 and can select any die that is best suited for receiving data.
Asynchronous operation of each die associated with a given controller allows all good blocks within each die to be active. The performance of each die may be maximized by making use of the full physical overhead available to it, thereby maximizing the performance of the memory system. The die selection criteria implemented by the asynchronous die algorithm may include the controller selecting a die only if the die's status information indicates that the required interleaving of maintenance copy operations with host data program operations of the same class (e.g. data type of random or sequential) as the pending transaction has been met. Other criteria, which may be used alone or in combination, may include selecting a die only if the number of outstanding transactions for the target class (e.g. the queue for random write transactions) does not exceed a specified limit; selecting the available die with the lowest number of outstanding transactions; and/or selecting the available die with the lowest logical fullness.
While a specific controller, in non-volatile memory system 100 having multiple controller instances, manages data with LBAs only within a specific subset of host LBA address space, there is no correlation between LBA and die number within a controller instance. Similarly, there is no correlation between the die numbers used by successive controllers to sequentially program successive LBA metapages within a stripe of LBAs spanning the separate die managed by two controllers. Although each controller independently manages its own die on one particular controller channel in one embodiment of an asynchronous architecture, the asynchronous die algorithm can also achieve full parallelism across controllers for data transfer and NAND command execution. A NAND read or program operation on an LBA metapage can be executed in each of the controllers, with fully synchronous data transfer and access operations. This allows fully synchronous execution of read and program operations relating to an LBA address stripe spanning all controllers, such as occur in sequential read and write modes of operation.
Read and program operations relating to two successive LBA stripes spanning an LBA range associated with a controller implementing asynchronous die management can be executed concurrently in two die on the same channel 602, but not fully in parallel. Data transfers to or from the two die is typically serialized, because they are sharing the same channel. The read or program operations in the two die may therefore be overlapped.
The type of inputs received by an asynchronous die algorithm running in each of the controllers may include read, write and trim commands. In embodiments where the asynchronous die algorithm is used in a multi die layer memory system having multiple partitions per die layer, the write commands received may be further divided into write commands for different data types, such as the random and sequential data types described above. In one embodiment, the execution of certain transactions may be ordered such that read transactions are immediately processed, while write and trim commands are processed in the order received. In embodiments where a die metapage is 32 KB, a read transaction may be for any multiple of 2 KB up to a maximum of one die metapage, write transactions are one metapage and a trim transaction has a data payload length of one metapage.
The controller 102 may implement an address translation algorithm within each non-volatile memory die (independently managed as in
In one implementation of an address translation algorithm, host data is mapped from a first logical address assigned by the host (also known as a host logical block address) to blocks of contiguous logical addresses in a second logical address space (also known as a virtual logical block address). As data associated with fully programmed blocks of addresses is made obsolete, a data relocation procedure is initiated where the controller selects a previously fully programmed block in a die having the least amount of valid data, or having less than a threshold amount of valid data, and relocates the valid data in those blocks to free up those blocks for use in writing more data. The relocated data is contiguously written to a relocation block in the same die in the order it occurred in the source block needing data relocation regardless of the logical address assigned by the host. In this manner, overhead may be reduced by not purposely consolidating logical address runs assigned by the host (as in typical garbage collection).
One or more storage address tables (SAT) may be used to track the mapping between the host logical address assigned by the host and the virtual logical address assigned by the storage system and subsequent changes in the mapping due to subsequent relocation. Similarly, storage address tables may be used to track mapping between the virtual logical address assigned by the storage system and the physical address at a die where data is actually stored.
Concurrently with accepting data from the host, the controller reclaims blocks in a maintenance operation by copying valid data from previously programmed blocks having both valid and obsolete data and then recycling the blocks from which all the valid data was copied. This block reclaiming procedure may be in the form of a standard garbage collection technique where groups of data are kept together and consolidated as new data in the same address run is received, or may be a relocation procedure where data is not consolidated into the same address groupings.
Data Management Module
Referring to
Within each die manager 706, a die layer manager 708 manages the data flows within and between die layers for a particular non-volatile memory die. The die layer manager 708 may include an open block list 710 identifying any open write or maintenance blocks in the die layer and a list of possible data flow paths 712. The types of data flow paths 712 supported may vary based on the type of non-volatile memory die and example data flow paths 712 are provided for embodiments of different non-volatile memory die in
A die transaction queue 732 buffers host read, program and erase transactions for execution in the low level sequencer layer 126 of the back end module. The queue 732 thus includes lists of pending host commands that are awaiting execution on each non-volatile memory die and may be used as part of the non-volatile memory die selection process. By accessing the queue in each bank of the memory system to assist in selecting a die for an operation, the data management module may optimize utilization of each die. As noted above, the die transaction queue 732 for each die managed by a particular controller may be used in the die selection process for a given schedule cycle.
Again, a separate instance of a data management module 112 may exist for each memory bank in the system, where a memory bank 604 comprises a subset of the total number of physical die in a non-volatile memory system 100 (e.g. all die on a whole number of channels). The data management module 112 may map a predefined subset of logical address space (a logical bank) to a predefined subset of physical address space (a physical bank). Alternatively, a single instance of the data management module 112 may manage all die in the system 100, which is equivalent to there being only a single bank, both logical and physical.
The data management module 112 maps a unique logical address space to a unique physical address space comprising an integral number of die. It is desirable to produce uniformity of response times to commands within any host workload while avoiding idle time in non-volatile memory die. The data management algorithm executed by the data management module 112 utilizes the non-volatile memory die asynchronously and independently, as discussed above, to increase the utilization of non-volatile memory die and to assist with overall performance of the non-volatile memory system. In addition, as set forth below, the data management module 112 incorporates the use of schedule cycles to balance consumption and creation of free space in each die in an effort to improve uniformity of response times to a host.
Maintenance in a non-volatile memory may consist of 1) operations to re-program valid data from source blocks containing obsolete data to destination blocks, in order to recover usable free space previously occupied by the obsolete data; and 2) operations to manage non-volatile memory characteristics (for example NAND flash memory characteristics), such as wear levelling and read scrub operations. Maintenance operations may also be performed on control data structures such as any mapping tables used in the memory system.
In one implementation, the data management module may generate a schedule for maintenance operations to be interleaved with host write operations for each individual die. The need for maintenance may be determined independently in each die layer, when the die layer must import data and its available free space is below a threshold value. Host data write operations are interleaved with foreground maintenance operations to provide better uniformity of response times to host data write transactions, where foreground maintenance operations are defined herein as those maintenance operations that are implemented when there are pending host commands.
In one implementation, the interleave ratio for a schedule cycle is defined to balance the consumption of free space by host data write operations with the creation of net free space by maintenance operations. The schedule cycle defined herein is based on freeing a selected source block by moving the valid data from the selected source block to a relocation block and then only allowing an amount of host data to be written to a host write block up to the amount of obsolete data that was in the selected source block. In other words, a schedule cycle is completed when the valid data of a selected source block has been moved. During the schedule cycle, an amount of host data up to the amount of obsolete data that existed in the selected source block may be written so that there is a creation of one free block (the selected source block after the valid data is moved) and consumption of no more than one block's worth of capacity (the sum of the valid data moved and the host data accepted) in any given schedule cycle.
With respect to a multi-layer non-volatile memory die, a schedule cycle is a schedule of operations which allows data to cascade between die layers or to be relocated within a die layer, as a consequence of host data being imported by the first of the die layers. More specifically, a maintenance operation in a die layer may be a relocation operation, in which all valid data in a selected relocation source block is re-programmed in a relocation destination block within the same die layer, or a folding operation, in which all valid data from a folding source block is re-programmed into a folding destination block in a different die layer.
Within a given schedule cycle, a non-volatile memory die operates to achieve an overall required interleave ratio between host program operations and maintenance operations in zero, one or two die layers. A new schedule cycle is started whenever the source block for data being programmed during a maintenance operation no longer contains valid data, thus the selection of operations is made on a source block by source block basis.
An example of one possible group of schedule cycles for multiple asynchronously operating non-volatile memory die within one bank are illustrated in
Trigger for a Schedule Cycle
In one implementation, the trigger for deciding whether to initiate a schedule cycle is based on the free block threshold that is set for each layer of each non-volatile memory die. A minimum number of free blocks may be predetermined for each die layer, and that minimum may be different for each layer or each non-volatile memory die depending on the configuration of the memory system. For example, in non-volatile memory die having X1 and X2 layers, a foreground maintenance operation threshold may be set for each layer such that a maintenance operation will be interleaved with host data writes directed to that particular die and layer whenever the number of free blocks in the layer falls below the foreground maintenance operation threshold. Similarly, in a non-volatile memory die with other combinations of layers, such as the eX3 die 1300 having X1 and X3 die layers 1302, 1304, each die layer may have a different predetermined foreground maintenance threshold that will trigger a maintenance operation in the identified layer as described herein when the number of free blocks falls below the appropriate threshold for that die layer.
The threshold minimum number of free blocks is a product of the desired capacity distribution in a layer and in a die. The physical capacity of a non-volatile memory die is determined by the total number of good blocks in the die, and their fixed separation into X1, X2 or X3 die layers. Total physical capacity of different die may be different, because of their differing number of bad blocks, where bad blocks are those that have been determined to be unsuitable for reliably holding data (e.g. blocks that have passed a wear limit, such as a predetermined program and erase (P/E) count, or have been detected as not retaining data accurately). Each die layer has a designated logical block address (LBA) capacity, which is its maximum capacity for valid data. In one implementation, physical capacity of a die layer exceeds LBA capacity by a guaranteed minimum amount, known as physical capacity overprovisioning. Total data capacity of a die layer may exceed LBA capacity by a guaranteed minimum amount, known as data capacity overprovisioning. The sum of the LBA capacities specified for all die layers in a drive may exceed the LBA capacity of the drive.
An example of data capacity distribution in one layer of a non-volatile memory die is seen in
A more detailed data capacity distribution chart 1000 of the die layer data capacity chart of
In one implementation, the controller 102 maintains a guaranteed quantity of free space in a die layer of a given die by maintaining a guaranteed number of free blocks in the free block list 718 in the data management module 112 for temporary use in exception handling, as well as a guaranteed capacity of free space for use in maintenance operations, which may be defined in metapages. The free space of metapages guaranteed for maintenance operations may be in two categories: metapages in free blocks in the free block list for the die layer, for allocation as update blocks and relocation and fold destination blocks; and free space, i.e. unprogrammed metapages, in open blocks in the die layer.
Free space in a die layer does not change when a block is allocated from the free block list 718 as an update block or relocation or fold destination block. Free space in a die layer increases when a relocation or fold source block is returned to the free block list. Free space in a die layer decreases when data is programmed in any open block in the die layer. Free space in a die layer may have no cumulative change as a result of sustained operation with foreground maintenance. Free space in a die layer increases when background maintenance is performed. Free space in a die layer decreases when data is imported to the layer with no maintenance active.
Although multiple different die layer combinations are contemplated, where each die layer in a particular non-volatile memory die operates at a different bit per cell capacity, the following discussion focuses on two layer non-volatile memory die: a non-volatile memory die with an X1 and an X2 layer, herein referred to as an eX2 die, and a non-volatile memory die with an X1 and an X3 layer, herein referred to as an eX3 die. Also, in the discussion below it is assumed that the X1 die layer is made up of blocks that are dedicated to operating in X1 programming mode, and the MLC die layer (in other words the X2 or the X3 layer in this example) comprises blocks that are dedicated to operating in MLC programming mode. Blocks may not change type from X1 to MLC, and vice versa, in one embodiment, thus separate pools of free blocks exist for X1 and MLC use.
Foreground Maintenance Schedule Cycles
As noted previously, a predetermined amount of free blocks are typically required in order for a die to be able to operate within desired operating parameters. Each layer of a multi-layer non-volatile memory die, or of a metadie, may have different predetermined free block minimums defining the threshold 1002 at which a foreground maintenance operation is needed. When the number of free blocks in a destination layer of a die selected to receive a host data write is below the predetermined threshold for that layer, then a source block for a maintenance operation is selected in the destination layer and a foreground maintenance schedule cycle is set.
A foreground maintenance schedule cycle, also referred to herein as a schedule cycle or a maintenance cycle, is defined by the operations needed to free the selected source block. The valid data in the source block is moved, either relocated to another block in the same layer or folded into the next layer, and host data up to an amount equal to the difference between the amount of valid data in the selected source block and a full block may be written to an open write block in the layer. Thus, in one embodiment, a schedule cycle is based on freeing a selected source block rather than being dependent on completion of writing any specific amount of host data. The amount of host data permitted in a given schedule cycle will vary and is limited to whatever amount of space is left in a complete block after the valid data from the selected source block has been accounted for. For example, if a selected source block in a destination layer of a die has a capacity for 100 pages, and the amount of valid data to be moved out of the selected source block to free that block is 75 pages, then 25 pages worth of host data may be written in the schedule cycle calculated for that selected source block. Continuing with this example of blocks having a capacity for 100 pages, if the next selected source block in a destination die layer has only 25 pages of valid data, then the amount of host data that may be interleaved with the 25 pages of the maintenance operation to free that next source block would be 75 pages. The valid data from the selected source block may be written to one or more destination blocks that differ from the one or more host data write blocks receiving the host data that is permitted during the schedule cycle.
Each schedule cycle has its own interleave ratio of maintenance data writes to host data writes that is calculated. The interleave ratio is based on a presumption that the amount of permitted host data will be available during the schedule cycle, but actual receipt of the amount of host data assumed to be available when the interleave ratio is determined at the beginning of the schedule cycle is not necessary. Instead, the schedule cycle may proceed even if the maximum permissible host data does not arrive so that at least the selected source block is freed.
Host Data Write Operations
A current host data write operation is initiated when a host data write transaction has been constructed from entries in the command cache 702 of the data management module 112 and the previous host data transaction has been posted to a die transaction queue 732. The die to which data corresponding to a current host data write transaction will be written may be selected independently for each individual transaction to optimize data throughput. Accordingly, there may be no predetermined order of die selected for successive transactions in one embodiment. In one implementation, die selection is made by maximizing the number of die that are concurrently busy at any time, which may be achieved by keeping the die transaction queue 732 for each die loaded at all times, as far as is possible.
One example of a die selection process 1100 is illustrated in
Programming Data Flows within a Die
For the maintenance scheduling techniques described, data flow between non-volatile memory blocks and between volatile memory, such as RAM, and a non-volatile memory block is managed independently within the selected single non-volatile memory die. Different data flow structures may be used based on the type of non-volatile memory die. eX2 and eX3 die examples are illustrated in
Referring to
In the X1 die layer 1202, the frequent update block 1206 may be used for receiving data associated with frequently updated logical block addresses (LBAs) from the host and as the destination for data relocation within the X1 layer 1202. In one implementation, a frequent write transaction has a length of one die-page, which comprises two or more runs of contiguous LBA addresses. The safe zone block 1208 in the X1 die layer 1202 may be used for buffering data in response to a flush cache command from the host to protect against loss of data in the event of a subsequent loss of power. Buffered data in the safe zone block 1208 may be partial page data from the host or exposed host data in an X2 lower page. In addition, multiple pages of exclusive-or (XOR) data may be buffered in the safe zone block 1208 following power off notification in the form of a standby immediate command from the host. Data in the safe zone block is only used following an exception condition. In one implementation, the safe zone block 1208 acts as a temporary buffer only, and is not used as a source block for a maintenance operation. Data may be written to the safe zone block without a maintenance schedule.
Regarding the four open block types illustrated in the X2 die layer 1204 of the example eX2 die 1200 in
As shown in
Host data designated as random host data, or RH data, may be programmed in increments of a die page from the RAM 1218 to the random update block 1214 in the X2 die layer 1204 as shown. Similarly host data designated as sequential host data, or SH data, may be programmed in increments of a die page from the RAM 1218 to the sequential update block 1216 in the X2 die layer 1204. Separately, partial page host data, exposed lower page data and certain pages of XOR data (also referred to as PP, LP and XOR data, respectively) may be programmed into the safe zone block 1208 in the X1 die layer 1202 in certain circumstances. For example, PP data existing in the general memory pool in RAM 1218 may be programmed to the safe zone block 1208 in X11202 following a specific host command such as a flush cache command or a standby immediate command. A write transaction of PP data may consist of a partial die-page, which may be a multiple of 4 kilobytes (KB) in one implementation. In like manner, any exposed lower pages of host data already programmed in X21204, whose corresponding upper pages have not been programmed, are programmed to the safe zone block 1208 in X1 in response to a specific host command such as a flush cache command or a standby immediate command, to protect against loss of data in the event of a subsequent loss of power. Two pages of XOR data per open X1 block and four pages of XOR data per open X2 block may be programmed to the X1 safe zone block 1208 in response to a standby immediate command, to protect against loss of data in the event of a subsequent loss of power.
The data path for valid data from previously fully programmed blocks, previously fully programmed blocks also referred to herein as closed blocks, depends on the type of maintenance operation that is triggered. When valid data from a closed block is moved in a maintenance operation, the closed block selected for the maintenance operation is referred to as a source block. Source blocks may be selected from closed X1 blocks 1220 or closed X2 blocks 1222. The die layer location of the closed block and the status of the die layer may be used in determining the data path that the valid data for the source block takes. Valid data from a closed X1 block 1220 may be relocated to the frequent update block 1206 in the X1 layer 1202. In such a relocation operation, data from one or more die pages, also referred to as X1 R data, in one closed X1 block 1220 is relocated via the RAM 1218 to the frequent update block in X11202. A single copy operation comprises one die-page to be programmed. Alternatively, data from the closed X1 block 1220 may be moved from X11202 into the X2 layer 1204 in a fold operation. Data to be folded from X1 to X2, also referred to as F data, may be taken from one or more die-pages in one closed X1 block 1220 for folding via RAM 1218 to the random update block 1214 in X2. Finally, maintenance operations in the X2 layer 1204 may consist of relocating data from one or more die-pages in one closed X2 block 1222 via RAM 1218 to the relocation destination block 1210 in X2.
An example eX3 die 1300, having X11302 and X31304 layers, is shown in
In order to accomplish the data path arrangement illustrated in
In the implementation of an eX3 die 1300 shown in
The data flow paths in an eX3 die 1300 with X3 programming via on-chip copy from X11302, as shown in
Referring to the example data path designations of
In contrast, the PP data path shows where partial die-pages of host data existing in the general memory pool in RAM 1308 are programmed to the safe zone block 1326 in X11302 following a special host command, such as a flush cache command or a standby immediate command from the host. A write transaction over the PP data path may comprise a partial die-page, which may be a multiple of 4 KB in one implementation. The XOR data path, in the eX3 die embodiment, represents the path for two pages of XOR data per open X1 block and six pages of XOR data per open X3 block that may be programmed to the X1 safe zone block 1326 in response to a standby immediate command, to protect against loss of data in the event of a subsequent loss of power. The X1 R data path illustrates where data from one or more die-pages in one closed X1 block 1310 is relocated via RAM 1308 to the relocation destination block 1312 in X11302. A single copy operation along the X1 R data path comprises one die-page to be programmed.
The fold or F data path is the path where data from a set of 3 closed X1 blocks 1310 are folded via on-chip copy, and thus without passing through the RAM 1308 and the ECC processing of the controller 102, to the fold destination block 1330 in X31304. A single copy operation comprises one die-page to be programmed. In one embodiment, the set of three closed X1 blocks are the same type (i.e. all 3 X1 blocks are only one the different open block types discussed above). The X3 R data path shows where data from one or more die-pages in a closed X3 block 1328 is relocated via RAM 1308 to the X3 relocation destination block 1316 in X11302, as an intermediate step in X3 to X3 relocation. A single copy operation comprises one die-page to be programmed. Data from one or more die-pages in a closed X3 block 1328 is relocated via RAM 1308 to the extended relocation destination block 1318 in X1 along the X3 ER data path, as an intermediate step in X3 to X3 extended relocation. A single copy operation comprises one die-page to be programmed.
There may be instances when the controller 102 determines that a closed X1 block contains too much obsolete data to be folded into the X3 layer, the controller may initiate a fold transit (FT) data path operation. For example, if the predetermined threshold for the maximum amount of obsolete data is set to 40% obsolete data, then the controller may direct a closed X1 block containing more than 40% obsolete data to the FT operation before allowing that block to be among those folded into the X3 layer during a fold operation. In the FT operation, data from one or more die-pages in a closed X1 block 1310 is relocated via RAM 1308 to the fold transit block 1314 in X11302 along the FT data path and the source block is then put back into the available block pool in the X1 layer. In one embodiment, relocation of X3 data into another X3 block first involves copying the valid data from the source X3 block to an appropriate one or more X1 blocks in the X1 layer and then folding the data from 3 closed X1 blocks back into the X3 layer in an on-chip copy operation that does not pass the data through RAM 308.
Because the on-chip copy used for folding from X1 to X3 layers involves the controller 102 causing data to be folded to X3 to be copied into the latches 157 of the data cache of the die 104, and does not take the data off-chip via the RAM 116, the data does not pass through the controller ECC engine and a new ECC is not calculated for the data being folded. In order to preserve the originally calculated ECC for the page, the entire page should be copied so that the ECC for the page that was previously calculated when the data was written into the X1 die layer may be copied with the data into the X3 die layer. Also, in embodiments of the non-volatile memory system 100 where both ECC data is calculated for individual pages to allow for error correction of the individual pages, and parity bits (such as exclusive or (XOR) parity) are calculated for blocks of pages to allow for error correction on the block level, then an entire block of X1 data may be folded using the on-chip copy process so that both the ECC data and the parity data may be carried over from the X1 layer to the X3 layer.
Selecting the Schedule Type
Referring to
When a host command, such as a write command, is received at the memory system, the data management module 112 caches the command in the command cache 702 and caches data associated with the command in a buffer memory that may be part of the RAM 116 of the non-volatile memory system 100. Host commands are queued until sufficient data is received in the RAM to satisfy the data transaction size supported by the memory system 100. For example, the transaction size for a data write may be 32 kilobytes (Kbytes) of data, which may be the page size used in the memory system. The amount of data associated with a command may vary, typically anywhere from a minimum of a single cluster to some large integer multiple of clusters. A typical cluster size may be 4 Kbyte, but this size may differ in different memory systems. If or when the non-volatile memory system 100 has sufficient buffer space to cache all data for a particular command, it may request all of the data for the command to be transferred by the host. The data programmed into non-volatile memory from the buffer memory is generally programmed in the order received, but this need not be the case. Thus, the data programmed in a given 32 Kbyte write transaction from the buffer memory to non-volatile memory may relate to multiple host commands.
Once an amount of data sufficient to satisfy the data transaction size for programming the non-volatile memory is received and selected for a write transaction, in this example 32 Kbytes of data, the command or commands to which the data in the write transaction relates become qualified command(s). The transaction router 704 of the data management module 112 may then determine which non-volatile memory die to use and trigger the maintenance manager 720 to begin a foreground maintenance cycle for each qualified command. Later received host commands in the command cache 702 may be acted on first if data has not yet been received in RAM for an earlier received command. The transaction size noted above is provided by way of example and any of a number of transaction sizes, larger or smaller than 32 Kbytes, may be used in different implementations.
When all data for a particular host command has been programmed in non-volatile memory in one or more transactions, the non-volatile memory system 100 may signal to the host that the particular command is complete (if write caching is disabled). Alternatively, if write caching in a RAM buffer is enabled, a command may be considered complete when all data for the command has been programmed into RAM and a command completion message can be signaled to the host. The non-volatile memory system 100 provides status to the host to indicate when it can receive a new command. If device status allows, the host may send a new command to the device. For example, if the Native Command Queue protocol is being used, the non-volatile memory system 100 may be allowed to have a maximum of 32 uncompleted commands in its queue.
As shown in
Alternatively, if the selected die and layer need a maintenance operation in order to maintain an amount of free blocks greater than the predetermined threshold for foreground maintenance for that die layer, then the type of schedule needed to accommodate data of the identified data type in that die layer is identified (at 1408, 1412). The type of schedule necessary will depend on the status of the selected die. The status of a selected non-volatile memory die and the predetermined types of schedules available for that nonvolatile memory die may vary depending on the type of non-volatile memory die. In the discussion below, die status and schedule types are discussed for the example eX2 and eX3 die types discussed above.
Once the host data type is identified, the status of the selected die is determined and one of a predetermined number of schedule types of host data programming and maintenance operations is selected based on the die status, then a source block or blocks for any predetermined maintenance operations dictated by the selected schedule type is selected (at 1414). When the source block(s) for carrying out any maintenance operations are selected, then the maximum number of host data pages can be calculated and the interleaving of maintenance operations to host data write operations needed to complete the selected schedule cycle type may be calculated (at 1416). The schedule cycle is then carried out using the determined interleave ratio (or, as described in greater detail below for non-integer ratios, the set of interleave ratios needed to achieve the overall calculated interleave ratio) for that cycle (at 1418). Each cycle consists of the maintenance operations needed to free the selected source block and consume no more capacity in that die layer of the selected die than a capacity of one block. The schedule cycle process 1400 of
With respect to the eX2 die example of
Table 1 shows an example of 6 different schedule types (S1-S6) supported by the eX2 die of
As seen in Table 2, a number of parameters define the state of an eX2 die. These include the die layer in which host data should be written. This is determined by the type of data and the available data path for that type of data as shown in
After identifying the schedule type, if a maintenance operation is needed (in this example, other than an S1 or S5 schedule type where no maintenance is needed) then a source block is selected for the maintenance operation associated with the identified schedule type (See
With respect to the eX3 die example of
Table 3 shows an example of 5 different schedule types (S1-S5) supported by the eX3 die of
As seen in Table 4, a number of parameters define the state of an eX3 die is greater than the number of parameters in the prior eX2 example. The parameters may include a comparison of the quantity of free space in the X1 die layer (X1_Free_Space) relative to the trigger threshold for foreground maintenance in X1 (X1_FG) and a comparison of the quantity of valid data in the X1 die layer (X1_Valid_Data) relative to the trigger threshold for folding from X1 to X3 (X1_Fold). The parameters may also include a comparison of the quantity of valid data in a block selected for folding to X3 (Block_Valid) relative to the trigger threshold for data transit in X1(X1_Transit) and a comparison of the quantity of free space in the X3 die layer (X3_Free_Space) relative to the trigger threshold for foreground maintenance in X3 (X3_FG). The thresholds for X1_FG, X1_Fold, X1_Transit and X3_FG may be fixed numbers of free blocks stored in the non-volatile memory at the time of manufacture, or may be variable based on other parameters. Each of the comparisons may be carried out by the die manager of the data management module 112 associated with the selected die. Once the die status is determined based on the parameters shown in Table 4, then the schedule type is identified and the maintenance data path for the selected die may be determined from a data structure such as shown in Table 3.
After identifying the schedule type, if a maintenance operation is needed (in this example, other than an S1 schedule type where no maintenance is needed) then a source block is selected for the maintenance operation associated with the identified schedule type (See
An S4 schedule cycle causes valid data in an X1 block containing a required fraction of obsolete data to be compacted by relocating it to one or two transit destination blocks 1314 in X11302. An S4 schedule cycle may be initiated as an alternative to an S5 schedule cycle if evaluation of DIE_STATE shows that the block that would be selected as fold source block in X1 for an S5 schedule cycle has valid data content below the trigger threshold for X1 block transit (X1_TRANSIT).
For schedule type S5, both X1 and X3 source blocks are selected, where the X1 source block is selected for the X1 to X3 fold portion of the maintenance and the X3 source block is selected for the X3 relocation portion of the maintenance. In one embodiment, for schedule types that involve data relocation within the same die layer, the source relocation block selected is the closed block in that die layer having the lowest amount of valid data. For fold operations from X1 to X3, the three source fold blocks selected in the X1 die layer may be the oldest three blocks of the same data type (e.g. random (RH), sequential (SH), etc.) of host data in the X1 die layer. For the host write operation portion of a given schedule cycle in the example eX3 die, the host data may be any combination of different data types, such as SH, RH or FH, which is written to corresponding different open update blocks in the X1 layer.
In one embodiment, an X3 fold destination block 1330 is programmed in full with a single type of data, which may be a combination of valid and obsolete data. Data types may be sequential data, defined as data in an X1 block which was written as a sequential update block (SH) or random data, defined as data in an X1 block 1310 which was written as a random update block, frequent update block, X1 relocation destination block, or fold transit block. In one implementation, data of a single type to be folded to an X3 fold destination block 1330 must be present in exactly three closed X1 fold source blocks at the start of a schedule cycle. The data may have been written to the X1 blocks 1310 at any time prior to the current schedule cycle. In one implementation, the priority order for selection of a set of three X1 blocks to be folded to an X3 fold destination block 1330 may be first transit blocks containing host data which has been relocated from X11302, followed by selection of any other blocks. The same priority may apply to blocks containing sequential data and blocks containing random data. The choice between sequential and random blocks may be made according to the data type in the oldest single block of host data.
In an S5 schedule cycle for the eX3 non-volatile memory die 1300 example, the cycle may have a length defined by the programming of a single X3 fold destination block. One X3 relocation source block is selected at the start of each schedule cycle, and all valid data in the block is relocated to multiple X3 relocation destination blocks 1316 in X11302 within the schedule cycle. Relocated data with all original data types may be programmed in the same X3 relocation destination block 1316. A volume of host data equal to the difference between the X3 block size and the volume of relocated data may be programmed in X1 update blocks within a schedule cycle.
Once the schedule cycle type has been identified for a die, an interleave cycle of the host data write operation and any maintenance operation associated with the identified schedule cycle type (e.g. one of S1-S6 shown in Table 4 for the example eX2 die of
Referring again to
Selection criteria for a source block may differ from the criteria noted above when the maintenance operation is for a folding operation rather than a relocation operation. A folding operation causes valid data to be copied from one or more selected source blocks in a die layer to an open block within a different die layer. Data folding from a source die layer to a destination die layer is triggered in accordance with foreground schedules, or extended foreground schedules described herein.
For folding from an X1 die layer to an X2 die layer in the example eX2 die of
With respect to source block selection in an eX3 die such as illustrated in
The X1 fold source blocks in an eX3 die may be selected serially until the X3 fold destination block becomes filled. When an X3 fold destination block becomes filled, selection of a new X1 fold source block of any of the above-noted data types can be made immediately. When a new X1 fold source block is required, the least recently programmed block containing the required data type is selected. However, in one implementation a block may be selected as a fold source block only if sufficient valid data of the same type exists in the X1 die layer to fill the X3 fold destination block currently in use. A selected fold source block remains the only folding source in the X1 die layer, until all pages have been copied from it, or the X3 fold destination block has become filled.
Selection of a fold destination block is made by the data management module 112 when a previous destination fold block has become full. A block from the head of the free block list for the destination die layer may then be selected. In one embodiment, the selected fold destination block remains the only fold destination block in that die layer until it becomes full. An open fold destination block may remain dormant if folding from the X1 die layer is not needed in the current schedule.
For the eX2 die, valid data may be folded from an X1 fold source block in physical page address order, irrespective of the LBAs of the data being relocated, to a random update block in the X2 die layer. Folding in an eX2 die may be performed by means of copy operations via RAM 1218. Similarly, for the eX3 die of
In one embodiment of a folding operation, all pages in the fold source block are folded, irrespective of how much obsolete data they may contain and the unit of data copy during folding may be defined by an individual copy transaction relating to a single die-page. Also, there is a balancing of free space during folding. The data management module 112 executes any folding operations in a schedule cycle so that free space existing in the X1 die layer at the start and at the end of folding from one fold source block remains unchanged, if foreground maintenance is active. The import of new data to a die layer is interleaved with folding from the X1 die layer to an X2 or X3 die layer in such a way as to balance the consumption and creation of free space within the die layer. For each die-page of data that is imported to the X1 die layer from a host, one die-page of data is preferably folded from the die layer.
Interleave Cycles
The concept of interleave cycles and different types of interleave cycles clustered into interleave groups is shown in
One example of an interleaving calculation table 1600 that may be determined by the program interleave module 730 for a selected schedule cycle is shown in
As seen in the example of
The interleaving of host writes and maintenance operations depends on a given schedule identified as appropriate for a selected die, such as illustrated in the example schedule types in Tables 1 and 3. For those schedule types that do require both host write and maintenance operations, the specific calculation of an interleave cycle type or a plurality of interleave cycle types broken into different interleave groups, depends on the amount of valid data in the selected source block for the maintenance operation that is in the destination layer for the host data. An example of one of the predetermined schedule types for an eX3 die has been disclosed above. Each other of the predetermined schedule types that require maintenance operations in the example eX3 die will include the interleaving of host data and maintenance operations in the one or more die layers identified for maintenance operations in the particular schedule type.
Similarly, for other non-volatile memory die configurations, such as the eX2 die of
The selected X1 die layer source block for the fold of data from an X1 fold source block to an X2 die layer X2 fold destination block or relocation to an X1 relocation destination block has 100 pages of valid data. In this example, only 72 of the 100 pages in the X1 source block are folded to the X2 fold destination block, while 28 pages are relocated in the X1 die layer. This is because relocated X2 data of 180 pages leaves only 72 pages of space left (252−180=72) so that only a single block's worth of X2 capacity is consumed to balance the single X2 block freed by X2 relocation of the 180 pages. Thus, to free an X1 block as well in this schedule cycle, 100 pages of X1 data is moved from the source X1 block−72 pages folded along data path F to the X2 die layer and the remaining 28 pages to an X1 relocation block. Accordingly, the amount of X1 block capacity remaining for host data in this schedule cycle is X1 block capacity−relocated data in X1, or 126 pages−28 pages, leaving a maximum acceptable amount of host data at 98 pages (126−28=98).
The lowest number of operations for any data type in this schedule cycle would then be the programming of X1 relocation data (e.g. 28 pages) so one or more interleave cycle types are created so that whole numbers of pages of each data type (e.g. host data write, X2 relocation, X1 to X2 fold and so on) are included in each interleave cycle of this schedule cycle. In this example, the number of X1 to X2 fold pages (72) is not evenly divisible by the number of X1 relocation relocations (28), so more than one interleave type would be generated by the program interleave module 730 of the data management module 112 and interleave groups of the interleave cycle types would be executed. One interleave cycle type 1704 is shown in
Extended Maintenance Scheduling
In addition to the foreground maintenance procedures that are divided into the various schedule types of interleaved host write operation and maintenance operations discussed above, extended maintenance operations are contemplated. An extended maintenance operation is defined herein as a maintenance operation initiated for wear leveling, read scrub or defragmentation reasons that is performed concurrently with a series of foreground maintenance operations such as those described above. Thus, in an extended foreground maintenance operation a single “extended” maintenance operation is performed on an extended maintenance operation source block. The number of foreground schedule cycles in an extended maintenance cycle may be fixed or adaptive.
As one example of a memory system 100 where a fixed ratio of regular foreground maintenance cycles to extended maintenance cycles is used, consider a wear leveling algorithm executed by the controller that dictates one wear leveling operation for every 16 blocks of host data that is written. If it is assumed that the amount of obsolete data in a block is typically 25%, then the fixed amount of foreground maintenance schedule cycles per extended maintenance cycle may be 64. Thus, the extended maintenance cycle would spread out the wear leveling maintenance operation over 64 foreground maintenance schedule cycles in this example. A wear leveling operation need not start after exactly 16 blocks had been written. The example number of foreground maintenance schedule cycles over which an extended maintenance cycle takes place may be other fixed amounts for different memory systems or for different types of extended maintenance operations (e.g. wear leveling vs. read scrub) in the same memory system. Alternatively, the number of foreground maintenance schedule cycles over which an extended maintenance cycle is executed may be adaptive rather than fixed in other embodiments.
In an extended maintenance operation, all valid data in one extended relocation source block is relocated to one or more relocation destination blocks or extended relocation destination blocks. Page read and program operations to implement an extended maintenance operation are distributed as evenly as possible amongst the constituent foreground schedule cycles. An extended schedule cycle relocates data from a source block which is defined by an algorithm managing special maintenance operations. Any of a number of known wear-leveling, read scrub or defragmentation algorithms may be implemented for selecting the maintenance operation source block for an extended maintenance cycle. The algorithm managing special maintenance operations may select a source block for the extended maintenance schedule source block based on criteria associated with the special maintenance operation. For example if the special maintenance operation is for wear leveling, the source block may be the closed block in the appropriate die layer that has experienced a predetermined number of program/erase cycles.
An extended schedule cycle may relocate data to a relocation destination block, or extended relocation destination block, which is within the same die layer as the update block to which host data is being written. Also, two extended schedule cycles may exist concurrently, in the case where writing of host data is interleaved in any manner between two die layers. An extended schedule cycle may be temporarily suspended if host data is not currently being written to the die layer in which extended relocation is occurring.
Different extended maintenance data paths are available depending on the type of die involved, for example the eX2 or eX3 type dies illustrated in
Referring to
Similar to the eX2 ESX1 schedule cycle, as shown in
For an eX3 non-volatile memory die 1300 configured as in the example of
Data relocated from an extended relocation source block 1328 in the X3 die layer 1302 is programmed in a dedicated relocation destination block in X1. More specifically, the ESX3 cycle may use the X3ER data path where X3 data from a selected source block 1328 in the X3 die layer 1304 is copied to the X3 extended relocation destination block 1318 in the X1 die layer 1302. An example of an ESX3 extended maintenance cycle 2102 is illustrated in
The interleave cycles generated by the program interleave module 730 of the data management module 112 are represented by the example interleave cycle 2116. Starting from the least frequent data, here the 44 pages of host data, the interleave cycle of 1 page of host data 2118, 4 pages of extended relocation programming 2120 in X1, 4 pages of extended relocation data read 2122 from X3, 5 pages of X3 fold data written 2124 to the open X3 fold block, and 5 pages read 2126 from the fold data source block in X1
Balanced Cycles of Maintenance Operations
Embodiments have been described above where, for a particular die layer of a particular die, source blocks may be selected and individual maintenance cycles may be selected from a predetermined set of maintenance cycle types. The systems and methods above may result in a net creation of free space that is balanced by a consumption of free space by host data write operations. Several techniques for interleaving maintenance writes, to move valid data from previously programmed blocks, with host data writes have been described. A free space generation and consumption balance may be managed individually for each operation to reclaim a maintenance source block. For example, a constant interleave ratio may be maintained throughout a particular maintenance block. Because the amount of valid data can vary considerably between selected maintenance source blocks, there may therefore be step changes in the write performance experienced by a host when the maintenance source block is changed.
One technique for reducing the potential for variations in the write performance that changing interleave ratios of separate maintenance cycles can cause is to balance the consumption of free space and creation of free space in a die layer over a longer period of operation defined herein as a balance cycle. A balance cycle incorporates relocating data from multiple maintenance source blocks, where one interleave ratio of maintenance writes and host data writes is calculated for all of the multiple maintenance source blocks selected for the balance cycle such that the variation in data write performance experienced by the host over the balance cycle may be less than the variation in the valid data content in the source maintenance blocks. Also, in a balance cycle, multiple scheduling points exist at which the interleave ratio between maintenance and host data programming may be re-scheduled.
Referring to
Each balance cycle 2400 determined by the data management module 112 in the controller 102 includes scheduling points 2404, where a scheduling point is a point in time at which the schedule for interleaving programming operations for maintenance and host data is determined for the period until the next scheduling point 2404. Two scheduling points per maintenance cycle are illustrated in
The scheduling points 2404 may be evenly spaced throughout each maintenance cycle 2402 that makes up the overall balance cycle 2400 and each maintenance cycle may have the same number of scheduling points as each other maintenance cycle in the balance cycle. In one implementation, each scheduling point 2404 may be set at a point in time where a predetermined number of maintenance writes in the currently active maintenance cycle have occurred. Alternatively, the scheduling points may be set at the point in time that a predetermined number of host writes in the currently active maintenance cycle have occurred. In yet other embodiments, the scheduling points 2404 may be set at the point in time that a predetermined number of host writes and maintenance writes in the currently active maintenance cycle have occurred.
As shown in
As shown in the example balance cycle 2400 having four maintenance cycles 2402, at the first scheduling point 2404 (scheduling point 1) the active maintenance cycle is the one being started and the remaining maintenance cycles 2402 are referred to as planned maintenance cycles where the maintenance source block used for a planned maintenance cycle can be changed from an initially selected maintenance source block. As the balance cycle progresses, which in
Referring now to
Upon reaching a next scheduling point in the balance cycle, the interleave ratio is recalculated by the program interleaving module 730 for the remainder of the balance cycle based on the current amount of valid data in the remainder of the set of selected blocks (at 2510, 2514). Prior to an end of the balance cycle, which is defined by the period of time it takes to move all valid data from the predetermined number of source maintenance blocks selected for the balance cycle, and between scheduling points, the maintenance operation proceeds on a current selected one of the set of blocks, and using the last calculated balance cycle interleave ratio, until the next scheduling point is reached or the end of the balance cycle is achieved (at 2510, 2512). It should be noted that the step of determining a new interleave ratio (at 2514) may include the data management module 112, at the time a scheduling point has been reached, reviewing whether or not the remaining selected maintenance source blocks awaiting maintenance operations in the current balance cycle need to be swapped with other closed (previously programmed) blocks. As described in greater detail below, the particular maintenance source block selection algorithm used by the data management module will dictate whether blocks in the balance cycle will be swapped based on whether a maximum host data write performance is desired, a minimum host data write variation is desired, or some other host write performance metric is desired. The lineup of the current selected blocks for the current balance cycle may be examined and changed, in addition to a new interleave ratio being calculated based on that lineup change or other change in the amount of valid data in the current set of predetermined number of maintenance source blocks.
During a balance cycle 2400, the interleave ratio for the next active host schedule is determined at each scheduling point 2404. Because the amount of valid data in a set of maintenance source blocks does not necessarily remain static due to host activity during a balance cycle, maintenance source blocks are reevaluated for a next active and remaining planned maintenance cycles within the balance cycle and may change from the originally selected set of maintenance source blocks. Maintenance source blocks may be changed at the first scheduling point in a maintenance cycle, and planned maintenance source blocks (those forming part of the set of source maintenance blocks that have not had any maintenance operations yet applied) can be changed at any scheduling point 2404. To determine the interleave ratio, at each scheduling point, the total number of maintenance program operations (past, committed and planned) in the complete balance cycle is determined, on the basis of the valid data content in the currently selected maintenance source blocks. Also, the total number of permitted host data program operations within the complete balance cycle is determined, on the basis of balanced creation and consumption over the number of blocks programmed and erased in the balance cycle. At each scheduling point 2404 during a balance cycle 2400, a remaining number of host data program operations in the balance cycle is determined, on the basis of the number already completed and the number of host data program operations before the next scheduling point 2404 is determined, on the basis of the number of remaining scheduling points in the balance cycle.
A balance cycle 2400 involving multiple maintenance source blocks as described above may provide a way of smoothing responsiveness to a host, as compared to separate independent maintenance schedule cycles executed on individual maintenance source blocks. The smoothing of the responsiveness with a balance cycle is essentially achieved through averaging of an interleave ratio of host writes to maintenance writes over a predetermined number of maintenance source blocks selected for the balance operation. The initial evaluation at the beginning of a balance cycle 2400, and subsequent reevaluation at each subsequent scheduling point 2404 of a balance cycle, of interleave ratio and/or selection of maintenance source blocks, may depend on the selection algorithm utilized.
In one implementation, the data management module 112 generates each balance cycle 2400 separately and, after identifying the desired die and the die layer of that die, always selects maintenance source blocks from that die layer that have the least amount of valid data in them. Thus, closed blocks containing the least amount of valid data are selected at each scheduling point for the next active maintenance cycle and the remaining planned maintenance cycles. Using this first block selection algorithm, a balance cycle will consist of the least amount of data relocation and the greatest amount of host data writing. At each scheduling point of a balance cycle that uses this first block selection algorithm, blocks originally selected for planned maintenance cycles in a balance cycle may be switched out for other closed blocks in the selected die layer if those other closed blocks currently have less valid data than the originally selected blocks. In this first block selection algorithm, the selected maintenance source blocks are selected specifically for having the least amount of valid data without regard to any particular amount of valid data that may be in the set of maintenance source blocks selected for a subsequent balance cycle.
In another implementation, a second block selection algorithm may be used for selecting the maintenance source blocks at each scheduling point in a balance cycle. A goal of this second algorithm involves trying to have the maintenance manager of the data management module keep an even host response rather than achieve the fastest host response as in the first block selection algorithm. For the second block selection algorithm, the maintenance manager may be configured to select blocks that achieve a particular balance of maintenance writes to host writes and then, at each scheduling point 2404, reevaluate whether to swap selected blocks to keep the original balance of maintenance writes to host writes, rather than selecting maintenance source blocks with the lowest amount of valid data. Thus, in the second block selection algorithm, originally selected blocks that may have had more data become obsolete during the initial portion of the balance cycle, may be swapped out by the maintenance manager for a block with an amount of valid data needed to maintain the originally planned interleave ratio. A result of implementing the second block selection algorithm may be to both minimize variations of host write speeds between balance cycles, as well as to minimize variations in host write speeds during a balance cycle. In contrast, the first block selection algorithm discussed above, where blocks with the least amount of valid data are always selected, may maximize the amount of host data written in a balance cycle and reduce variations of host write performance during a balance cycle.
In the present application, semiconductor memory devices such as those described in the present application may include volatile memory devices, such as dynamic random access memory (“DRAM”) or static random access memory (“SRAM”) devices, non-volatile memory devices, such as resistive random access memory (“ReRAM”), electrically erasable programmable read only memory (“EEPROM”), flash memory (which can also be considered a subset of EEPROM), ferroelectric random access memory (“FRAM”), and magnetoresistive random access memory (“MRAM”), and other semiconductor elements capable of storing information. Each type of memory device may have different configurations. For example, flash memory devices may be configured in a NAND or a NOR configuration.
The memory devices can be formed from passive and/or active elements, in any combinations. By way of non-limiting example, passive semiconductor memory elements include ReRAM device elements, which in some embodiments include a resistivity switching storage element, such as an anti-fuse, phase change material, etc., and optionally a steering element, such as a diode, etc. Further by way of non-limiting example, active semiconductor memory elements include EEPROM and flash memory device elements, which in some embodiments include elements containing a charge storage region, such as a floating gate, conductive nanoparticles, or a charge storage dielectric material.
Multiple memory elements may be configured so that they are connected in series or so that each element is individually accessible. By way of non-limiting example, flash memory devices in a NAND configuration (NAND memory) typically contain memory elements connected in series. A NAND memory array may be configured so that the array is composed of multiple strings of memory in which a string is composed of multiple memory elements sharing a single bit line and accessed as a group. Alternatively, memory elements may be configured so that each element is individually accessible, e.g., a NOR memory array. NAND and NOR memory configurations are exemplary, and memory elements may be otherwise configured.
The semiconductor memory elements located within and/or over a substrate may be arranged in two or three dimensions, such as a two dimensional memory structure or a three dimensional memory structure.
In a two dimensional memory structure, the semiconductor memory elements are arranged in a single plane or a single memory device level. Typically, in a two dimensional memory structure, memory elements are arranged in a plane (e.g., in an x-z direction plane) which extends substantially parallel to a major surface of a substrate that supports the memory elements. The substrate may be a wafer over or in which the layer of the memory elements are formed or it may be a carrier substrate which is attached to the memory elements after they are formed. As a non-limiting example, the substrate may include a semiconductor such as silicon.
The memory elements may be arranged in the single memory device level in an ordered array, such as in a plurality of rows and/or columns. However, the memory elements may be arrayed in non-regular or non-orthogonal configurations. The memory elements may each have two or more electrodes or contact lines, such as bit lines and word lines.
A three dimensional memory array is arranged so that memory elements occupy multiple planes or multiple memory device levels, thereby forming a structure in three dimensions (i.e., in the x, y and z directions, where the y direction is substantially perpendicular and the x and z directions are substantially parallel to the major surface of the substrate).
As a non-limiting example, a three dimensional memory structure may be vertically arranged as a stack of multiple two dimensional memory device levels. As another non-limiting example, a three dimensional memory array may be arranged as multiple vertical columns (e.g., columns extending substantially perpendicular to the major surface of the substrate, i.e., in the y direction) with each column having multiple memory elements in each column. The columns may be arranged in a two dimensional configuration, e.g., in an x-z plane, resulting in a three dimensional arrangement of memory elements with elements on multiple vertically stacked memory planes. Other configurations of memory elements in three dimensions can also constitute a three dimensional memory array.
By way of non-limiting example, in a three dimensional NAND memory array, the memory elements may be coupled together to form a NAND string within a single horizontal (e.g., x-z) memory device levels. Alternatively, the memory elements may be coupled together to form a vertical NAND string that traverses across multiple horizontal memory device levels. Other three dimensional configurations can be envisioned wherein some NAND strings contain memory elements in a single memory level while other strings contain memory elements which span through multiple memory levels. Three dimensional memory arrays may also be designed in a NOR configuration and in a ReRAM configuration.
Typically, in a monolithic three dimensional memory array, one or more memory device levels are formed above a single substrate. Optionally, the monolithic three dimensional memory array may also have one or more memory layers at least partially within the single substrate. As a non-limiting example, the substrate may include a semiconductor such as silicon. In a monolithic three dimensional array, the layers constituting each memory device level of the array are typically formed on the layers of the underlying memory device levels of the array. However, layers of adjacent memory device levels of a monolithic three dimensional memory array may be shared or have intervening layers between memory device levels.
Then again, two dimensional arrays may be formed separately and then packaged together to form a non-monolithic memory device having multiple layers of memory. For example, non-monolithic stacked memories can be constructed by forming memory levels on separate substrates and then stacking the memory levels atop each other. The substrates may be thinned or removed from the memory device levels before stacking, but as the memory device levels are initially formed over separate substrates, the resulting memory arrays are not monolithic three dimensional memory arrays. Further, multiple two dimensional memory arrays or three dimensional memory arrays (monolithic or non-monolithic) may be formed on separate chips and then packaged together to form a stacked-chip memory device.
Associated circuitry is typically required for operation of the memory elements and for communication with the memory elements. As non-limiting examples, memory devices may have circuitry used for controlling and driving memory elements to accomplish functions such as programming and reading. This associated circuitry may be on the same substrate as the memory elements and/or on a separate substrate. For example, a controller for memory read-write operations may be located on a separate controller chip and/or on the same substrate as the memory elements.
One of skill in the art will recognize that this invention is not limited to the two dimensional and three dimensional exemplary structures described but cover all relevant memory structures within the spirit and scope of the invention as described herein and as understood by one of skill in the art.
It is intended that the foregoing detailed description be understood as an illustration of selected forms that the invention can take and not as a definition of the invention. It is only the following claims, including all equivalents, that are intended to define the scope of the claimed invention. Finally, it should be noted that any aspect of any of the preferred embodiments described herein can be used alone or in combination with one another.
Number | Name | Date | Kind |
---|---|---|---|
5535369 | Wells et al. | Jul 1996 | A |
5570315 | Tanaka et al. | Oct 1996 | A |
5630093 | Holzhammer et al. | May 1997 | A |
5696917 | Mills et al. | Dec 1997 | A |
5774397 | Endoh et al. | Jun 1998 | A |
5860124 | Matthews et al. | Jan 1999 | A |
5869845 | Vander Wagt et al. | Feb 1999 | A |
5930167 | Lee et al. | Jul 1999 | A |
5960169 | Styczinski | Sep 1999 | A |
6026465 | Mills et al. | Feb 2000 | A |
6046935 | Takeuchi et al. | Apr 2000 | A |
6069827 | Sinclair | May 2000 | A |
6373746 | Takeuchi et al. | Apr 2002 | B1 |
6456528 | Chen | Sep 2002 | B1 |
6522580 | Chen et al. | Feb 2003 | B2 |
6622199 | Spall et al. | Sep 2003 | B1 |
6715027 | Kim et al. | Mar 2004 | B2 |
6725321 | Sinclair et al. | Apr 2004 | B1 |
6771536 | Li et al. | Aug 2004 | B2 |
6781877 | Cernea et al. | Aug 2004 | B2 |
7154781 | Lakhani et al. | Dec 2006 | B2 |
7336531 | Roohparvar | Feb 2008 | B2 |
7409489 | Sinclair | Aug 2008 | B2 |
7420867 | Brox | Sep 2008 | B2 |
7433993 | Sinclair | Oct 2008 | B2 |
7444462 | Traister et al. | Oct 2008 | B2 |
7552280 | Naamad et al. | Jun 2009 | B1 |
7865658 | Lasser et al. | Jan 2011 | B2 |
7903459 | Yu et al. | Mar 2011 | B2 |
7930468 | Caulkins | Apr 2011 | B2 |
7984084 | Sinclair | Jul 2011 | B2 |
7996642 | Smith | Aug 2011 | B1 |
8095735 | Brewer et al. | Jan 2012 | B2 |
8209503 | Smith | Jun 2012 | B1 |
8228728 | Yang et al. | Jul 2012 | B1 |
8239617 | Linnell | Aug 2012 | B1 |
8412752 | Dodge | Apr 2013 | B2 |
8429352 | Sinclair | Apr 2013 | B2 |
8473669 | Sinclair | Jun 2013 | B2 |
8537613 | Sinclair et al. | Sep 2013 | B2 |
8677037 | Karamcheti et al. | Mar 2014 | B1 |
8689042 | Kanapathippillai et al. | Apr 2014 | B1 |
8706932 | Kanapathippillai et al. | Apr 2014 | B1 |
8850091 | Karamcheti et al. | Sep 2014 | B1 |
8873284 | Sinclair et al. | Oct 2014 | B2 |
9223693 | Sinclair et al. | Dec 2015 | B2 |
20020172081 | Mukaida et al. | Nov 2002 | A1 |
20030109093 | Harari et al. | Jun 2003 | A1 |
20030147278 | Tanaka et al. | Aug 2003 | A1 |
20030229753 | Hwang | Dec 2003 | A1 |
20040030847 | Tremaine | Feb 2004 | A1 |
20040073748 | Rudelic | Apr 2004 | A1 |
20040260957 | Jeddeloh et al. | Dec 2004 | A1 |
20050144361 | Gonzalez et al. | Jun 2005 | A1 |
20050144363 | Sinclair | Jun 2005 | A1 |
20050195635 | Conley et al. | Sep 2005 | A1 |
20050278479 | Wu et al. | Dec 2005 | A1 |
20060020744 | Sinclair et al. | Jan 2006 | A1 |
20060031593 | Sinclair | Feb 2006 | A1 |
20060047800 | Caveney et al. | Mar 2006 | A1 |
20060149891 | Rudelic | Jul 2006 | A1 |
20060161724 | Bennett et al. | Jul 2006 | A1 |
20060161728 | Bennett et al. | Jul 2006 | A1 |
20060184718 | Sinclair et al. | Aug 2006 | A1 |
20060184719 | Sinclair | Aug 2006 | A1 |
20060184720 | Sinclair et al. | Aug 2006 | A1 |
20060184722 | Sinclair | Aug 2006 | A1 |
20060184723 | Sinclair et al. | Aug 2006 | A1 |
20060285397 | Nishihara et al. | Dec 2006 | A1 |
20070016756 | Hsieh et al. | Jan 2007 | A1 |
20070030734 | Sinclair et al. | Feb 2007 | A1 |
20070033323 | Gorobets | Feb 2007 | A1 |
20070033324 | Sinclair | Feb 2007 | A1 |
20070033325 | Sinclair | Feb 2007 | A1 |
20070033329 | Sinclair et al. | Feb 2007 | A1 |
20070033330 | Sinclair et al. | Feb 2007 | A1 |
20070033376 | Sinclair et al. | Feb 2007 | A1 |
20070033378 | Sinclair et al. | Feb 2007 | A1 |
20070101096 | Gorobets | May 2007 | A1 |
20070136555 | Sinclair | Jun 2007 | A1 |
20070156998 | Gorobets | Jul 2007 | A1 |
20070186032 | Sinclair et al. | Aug 2007 | A1 |
20070186065 | Lee et al. | Aug 2007 | A1 |
20070239928 | Gera et al. | Oct 2007 | A1 |
20080034154 | Lee et al. | Feb 2008 | A1 |
20080067573 | Jang et al. | Mar 2008 | A1 |
20080084739 | Chae et al. | Apr 2008 | A1 |
20080094952 | Brondijk et al. | Apr 2008 | A1 |
20080155175 | Sinclair et al. | Jun 2008 | A1 |
20080155176 | Sinclair et al. | Jun 2008 | A1 |
20080155177 | Sinclair et al. | Jun 2008 | A1 |
20080155178 | Sinclair et al. | Jun 2008 | A1 |
20080155227 | Sinclair et al. | Jun 2008 | A1 |
20080155228 | Sinclair et al. | Jun 2008 | A1 |
20080307158 | Sinclair | Dec 2008 | A1 |
20080307164 | Sinclair | Dec 2008 | A1 |
20080307192 | Sinclair et al. | Dec 2008 | A1 |
20080316815 | Lin | Dec 2008 | A1 |
20080320209 | Lee et al. | Dec 2008 | A1 |
20090132758 | Jiang et al. | May 2009 | A1 |
20090157994 | Hampel et al. | Jun 2009 | A1 |
20090164745 | Sinclair et al. | Jun 2009 | A1 |
20090172258 | Olbrich et al. | Jul 2009 | A1 |
20090172263 | Olbrich et al. | Jul 2009 | A1 |
20090182791 | Gorobets | Jul 2009 | A1 |
20090196102 | Kim | Aug 2009 | A1 |
20090210614 | Gorobets | Aug 2009 | A1 |
20090228662 | Chang et al. | Sep 2009 | A1 |
20090248952 | Radke et al. | Oct 2009 | A1 |
20090259799 | Wong | Oct 2009 | A1 |
20090262577 | Tanaka | Oct 2009 | A1 |
20090271562 | Sinclair | Oct 2009 | A1 |
20090300269 | Radke et al. | Dec 2009 | A1 |
20100125695 | Wu et al. | May 2010 | A1 |
20100146197 | Gorobets | Jun 2010 | A1 |
20100153631 | Moon et al. | Jun 2010 | A1 |
20100169540 | Sinclair | Jul 2010 | A1 |
20100169588 | Sinclair | Jul 2010 | A1 |
20100172179 | Gorobets et al. | Jul 2010 | A1 |
20100174846 | Paley et al. | Jul 2010 | A1 |
20100205352 | Chu et al. | Aug 2010 | A1 |
20100217926 | Sinclair | Aug 2010 | A1 |
20100223423 | Sinclair et al. | Sep 2010 | A1 |
20100262765 | Cheon et al. | Oct 2010 | A1 |
20100274952 | Lee | Oct 2010 | A1 |
20110022778 | Schibilla et al. | Jan 2011 | A1 |
20110055455 | Post | Mar 2011 | A1 |
20110107042 | Herron | May 2011 | A1 |
20110138100 | Sinclair | Jun 2011 | A1 |
20110149650 | Huang et al. | Jun 2011 | A1 |
20110161621 | Sinclair et al. | Jun 2011 | A1 |
20110219180 | Cheon et al. | Sep 2011 | A1 |
20110252187 | Segal et al. | Oct 2011 | A1 |
20110296089 | Seol et al. | Dec 2011 | A1 |
20120005405 | Wu et al. | Jan 2012 | A1 |
20120017038 | Gorobets et al. | Jan 2012 | A1 |
20120030409 | Post et al. | Feb 2012 | A1 |
20120066443 | Li et al. | Mar 2012 | A1 |
20120084489 | Gorobets et al. | Apr 2012 | A1 |
20120221784 | Ban | Aug 2012 | A1 |
20120239851 | Calvert | Sep 2012 | A1 |
20120246391 | Meir et al. | Sep 2012 | A1 |
20120254574 | Sinclair et al. | Oct 2012 | A1 |
20120260028 | Lee et al. | Oct 2012 | A1 |
20120297121 | Gorobets et al. | Nov 2012 | A1 |
20120297122 | Gorobets et al. | Nov 2012 | A1 |
20120311197 | Larson | Dec 2012 | A1 |
20120311237 | Park | Dec 2012 | A1 |
20130019051 | Somanache et al. | Jan 2013 | A1 |
20130019058 | Caraccio et al. | Jan 2013 | A1 |
20130024641 | Talagala et al. | Jan 2013 | A1 |
20130042067 | Thomas | Feb 2013 | A1 |
20130138912 | Bux et al. | May 2013 | A1 |
20130159601 | Lassa et al. | Jun 2013 | A1 |
20130173844 | Chen et al. | Jul 2013 | A1 |
20130173874 | Sprouse et al. | Jul 2013 | A1 |
20130219146 | Confalonieri | Aug 2013 | A1 |
20140006898 | Sharon et al. | Jan 2014 | A1 |
20140068152 | Sinclair | Mar 2014 | A1 |
20140143483 | Meir et al. | May 2014 | A1 |
20140185376 | Sinclair et al. | Jul 2014 | A1 |
20140189205 | Sinclair et al. | Jul 2014 | A1 |
20140189206 | Sinclair et al. | Jul 2014 | A1 |
20140189207 | Sinclair | Jul 2014 | A1 |
20140189208 | Sinclair | Jul 2014 | A1 |
20140189209 | Sinclair et al. | Jul 2014 | A1 |
20140189210 | Sinclair et al. | Jul 2014 | A1 |
20140223087 | Caraccio et al. | Aug 2014 | A1 |
20140237169 | Manning | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
1143455 | Oct 2001 | EP |
1389755 | Feb 2004 | EP |
1693759 | Aug 2006 | EP |
2042995 | Apr 2009 | EP |
WO 2007019155 | Feb 2007 | WO |
WO 2007019217 | Feb 2007 | WO |
WO 2009107426 | Sep 2009 | WO |
WO 2012158521 | Nov 2012 | WO |
WO 2012161659 | Nov 2012 | WO |
Entry |
---|
Hui Sun, et al., Measuring and Analyzing Write Amplification Characteristics of Solid State Disks, 2013, IEEE, 21st International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication System, pp. 212-221. |
Office Action in co-pending U.S. Appl. No. 14/928,649 mailed May 3, 2017 (21 pages). |
Office Action in co-pending U.S. Appl. No. 14/928,732 mailed Apr. 13, 2017 (20 pages). |
Commonly owned related application for U.S. Appl. No. 14/928,582, filed Oct. 30, 2015, 103 pgs. |
Commonly owned related application for U.S. Appl. No. 14/928,606, filed Oct. 30, 2015, 106 pgs. |
Commonly owned related application for U.S. Appl. No. 14/928,649, filed Oct. 30, 2015, 104 pgs. |
Commonly owned related application for U.S. Appl. No. 14/928,732, filed Oct. 30, 2015, 104 pgs. |
Number | Date | Country | |
---|---|---|---|
20170123682 A1 | May 2017 | US |