Embodiments of the disclosure relate to cyber security. More particularly, one embodiment of the disclosure relates to a system and method for predicting the current performance level of a malware detection system and altering its configuration based on the predicted performance level.
Network devices provide useful and necessary services that assist individuals in business and in their everyday lives. In recent years, a growing number of cyberattacks are being conducted on all types of network devices, especially network devices deployed at an enterprise (e.g., private or publicly-traded company, a governmental agency, etc.). In some cases, these cyberattacks are orchestrated in an attempt to gain access to content stored on one or more of these enterprise-based network devices. Such access is for illicit (i.e., unauthorized) purposes, such as spying or other malicious or nefarious activities. For protection, many enterprises deploy cybersecurity systems, such as on-premises malware detection systems that monitor and analyze content propagating over a local network in efforts to detect a cyberattack.
Typically, on-premises malware detection systems are installed in accordance with configurations that are either factory set or user-configurable, e.g., per specifications of installation guides provided by the manufacturers. Typically, these malware detection systems are initially configured to operate efficiently in accordance with network traffic patterns generally prevailing at the time of installation. Sometimes, the malware detection systems may not be properly configured by customers (users). Moreover, as network traffic patterns are dynamic and the threat landscape confronting customers may differ and may even change over time, in some situations, the malware detection systems' configurations should be tuned upon installation and re-tuned from time to time after installation for optimal its effectiveness.
In extreme situations, the malware detection systems may be significantly misconfigured, resulting in under-utilization of their detection capabilities or over-utilization of their detection capacity. This may reduce operational efficiencies or efficacies, or both, below that achievable by properly configured malware detection systems, and, in worse case scenarios, may result in inadequately analyzed network traffic and unnecessarily increased risk of a successful cyberattack on an enterprise. However, this activity of reconfiguring or tuning of the malware detection system is rarely performed due to both increased costs for the customer and a reduced availability of skilled technicians to perform such services.
Embodiments of the disclosure are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
In general, embodiments of the disclosure describe a system configuration optimization engine that is configured to (i) receive meta-information including different metrics associated with one or more malware detection systems (situated on-premises or as part of a cloud service), (ii) determine whether each of the malware detection system(s) is operating at an optimal performance level, and (iii) generate results provided as feedback to update one or more configuration parameter values for a particular malware detection system that is operating at a non-optimal performance level. Each configuration parameter includes information that partially controls the operating state of a resource (e.g., hardware, software or firmware) deployed within a network device (e.g., malware detection system). Examples of configuration parameters may be directed to hardware characteristics (e.g., number of active processor cores, memory capacity, utilization levels, etc.), operational settings such as virtual machine (VM) characteristics (e.g., number of active VMs, VM utilization, etc.), kernel related optimization (e.g. enable/disable kernel filters according to operating system performance, etc.) software characteristics (e.g., number of active processes, applications utilized by the active processes, etc.) or the like.
As described below, the system configuration optimization engine is remotely located from and communicatively coupled to one or more cybersecurity systems, which may be associated with different customers. A cybersecurity system includes one or more malware detection systems, each configured to provide meta-information to the system configuration optimization engine. The meta-information may include (a) a first metric being statistics associated with certain configuration parameters of the malware detection system, and/or (b) a second metric being events monitored during operations of the malware detection system (e.g., data retrieved in response to a certain event such as a system crash, etc.).
Based on the received meta-information, the system configuration optimization engine assigns a performance level for each malware detection system of a cybersecurity system. For illustrative purposes, the assigned performance level may be one of a plurality of performance levels, either (i) an optimal performance level or (ii) a non-optimal performance level. The non-optimal performance level may include multiple levels of granularity, such as an over-utilized performance level and an under-utilized performance level. The “optimal performance level” refers to a preferred operating state for a network device performing cybersecurity analyses, such as performed by a malware detection system for example, which may be measured by certain metrics, such as hardware utilization statistics, virtual machine utilization statistics, and/or software utilization statistics. A “non-optimal performance level” (e.g., over-utilized or under-utilized) identifies the malware detection system is operating outside of its desired operating configuration.
More specifically, as described herein, the system configuration optimization engine analyzes the meta-information provided by each malware detection system and, based on such analysis, assigns a performance level to that malware detection system. The meta-information may be provided to the system configuration optimization engine on a periodic basis and/or an aperiodic basis in response to a certain event (e.g., system crash, system operability exceeds or falls below a prescribed threshold, request initiated by a network administrator or cybersecurity system manufacturer, etc.).
As described above, the “optimal” performance level refers to a preferred operating state for a network device preforming cybersecurity analyses. This preferred operating state may be represented through a collection of system metrics, and thus, the performance level for a malware detection system may be determined through the collective analysis of configuration parameter values directed to these system metrics, which are provided as part of the meta-information. As part of this collective analysis, the system configuration optimization engine determines the degree of correlation between the received metrics in the meta-information and desired metrics of the malware detection system (referred to as a “baseline configuration”) that are gathered using experiential knowledge of operational meta-information of known misconfigured malware detection systems and/or known optimal malware detection systems.
According to one embodiment of the disclosure, a baseline configuration may include certain hardware utilization threshold (or range), VM utilization threshold (or range), and/or software utilization threshold (or range) representing a desired operating configuration for a malware detection system with a certain hardware profile. Hence, the system configuration optimization engine may include a plurality of baseline configurations each associated with a different hardware profile (e.g., number of processors, memory size, etc.). When analyzing the performance level for a malware detection system, a baseline configuration may be selected based on the hardware profile for that malware detection system, along with other factors (e.g., threat landscape confronting the customer (for instance, as indicated by the industry protected by the malware detection system), subscription or customer type, etc.). For instance, given the same hardware profile, a malware detection system deployed for a customer in a high-risk industry (e.g., governmental defense agency, utility, etc.) may be assigned a more stringent baseline configuration (e.g., less range tolerance, different weighting scheme targeted to ensure higher average performance levels, etc.) than a baseline configuration reserved for malware detection systems deployed in lower-risk industries (e.g., textiles, etc.). As a result, subscription levels for malware detection systems deployed for high-risk industry customers may be more costly given a likely increased frequency of re-configuration of the malware detection system for placement into an optimal performance level.
According to one embodiment of the disclosure, the performance level for the malware detection system is determined by conducting one or more arithmetic or logical operations on performance level determinations conducted for a plurality of metrics provided as part of the meta-information. More specifically, each statistic of a configuration parameter may be assigned a weighting depending on its importance in representing the health of the malware detection system. For instance, a first statistic directed to processor utilization may be assigned a larger weighting (i.e., assigned a higher importance) than a second metric directed to the number of virtual machines (VMs) currently active. Hence, the performance level for the malware detection system is based on a collection of weighted, performance level determinations (e.g., over-utilized, optimal, under-utilized) based on the statistics provided as part of the meta-information.
Responsive to the meta-information, the system configuration optimization engine may be configured to return information (referred to as a “system health report”) to the malware detection system supplying the meta-information. For one embodiment, the system health report includes (i) an identifier of the malware detection system supplying the analyzed meta-information; (ii) a determined performance level for the malware detection system; (iii) the performance level determinations for some or all of the plurality of configuration parameters; and/or (iv) one or more modified configuration parameter values that are used by the malware detection system to adjust its configuration to better remain in or return to an optimal performance level.
The system configuration optimization engine may be configured, prior to selection and passing of one or more modified configuration parameter values to the malware detection system, to select the modified configuration parameter values by at least comparing the received meta-information to predefined operational bounds (e.g., a blacklist including one or more statistics associated with configuration parameters for devices with the same hardware profile operating at non-optimal performance levels (e.g., misconfigured systems, etc.), and/or whitelist including statistics of configuration parameters for devices with the same hardware profile operating at optimal performance levels). Additionally, the system configuration optimization engine may provide the modified configuration parameter values to a monitoring and reporting service, which may issue an alert to a customer of the malware detection systems upon determining that one or more of the malware detection systems is operating at a non-optimal performance level.
According to one embodiment of the disclosure, the configuration of a malware detection system operating at a non-optimal performance level may be updated automatically without customer approval. Alternatively, before configuration parameter value(s) for the particular malware detection system are updated, approval from the network administrator is needed. Herein, administrator approval may be secured by a network device implemented with the system configuration optimization engine prior to providing the results (i.e., one or more modified configuration parameter value(s) as feedback to the particular malware detection system.
As an illustrative example, the network device may send an alert message to the administrator (e.g., text, email, notice to access a dashboard, etc.), where the alert message requires an action by the administrator before the modified configuration parameter values are sent. The action may include, but is not limited or restricted to any reply mechanism such as selection of a radio button, selection of a display element (or entry of information) on the dashboard, or the like. As another illustrative example, the network device may send the modified configuration parameter values to the particular malware detection system and provide the results as input to a monitor/reporting service, which generates a display that is accessible by at least an authorized administrator and illustrates performance levels of the malware detection systems utilized by a customer. Any of these types of reply mechanisms allows the network administrator to interact with the dashboard to authorize the configuration parameter update.
In the following description, certain terminology is used to describe various features of the invention. For example, each of the terms “logic,” “engine,” and “component” may be representative of hardware, firmware or software that is configured to perform one or more functions. As hardware, the term logic (or engine or component) may include circuitry having data processing and/or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a hardware processor (e.g., microprocessor, one or more processor cores, a digital signal processor, a programmable gate array, a microcontroller, an application specific integrated circuit “ASIC”, etc.), a semiconductor memory, or combinatorial elements.
Additionally, or in the alternative, the logic (or engine or component) may include software such as one or more processes, one or more instances, Application Programming Interface(s) (API), subroutine(s), function(s), applet(s), servlet(s), routine(s), source code, object code, shared library/dynamic link library (dll), or even one or more instructions. This software may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of a non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); or persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the logic (or component) may be stored in persistent storage.
Herein, a “message” generally refers to related data that is received, transmitted, or exchanged over a communication session. The message may include one or more packets, where a “packet” broadly refers to a series of bits or bytes having a prescribed format. Alternatively, the data may include a collection of data that may take the form of an individual or a number of packets carrying related payloads, e.g., a single webpage received over a network.
The term “object” generally relates to content (or information for accessing such content) having a logical structure or organization that enables the object to be classified for purposes of malware analysis. The content may include an executable (e.g., an application, program, code segment, a script, dynamic link library “dll” or any file in a format that can be directly executed by a computer such as a file with an “.exe” extension, etc.), a non-executable (e.g., a file; any document such as a Portable Document Format “PDF” document; a word processing document such as Word® document; an electronic mail “email” message, web page, etc.), or simply a collection of related data (e.g., packets).
The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware. The term “data store” generally refers to a data storage device such as the non-transitory storage medium described above, which provides non-persistent or persistent storage for information (e.g., data, meta-information, etc.).
According to one embodiment of the disclosure, the term “malware” may be broadly construed as any code, communication or activity that initiates or furthers a cyberattack. Malware may prompt or cause unauthorized, anomalous, unintended and/or unwanted behaviors or operations constituting a security compromise of information infrastructure. For instance, malware may correspond to a type of malicious computer code that, as an illustrative example, executes an exploit to take advantage of a vulnerability in a network, network device or software, to gain unauthorized access, harm or co-opt operations of the network, the network device of the software or to misappropriate, modify or delete data. Alternatively, as another illustrative example, malware may correspond to information (e.g., executable code, script(s), data, command(s), etc.) that is designed to cause a network device to experience anomalous (unexpected or undesirable) behaviors. The anomalous behaviors may include a communication-based anomaly or an execution-based anomaly, which, for example, could (1) alter the functionality of a network device executing application software in an atypical manner; (2) alter the functionality of the network device executing that application software without any malicious intent; and/or (3) provide unwanted functionality which may be generally acceptable in another context.
The term “network device” may be construed as any electronic computing system with the capability of processing data and connecting to a network. The network may be a public network such as the Internet and/or a local (private) network such as an enterprise network, a wireless local area network (WLAN), a local area network (LAN), a wide area network (WAN), or the like. Examples of a network device may include, but are not limited or restricted to an endpoint (e.g., a laptop, a mobile phone, a tablet, a computer, a video console, a copier, etc.), a network appliance, a server, a router or other intermediary communication device, a firewall, etc.
The term “transmission medium” may be construed as a physical or logical communication path between two or more network devices or between components within a network device. For instance, as a physical communication path, wired and/or wireless interconnects in the form of electrical wiring, optical fiber, cable, bus trace, or a wireless channel using radio frequency (RF) or infrared (IR), may be used. A logical communication path may simply represent a communication path between two or more network devices or between components within a network device such as one or more Application Programming Interfaces (APIs).
Finally, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.
As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.
Referring to
Herein, each of the malware detection system 1201-120M may be configured to perform a two-phase approach for detecting malware contained in network traffic. This two-phase approach includes a static phase and a dynamic phase. During the static phase, an initial analysis of the characteristics of an object is conducted, without execution or processing of the object, to determine whether the object is “malicious” (malware) or “benign” (not malware). Where the object is “suspicious” (e.g., inconclusive if malicious or benign), a further (dynamic) analysis of the object may be conducted. During the dynamic phase, the object is executed within one or more virtual machines. A virtual machine (VM) executes an incoming object and the behaviors of these objects during execution (or the VM) are monitored. Each behavior may also referred to as an “event.” In some embodiments, one or more malware detection system 1201-120M (e.g., malware detection system 1201) may be deployed as a network device, which is communicatively coupled to receive and analyze objects within network traffic. As a network device, the malware detection system 1201 includes logic being physical components that analyze objects for malware. Alternatively, the malware detection system 1201 may be deployed as a virtual device, namely a software (daemon) agent to detect cyberattacks that is operating (in the foreground or background) within a network device (e.g., an endpoint). An example of the two-phase malware detection system is described in U.S. Pat. No. 9,311,479, entitled, “Correlation and Consolidation of Analytic Data For Holistic View of A Malware Attack,” and U.S. Pat. No. 9,483,644 entitled “Methods for Detecting File Altering Malware in VM based Analysis,” the entire contents of both of which are hereby incorporated by reference.
As shown in
According to one embodiment of the disclosure, for any deployment of a malware detection system, certain component(s) within the malware detection system 1201 periodically or aperiodically determine the current operating state of the malware detection system. As an illustrative example, as shown in
Referring back to
Upon receipt of the meta-information 130 from the cybersecurity system 1101, the system configuration optimization engine 150 analyzes the meta-information 130 to determine whether the malware detection system 1201 is operating at an optimal performance level. Such analysis may involve an evaluation of the meta-information 130 against a predictive model based on heuristic information including configuration parameter values of a known body of past configurations (e.g., blacklist and/or whitelist and/or hardware profile) that are associated with non-optimal and/or optimal performance levels. By identifying the misconfigurations, the system configuration optimization engine 150 may recommend modifications to the malware detection system configuration. These modifications are alerted to the customer and/or directly provided to the malware detection system(s).
According to one embodiment of the disclosure, the determination whether the malware detection system 1201 is operating at an optimal performance level, namely a preferred operating state for malware detection analyses as measured by metrics such as system parameter values and/or detection parameter values. Collectively, these configuration parameter values identify a health of the malware detection system 1201 or the cybersecurity system 1101 including at least the malware detection system 1201. Herein, the system parameters may be directed to features that influence operability of the malware detection system 1201, such as hardware utilization statistics (e.g., processor utilization, amount or degree of available memory for storage, etc.), virtual machine utilization statistics (e.g., virtual machine “VM” utilization or the number of VMs activated, etc.) and/or software utilization statistics (e.g., what processes are running, statistics associated with the processes, queue length, etc.). In contrast, the detection parameters may be directed to features associated with a malware detection analysis being conducted (e.g., type of analyses, duration of analysis per object, classification threshold being used to determine performance level, etc.
As an example, as described above, when adjusting the detection parameter values, the type of analysis may be varied (dynamic, emulation, types of static analysis, etc.) or the thresholds that determine suspiciousness (requiring further analysis e.g., dynamic analysis) may be varied in order to control the number of objects that are subjected to further analysis. For under-utilization, by changing the threshold to a lower level, we may subject more objects to deeper analysis (e.g., dynamic) which increases consumption of available system resources and increases the rate of object analysis. The additional objects subject to further analysis caused by a reduced threshold may have a lower probability (based on preliminary analysis only) of being malicious. However, such analysis may reduce the number of false negatives. For over-utilization, by raising the threshold, fewer objects may be subject to further (dynamic) analysis. As the threshold is related to likelihood of maliciousness, adjustment may be slow to ensure that there is no appreciable increase the risk of false negatives. The availability of such adjustments may be related to the prevailing threat landscape for the particular customer protected by the system, or its industry,
In response to determining that the malware detection system 1201 is operating at a non-optimal performance level representing that the malware detection system 1201 is operating outside of its desired operating configuration (e.g., under-utilized or over-utilized), the system configuration optimization engine 150 may be configured to recommend configuration modifications for the malware detection system 1201 and return a configuration modification message 170. The configuration modification message 170 may include one or more modified configuration parameter values 175, which may be a different values than the received configuration parameter value 135. Upon modification of the configuration of the malware detection system 1201 in accordance with the modified configuration parameter values 175, either automatically or upon approval by an administrator as described above before the automated solution is given effect (e.g., agreement as to the modifications, accept increased charges if applicable, etc.), the functionality of the malware detection system 1201 is modified in efforts to return to an optimal performance level.
As an illustrative example, the configuration modification message 170 may include a modified configuration parameter value 175 signifying a change in the number of active virtual machines currently being utilized by the malware detection system 1201, as represented by the statistics 135 (e.g., inclusive of statistics associated with the number of active virtual machines) provided within the meta-information 130. Herein, according to one embodiment, the malware detection system 1201, upon receipt of the modified configuration parameter value 175 (with administrator approval if needed), may decrease the number of active virtual machines deployed, provided the malware detection system 1201 is determined by the system configuration optimization engine 150 to be operating at an “over-utilized” VM utilization level. Herein, the “over-utilized” VM utilization level may be determined by any configuration parameter value or combination of configuration parameter values indicating that available resources at the malware detection system 1201 are incapable of supporting the current performance level (e.g., the number of VMs running concurrently, number of objects queued and awaiting VM analysis, etc.), and the modified configuration parameter value 175 temporarily reducing the performance level of the malware detection system 1201. Alternatively, according to another embodiment, upon receipt of the modified configuration parameter value 175 (with administrator approval if needed), the malware detection system 1201 may increase in number of active virtual machines from the number of active virtual machines represented by the statistics 135, provided the malware detection system 1201 is operating at an “under-utilized” VM utilization level where resources at the malware detection system 1201 are available to support a higher performance level (e.g., more VMs, etc.).
Referring to
The processor 200 is a multi-purpose, programmable component that accepts digital data as input, processes the input data according to stored instructions, and provides results as output. One example of a processor may include an Intel® central processing unit (CPU) with an x86 instruction set architecture. Alternatively, the processor 200 may include another type of CPU, a digital signal processor (DSP), an Application Specific Integrated Circuit (ASIC), a field-programmable gate array (FPGA), or the like.
As shown in
The configuration analysis logic 265, in response to a particular event or timeout detected by the monitoring logic 260, obtains meta-information (e.g., one or more configuration parameter values 135) associated with the current operating state of the malware detection system 1201. As shown, the configuration analysis logic 265 includes an operating system (OS) statistics module 266 to collect hardware utilization statistics from the OS (e.g., processor utilization, amount or degree of available memory for storage, etc.); VM statistics module 267 to collect VM utilization statistics (e.g., VM utilization or the number of VMs activated, etc.); and/or application statistics module 268 to collect software utilization statistics (e.g., what processes are running, statistics associated with the processes, etc.).
Thereafter, the configuration analysis logic 265 may temporarily store statistics associated with certain configuration parameter(s) 135 (hereinafter, “statistics”) within the meta-information storage logic 275. As an optional operation, the timestamp generation logic 270 may generate a timestamp (not shown) that is applied to each value of the statistic 135 prior to storage with the meta-information storage logic 275. The statistics 135 may include the processor utilization level, the amount of hard disk space available, number of active virtual machines, the number of processes currently running, or the like. The current configuration parameter values 135, stored in the meta-information storage logic 275, are subsequently accessed from the meta-information storage logic 275 for transmission to the system configuration optimization engine 150 of
The configuration readjustment logic 280 is adapted to receive the configuration information 170 (i.e., modified configuration parameter values 175) from the system configuration optimization engine 150 of
The administrative interface 230 is a portal that allows an administrator, after credential exchange and authentication, to access and update logic stored within the memory 220 of the malware detection system 1201. For instance, the administrative interface 230 may include authentication logic (not shown) to authenticate an administrator requesting access to stored logic within the malware detection system 1201. Upon authentication, the administrator is able to modify (i) the triggering events or timeout parameters within the event/timeout monitoring logic 260, or (ii) code of the system configuration analysis logic 265, configuration readjustment logic 280, and/or malware detection logic 290 (e.g., code associated with static analysis of an object or the behavioral analysis of the object in efforts to detect a presence of malware within the object or its association with a cyberattack), or (iii) operability of the malware detection system 1201 (e.g., hardware changes, operational setting changes or software changes as described below).
Referring now to
As shown, the memory 320 comprises a parser 350, training data storage 360, machine learning (ML) modeling logic 365, ML training model 370, ML predictive model 375, and system health reporting logic 380. Herein, the parser 350 is configured to parse both structured and non-structured data, which is provided as meta-information 130 from a malware detection system (e.g., malware detection system 1201). More specifically, the parser 350 features a plurality of sub-parsers 355, including a first sub-parser 356 and a second sub-parser 357. The first sub-parser 356 is configured to parse structured data to recover meta-information including the values associated with one or more configuration parameters positioned at specific locations within the structured data (hereinafter, “recovered configuration parameter values”). The recovered configuration parameter values may be analyzed by the ML modeling logic 365 in accordance with the ML predictive model 375. The second sub-parser 357 is configured to parse unstructured data (e.g., line in a text file) for relevant information, including information associated with an event. For instance, the second sub-parser 357 may conduct a search for one or more keywords (e.g., “kernel crash” keyword, etc.) and extract information subsequent to the keywords (e.g., information identifying a nature and/or reason for the crash).
The training data storage 360 is a data store that is adapted to temporarily store sets of labeled training set 362 and/or unlabeled training set 363 (referred to as “training data” 364) for use by the machine learning modeling logic 365 in “training” the ML training model 370 to produce the ML predictive model 375. The training data storage 360 may include data from the cybersecurity systems 1101-110N as well as third party sources. Herein, the training data 364 include normalized, heuristic data pertaining to a plurality of configuration parameters directed to operability of a malware detection system, where some of the heuristic data may be directed to the same configuration parameter associated with a different hardware profile. The heuristic data may include a normalized value for a specific configuration parameter over a prescribed time period, as measured for a network device with a specific hardware profile over a prescribed time period. Alternatively, the heuristic data may include a prescribed number of sampled values. A “hardware profile” is a specific representation of a network device having certain functionality, such as a number of processing elements (e.g., processors, processor cores, etc.), certain memory storage capacity, certain VM capacity, manufacturer/model name of the network device, device identification number, or the like.
For different hardware profiles, each training data set 364 may correspond to a different configuration parameter, a different combination of configuration parameters, and/or different configuration parameter values or weighting used by different classifications. Stated differently, the ML modeling logic 365 uses the training data sets 364 to establish baselines in classifying incoming meta-information 130 (using the received configuration parameter values), and these baselines may vary between hardware profiles. Furthermore, the ML predictive model 375 may be trained to apply different weighting factors for different configuration parameters to determine a verdict for each incoming configuration parameter and/or an aggregate of weighted configuration parameters for classifying of the malware detection system 1201 providing the meta-information 130.
According to one embodiment of the disclosure, each set of training data 364 includes normalized, heuristic data associated with one or more configuration parameters, where the training data 364 is labeled to correspond to a particular classification of a plurality of classifications. Based on the foregoing, each classification of the training data 364 may correspond to a different aggregation of configuration parameter values as different hardware profiles may be associated with different normalized, heuristic data operating as a baseline and/or different weighting factors assigned to configuration parameter values for determining a verdict for each incoming configuration parameter value and an aggregate of weighted configuration parameter values.
The machine learning modeling logic 365 processes the ML training model 370 using the labeled training data 362 as well as unlabeled training data 363 to produce the updated predictive model 375. For instance, using the labeled training data 362, the ML training model 370 continues to update and improve the detection accuracy of the ML training model 370 until a prescribed accuracy (e.g., 90% accuracy) is achieved. Thereafter, the ML training model 370 is released for initial testing as the ML predictive model 375, and based on continued reliable testing of the ML predictive model 375, the ML predictive model 375 is utilized by the system configuration optimization engine 150 for determining whether certain malware detection systems are operating at an optimal performance level or a non-optimal performance level. Thereafter, the ML training model 370 (corresponding to the current ML predictive model) continues further training to improve operability of the ML predictive model 375.
The system health reporting logic 380 is adapted to receive the incoming meta-information and utilize the ML predicted model 375 in (1) determining whether the malware detection system is operating at an optimal performance level or not, and (2) determining what configuration parameters are modifiable in order for the malware detection system 1201 to be adjusted to operate at the optimal level. The system health reporting logic 380 may perform a number of operations iteratively by modifying different configuration parameters and analyzing the results of the modification to determine whether certain configuration parameter values provided by the meta-information gravitate toward the optimal performance level.
For instance, the system health reporting logic 380 may detect that an “over-utilized” processor utilization level (e.g., exceeding a first threshold such as a percentage of processing capacity exceeding 80% utilization where optimal utilization resides within 60%-80% range), and thus, mimic activation of additional processor cores in order to determine whether the activation of a single processor core would be sufficient to reduce the processor utilization level back to an optimal performance level (e.g., operating utilization normalized to reside within 60%-80% range). Hence, the system health reporting logic 380 performs behavioral analysis in accordance with the hardware profile in order to determine that the alteration of certain configuration parameter values is sufficient to return the malware detection system back to an optimal operating range. Besides percentage of processing capacity, the utilization level may be directed to the time spent on idle tasks (e.g., optimal performance level corresponds to a prescribed percentage range of processing time being spent on idle tasks where over-utilization exceeds the prescribed percentage range) or the type and/or amount of computing tasks being performed for a determined measure of time such as per second, hour, day or the like (e.g. the optimal performance level may correspond to a prescribed range of computing tasks performed according to the determined measure of time, where over-utilization exceeds the prescribed computing task range).
Similarly, the system health reporting logic 380 may detect that an “under-utilized” processor utilization level (e.g., utilizing falling below a second threshold such as 30% utilization where utilization normalized to reside within 60%-80% range), and thus, mimic deactivation of a processor core if multiple processor cores are active in order to determine whether the deactivation of a single processor core would be sufficient to increase the processor utilization level back to the optimal performance level. Furthermore, processor under-utilization may be detected where the processing time being spent on idle tasks falls below the prescribed processing range or the number of computing tasks performed over the measured unit of time falls below the prescribed computing task range.
Referring to
During aggregation, according to one embodiment of the disclosure, the unstructured data within the meta-information 130 may be formatted and placed into a prescribed data structure. Otherwise, the meta-information 130, including structured and/or unstructured data, may be provided to the system configuration optimization engine 150. According to one embodiment of the disclosure, the cloud service 400 controls delivery of the meta-information 130 (e.g., “push” delivery) while, according to another embodiment, the system configuration optimization engine 150 controls delivery of the meta-information 130 (e.g., “pull” delivery).
As shown, the system configuration optimization engine 150 includes the parser 350, which features a plurality of sub-parsers 355 including the first sub-parser 356 and the second sub-parser 357. As described above, the first sub-parser 356 is configured to parse structured data contained in the meta-information 130 in order to recover one or more configuration parameter values. The recovered configuration parameter values are used by the ML predictive model 375, being processed by the ML modeling logic (not shown), in determining a performance level at which the malware detection system 1201 is currently operating. Additionally, the ML predictive model 375, being processed by the ML modeling logic 365 of
Additionally, the second sub-parser 357 is configured to parse unstructured data for relevant information (e.g., analysis of text strings such as lines of a text file). The “relevant” information includes information associated with a monitored event, where the information may be obtained from keyword searches, as described above. The relevant information may be used by the ML modeling logic in determining, independent or in combination with the recovered configuration parameter values, the performance level at which the malware detection system 1201 is currently operating.
More specifically, the ML modeling logic 365 is applied to the configuration parameter value(s) and/or relevant information are provided to the ML modeling logic 365. The ML predictive model 375 is generated as a result of the ML modeling logic performing “training” operations on the ML training model using the training data as described in
As described above, the classification operations are dependent on detected hardware profile for the malware detection system 1201 and the content of the configuration parameters supplied by the meta-information 130. For example, the ML predictive model 375 may apply prescribed weightings to the configuration parameter values, where the aggregate of the weighted values is used to determine whether the malware detection system is operating at an optimal performance level, or is operating at a non-optimal performance level (e.g., over-utilized where processor utilization exceeds a first prescribed percentage and/or memory available falls below a first prescribed byte size or under-utilized where processor utilization falls below a second prescribed percentage and/or memory available exceeds a second prescribed byte size).
The system health reporting logic 380 is adapted to receive the incoming meta-information and utilize the ML predicted model 375 to determine (1) whether the malware detection system is operating at an optimal performance level or not, and (2) determine what configuration parameters are modifiable for adjusting operability of the malware detection system 1201 to operate at the optimal performance level. The system health reporting logic 380 may iteratively modify certain configuration parameters based on what configuration parameters are negatively influencing performance, and using the resulting affects as feedback to adjust the next iteration so as to tune in steps to a value or values that produces an optimal performance level the configuration of the malware detection system 1201. This analysis may be performed through behavioral analysis of a virtual machine configured to accordance with a determined hardware profile or through heuristics based on prior configuration parameter adjustments. For instance, the system health reporting logic 380 may detect that an “over-utilized” processor utilization level, and thus, mimic activation of additional processor cores in order to determine whether the activation of a single processor core would be sufficient to reduce the processor utilization level back to an optimal performance level (e.g., operating utilization normalized to reside within 60%-80% range). Hence, the system health reporting logic 380 performs behavioral analysis in accordance with the hardware profile in order to determine that the alteration of certain configuration parameters is sufficient to return the malware detection system back to an optimal performance level.
As described above, the system configuration optimization engine 150 determines, using the ML predictive model 375, whether the meta-information 130 identifies the malware detection system 1201 as running in an over-utilized performance level, an optimal performance level, or an under-utilized performance level. In response to determining that the malware detection system 1201 operates at an over-utilized performance level, the system health reporting logic 380 determines which configuration parameters may be altered in order to return the malware detection system 120 back to its optimal performance level. This may involve an increase (or reduction) in active processor cores, an increase (or reduction) in active virtual machine instances, an increase (or reduction) in memory usage, or the like.
Upon completion of the analysis of the meta-information 130 supported by the malware detection system 1201, the system health reporting logic 380 generates a system health message 450, which is provided to the malware detection system 1201 that supplied the meta-information 130. Herein, the system health message 450 may include (i) an identifier of the malware detection system supplying the analyzed meta-information; (ii) the performance level for the malware detection system; (iii) the performance level determinations for some or all of the plurality of configuration parameters; and/or (iv) one or more modified configuration parameter values that are used by the malware detection system to adjust its configuration to remain in or return to its optimal performance level. The system health message 450 is consistent with the configuration modification message 170 of
As shown, the system health reporting logic 380 may provide the system health message 450 to a customer support service 460. The customer support service 460 may automatically analyze the contents of the system health message 450 and generate subsequent communications 465 (e.g., via electronic mail, text, automated audio, signaling to monitoring and reporting logic 470, etc.) to advise the customer as to proposed modifications to the cybersecurity system. Furthermore, the customer support service 460 may provide a portion of the system health message 450, such as modified configuration parameter values, to a targeted malware detection system. The modified configuration parameter values may be selected to perform system modifications directed to (i) hardware characteristic changes (e.g., number of active processor cores, network connector types or functionality such as activation of wireless transceivers supporting different wireless frequencies, memory capacity thresholds, etc.), (ii) operational setting changes (e.g., OS setting changes, number of active VMs, VM utilization, additional systems or services available for purchase to improve operability of the cybersecurity system, etc.), and/or (iii) software characteristic changes (e.g., number of active processes, applications utilized by the active processes, etc.) or the like. Additionally, or in the alternative, the system health reporting logic 380 may provide the system health message 450 to the monitoring and reporting service 470. The monitoring and reporting service 470 generates automatically, without user interaction, a report (e.g., information for generation of one or more display screens, a printed report, etc.). The report may be provided to a management console or an administrative interface of a targeted malware detection system. Similarly, the portion of the system health message 450, including modified configuration parameter values, may be provided to the targeted malware detection system (e.g., malware detection system 1201) via the administrative interface 230 of
As shown in
Referring still to
More specifically, according to one embodiment of the disclosure, the display area 510 displays a plurality of entries 5201-520R (R>1, R=3 for this embodiment) that provide information directed to performance levels of the malware detection systems 1201-120M for each customer. As shown, each row of entries (e.g., 5201) rendered by the display logic comprises a plurality of fields, including one or more of the following: (1) a first field 530 including an identifier of the malware detection system; (2) a second field 532 including a timestamp that identifies when an analysis of the performance level for the malware detection system was conducted by the system configuration optimization engine 150; and/or (3) a third field 534 including the predicted performance level determined for the malware detection system by the system configuration optimization engine 150. The display area 510 may include additional fields to provide more details directed to the malware detection systems associated with a particular customer, including a fourth field 536 that lists a host address for the corresponding malware detection system, and/or a fifth field 538 that lists a hardware profile for the corresponding malware detection system.
Herein, the fields 530, 532, and 534 associated with malware detection systems operating at non-optimal performance levels may warrant heightened scrutiny level, namely information is displayed more prominently than those fields associated with malware detection systems operating at optimal performance levels for example. This allows a network administrator to more quickly and easily determine malware detection systems that may need re-configuration to improve system operability.
As an example, as a highlighting technique illustrated for the first field 530, the font associated with the malware detection systems operating at non-optimal performance levels (SYSTEM 1; SYSTEM 3) may be displayed differently than the font associated with the host names for malware detection system operating at an optimal performance level (SYSTEM 2). Alternatively, or in addition to the font changes in display, the highlighting technique may be accomplished by ordering malware detection systems operating at non-optimal performance levels (SYSTEM 1; SYSTEM 3) at the top of a listing while any malware detection systems operating at optimal performance levels (SYSTEM 2) are ordered toward the bottom of the listing. As another alternative embodiment, although not shown, a single display screen may produce two areas, where a first area includes the malware detection systems operating at non-optimal performance levels (SYSTEM 1; SYSTEM 3) while a second area includes one or more malware detection systems operating at optimal performance levels (SYSTEM 2).
As further granularity of the operability of the malware detection system under analysis may be needed, according to one embodiment, selection of a field associated with a targeted malware detection system (e.g., performance level field 534 determined for the malware detection system by the system configuration optimization engine 150) allows the user to visualize the performance level of each individual configuration parameter, as shown in
Referring to
According to one embodiment of the disclosure, the predictive results may include each statistic associated with a configuration parameter 610 supplied by the malware detection system 1201 as part of the meta-information 130, the value 620 associated with each current configuration parameter received from the malware detection system 1201, and the performance level 630 determined for that particular configuration parameter (i.e., “over-utilized,” “optimal,” and “under-utilized”). Also, as an optional feature, the weighting 640 allocated for each configuration parameter may be displayed with the performance level determination along with the normalized optimal range 650 based on heuristic data for the particular hardware profile.
Referring to
As shown in
Thereafter, the configuration analysis logic 265 may temporarily store these statistics as the meta-information associated with the malware detection system 1201 and the meta-information 130 is made available to the system configuration optimization engine 150. For this embodiment, the meta-information 135 is transmitted to the system configuration optimization engine 150 and evaluated, using a predictive model developed based on heuristic data gathered from experiential knowledge of operational meta-information of known misconfigured and optimally configured systems. For instance, when processed by the ML modeling logic, the configuration parameters (and/or groups of configuration parameters) are compared to heuristic data associated with optimal and non-optimal performance levels associated with the respective configuration parameters (and/or groups of configuration parameters) to determine whether the configuration parameter value (and/or groups of configuration parameter values) falls within a prescribed range as determined by the heuristic data.
For those configuration parameter values falling outside of the optimal performance level, the system configuration optimization engine 150 determines (what configuration parameter values are modifiable for adjusting operability of the malware detection system 1201 to operate at the optimal performance level. The system configuration optimization engine 150 iteratively modifies certain configuration parameter values based on what configuration parameter values are negatively influencing performance by the malware detection system 1201 and analyzes the potential effects of a similar adjustment to the configuration of the malware detection system 1201.
As shown in
Referring now to
After the determination of the performance level of the malware detection system, the system configuration optimization engine determines which configuration parameter values associated with the incoming meta-information are modifiable to adjust the configuration (and operating state) of the malware detection system (block 850). Thereafter, the system configuration optimization engine may be configured to perform, within a virtualized environment representative of the hardware profile of the malware detection system, iterative adjustments of different configuration parameter values to determine whether such adjustments allow the current performance level to remain in or return to its optimal performance level (block 860). The performance levels of the malware detection system and configuration parameter values may be provided for display (block 870). The modified configuration parameter values may be automatically returned to the malware detection system for reconfiguring the malware detection system (blocks 880 and 890).
Referring to
More specifically, the malware detection systems 1201, in response to a detected event or timeout, obtains meta-information associated with the current operating state of the malware detection system 1201. Herein, the meta-information 130 includes hardware utilization statistics, VM utilization statistics, and/or software utilization statistics as described above.
As shown, the system configuration optimization engine 150 includes the parser 350, to recover one or more the configuration parameter values contained in the meta-information 130. The statistics are used by the ML predictive model 375, being processed by the ML modeling logic 365, in determining a performance level at which the malware detection system 1201 is currently operating. Additionally, the ML predictive model 375, being processed by the ML modeling logic 365, determines the performance level for each of the configuration parameter values pertaining to the statistics. The ML predictive model 375 is repeatedly updated and configured as a result of the ML modeling logic 365 performing “training” operations on the training data 364.
Herein, the system configuration optimization engine 150 determines the hardware profile of a source of the configuration parameter value(s), where the hardware profile may influence what normalized, heuristic data is referenced in the classification of the source. For instance, using the ML predictive model 375, the ML modeling logic 365 analyzes portions of the meta-information 130 (e.g., statistics associated with configuration parameters) to classify the malware detection system 1201 (e.g., over-utilized performance level, optimal performance level, or under-utilized performance level). Furthermore, the system configuration optimization engine 150 determines what configuration parameter values are modifiable for adjusting operability of the malware detection system 1201 to operate at the optimal performance level. Thereafter, the system configuration optimization engine 150 iteratively modifies a subset of these configuration parameter values to determine what configuration modifications of the malware detection system 1201 will maintain the system at an optimal performance level.
More specifically, the system configuration optimization engine 150 determines, using the ML predictive model 375, whether the meta-information 130 identifies the malware detection system 1201 as running in a non-optimal performance level and the configuration modification necessary to return the malware detection system 1201. In response to determining that the malware detection system 1201 operates at an over-utilized performance level, the system configuration optimization engine 150 determines one or more configuration parameter values that, if altered, improve the performance level of the malware detection system 1201 and returns update information 900 that would cause the configuration modification at the malware detection system 1201 to occur in real-time. Updates 910 to the ML predictive model 375 are provided to the malware detection system 1201 to analyze the performance level of the malware detection system 1201 locally and in real-time.
In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4292580 | Ott et al. | Sep 1981 | A |
5175732 | Hendel et al. | Dec 1992 | A |
5319776 | Hile et al. | Jun 1994 | A |
5440723 | Arnold et al. | Aug 1995 | A |
5490249 | Miller | Feb 1996 | A |
5657473 | Killean et al. | Aug 1997 | A |
5802277 | Cowlard | Sep 1998 | A |
5842002 | Schnurer et al. | Nov 1998 | A |
5960170 | Chen et al. | Sep 1999 | A |
5968176 | Nessett et al. | Oct 1999 | A |
5978917 | Chi | Nov 1999 | A |
5983348 | Ji | Nov 1999 | A |
6088803 | Tso et al. | Jul 2000 | A |
6092194 | Touboul | Jul 2000 | A |
6094677 | Capek et al. | Jul 2000 | A |
6108799 | Boulay et al. | Aug 2000 | A |
6154844 | Touboul et al. | Nov 2000 | A |
6269330 | Cidon et al. | Jul 2001 | B1 |
6272641 | Ji | Aug 2001 | B1 |
6279113 | Vaidya | Aug 2001 | B1 |
6298445 | Shostack et al. | Oct 2001 | B1 |
6357008 | Nachenberg | Mar 2002 | B1 |
6424627 | Sorhaug et al. | Jul 2002 | B1 |
6442696 | Wray et al. | Aug 2002 | B1 |
6460141 | Olden | Oct 2002 | B1 |
6484315 | Ziese | Nov 2002 | B1 |
6487666 | Shanklin et al. | Nov 2002 | B1 |
6493756 | O'Brien et al. | Dec 2002 | B1 |
6550012 | Villa et al. | Apr 2003 | B1 |
6775657 | Baker | Aug 2004 | B1 |
6831893 | Ben Nun et al. | Dec 2004 | B1 |
6832367 | Choi et al. | Dec 2004 | B1 |
6895550 | Kanchirayappa et al. | May 2005 | B2 |
6898632 | Gordy et al. | May 2005 | B2 |
6907396 | Muttik et al. | Jun 2005 | B1 |
6941348 | Petry et al. | Sep 2005 | B2 |
6971097 | Wallman | Nov 2005 | B1 |
6981279 | Arnold et al. | Dec 2005 | B1 |
7007107 | Ivchenko et al. | Feb 2006 | B1 |
7028179 | Anderson et al. | Apr 2006 | B2 |
7043757 | Hoefelmeyer et al. | May 2006 | B2 |
7058822 | Edery et al. | Jun 2006 | B2 |
7069316 | Gryaznov | Jun 2006 | B1 |
7080407 | Zhao et al. | Jul 2006 | B1 |
7080408 | Pak et al. | Jul 2006 | B1 |
7093002 | Wolff et al. | Aug 2006 | B2 |
7093239 | van der Made | Aug 2006 | B1 |
7096498 | Judge | Aug 2006 | B2 |
7100201 | Izatt | Aug 2006 | B2 |
7107617 | Hursey et al. | Sep 2006 | B2 |
7159149 | Spiegel et al. | Jan 2007 | B2 |
7213260 | Judge | May 2007 | B2 |
7231667 | Jordan | Jun 2007 | B2 |
7240364 | Branscomb et al. | Jul 2007 | B1 |
7240368 | Roesch et al. | Jul 2007 | B1 |
7243371 | Kasper et al. | Jul 2007 | B1 |
7249175 | Donaldson | Jul 2007 | B1 |
7287278 | Liang | Oct 2007 | B2 |
7308716 | Danford et al. | Dec 2007 | B2 |
7328453 | Merkle, Jr. et al. | Feb 2008 | B2 |
7346486 | Ivancic et al. | Mar 2008 | B2 |
7356736 | Natvig | Apr 2008 | B2 |
7386888 | Liang et al. | Jun 2008 | B2 |
7392542 | Bucher | Jun 2008 | B2 |
7418729 | Szor | Aug 2008 | B2 |
7428300 | Drew et al. | Sep 2008 | B1 |
7441272 | Durham et al. | Oct 2008 | B2 |
7448084 | Apap et al. | Nov 2008 | B1 |
7458098 | Judge et al. | Nov 2008 | B2 |
7464404 | Carpenter et al. | Dec 2008 | B2 |
7464407 | Nakae et al. | Dec 2008 | B2 |
7467408 | O'Toole, Jr. | Dec 2008 | B1 |
7478428 | Thomlinson | Jan 2009 | B1 |
7480773 | Reed | Jan 2009 | B1 |
7487543 | Arnold et al. | Feb 2009 | B2 |
7496960 | Chen et al. | Feb 2009 | B1 |
7496961 | Zimmer et al. | Feb 2009 | B2 |
7519990 | Xie | Apr 2009 | B1 |
7523493 | Liang et al. | Apr 2009 | B2 |
7530104 | Thrower et al. | May 2009 | B1 |
7540025 | Tzadikario | May 2009 | B2 |
7546638 | Anderson et al. | Jun 2009 | B2 |
7565550 | Liang et al. | Jul 2009 | B2 |
7568233 | Szor et al. | Jul 2009 | B1 |
7584455 | Ball | Sep 2009 | B2 |
7603715 | Costa et al. | Oct 2009 | B2 |
7607171 | Marsden et al. | Oct 2009 | B1 |
7639714 | Stolfo et al. | Dec 2009 | B2 |
7644441 | Schmid et al. | Jan 2010 | B2 |
7657419 | van der Made | Feb 2010 | B2 |
7676841 | Sobchuk et al. | Mar 2010 | B2 |
7698548 | Shelest et al. | Apr 2010 | B2 |
7707633 | Danford et al. | Apr 2010 | B2 |
7712136 | Sprosts et al. | May 2010 | B2 |
7730011 | Deninger et al. | Jun 2010 | B1 |
7739740 | Nachenberg et al. | Jun 2010 | B1 |
7779463 | Stolfo et al. | Aug 2010 | B2 |
7784097 | Stolfo et al. | Aug 2010 | B1 |
7832008 | Kraemer | Nov 2010 | B1 |
7836502 | Zhao et al. | Nov 2010 | B1 |
7849506 | Dansey et al. | Dec 2010 | B1 |
7854007 | Sprosts et al. | Dec 2010 | B2 |
7869073 | Oshima | Jan 2011 | B2 |
7877803 | Enstone et al. | Jan 2011 | B2 |
7904959 | Sidiroglou et al. | Mar 2011 | B2 |
7908660 | Bahl | Mar 2011 | B2 |
7930738 | Petersen | Apr 2011 | B1 |
7937387 | Frazier et al. | May 2011 | B2 |
7937761 | Bennett | May 2011 | B1 |
7949849 | Lowe et al. | May 2011 | B2 |
7996556 | Raghavan et al. | Aug 2011 | B2 |
7996836 | McCorkendale et al. | Aug 2011 | B1 |
7996904 | Chiueh et al. | Aug 2011 | B1 |
7996905 | Arnold et al. | Aug 2011 | B2 |
8006305 | Aziz | Aug 2011 | B2 |
8010667 | Zhang et al. | Aug 2011 | B2 |
8020206 | Hubbard et al. | Sep 2011 | B2 |
8028338 | Schneider et al. | Sep 2011 | B1 |
8042184 | Batenin | Oct 2011 | B1 |
8045094 | Teragawa | Oct 2011 | B2 |
8045458 | Alperovitch et al. | Oct 2011 | B2 |
8069484 | McMillan et al. | Nov 2011 | B2 |
8074256 | Valente et al. | Dec 2011 | B2 |
8087086 | Lai et al. | Dec 2011 | B1 |
8171553 | Aziz et al. | May 2012 | B2 |
8176049 | Deninger et al. | May 2012 | B2 |
8176480 | Spertus | May 2012 | B1 |
8181251 | Kennedy | May 2012 | B2 |
8201246 | Wu et al. | Jun 2012 | B1 |
8204984 | Aziz et al. | Jun 2012 | B1 |
8214905 | Doukhvalov et al. | Jul 2012 | B1 |
8220055 | Kennedy | Jul 2012 | B1 |
8225288 | Miller et al. | Jul 2012 | B2 |
8225373 | Kraemer | Jul 2012 | B2 |
8233882 | Rogel | Jul 2012 | B2 |
8234640 | Fitzgerald et al. | Jul 2012 | B1 |
8234709 | Viljoen et al. | Jul 2012 | B2 |
8239944 | Nachenberg et al. | Aug 2012 | B1 |
8260914 | Ranjan | Sep 2012 | B1 |
8266091 | Gubin et al. | Sep 2012 | B1 |
8286251 | Eker et al. | Oct 2012 | B2 |
8291499 | Aziz et al. | Oct 2012 | B2 |
8307435 | Mann et al. | Nov 2012 | B1 |
8307443 | Wang et al. | Nov 2012 | B2 |
8312545 | Tuvell et al. | Nov 2012 | B2 |
8321936 | Green et al. | Nov 2012 | B1 |
8321941 | Tuvell et al. | Nov 2012 | B2 |
8332571 | Edwards, Sr. | Dec 2012 | B1 |
8365286 | Poston | Jan 2013 | B2 |
8365297 | Parshin et al. | Jan 2013 | B1 |
8370938 | Daswani et al. | Feb 2013 | B1 |
8370939 | Zaitsev et al. | Feb 2013 | B2 |
8375444 | Aziz et al. | Feb 2013 | B2 |
8381299 | Stolfo et al. | Feb 2013 | B2 |
8402529 | Green et al. | Mar 2013 | B1 |
8464340 | Ahn et al. | Jun 2013 | B2 |
8468602 | McDougal | Jun 2013 | B2 |
8479174 | Chiriac | Jul 2013 | B2 |
8479276 | Vaystikh et al. | Jul 2013 | B1 |
8479291 | Bodke | Jul 2013 | B1 |
8510827 | Leake et al. | Aug 2013 | B1 |
8510828 | Guo et al. | Aug 2013 | B1 |
8510842 | Amit et al. | Aug 2013 | B2 |
8516478 | Edwards et al. | Aug 2013 | B1 |
8516575 | Burnside et al. | Aug 2013 | B2 |
8516583 | Thomas | Aug 2013 | B2 |
8516590 | Ranadive et al. | Aug 2013 | B1 |
8516593 | Aziz | Aug 2013 | B2 |
8522348 | Chen et al. | Aug 2013 | B2 |
8528086 | Aziz | Sep 2013 | B1 |
8533824 | Hutton et al. | Sep 2013 | B2 |
8539582 | Aziz et al. | Sep 2013 | B1 |
8549638 | Aziz | Oct 2013 | B2 |
8555391 | Demir et al. | Oct 2013 | B1 |
8561177 | Aziz et al. | Oct 2013 | B1 |
8566476 | Shiffer et al. | Oct 2013 | B2 |
8566946 | Aziz et al. | Oct 2013 | B1 |
8584094 | Dadhia et al. | Nov 2013 | B2 |
8584234 | Sobel et al. | Nov 2013 | B1 |
8584239 | Aziz et al. | Nov 2013 | B2 |
8595834 | Xie et al. | Nov 2013 | B2 |
8627404 | McDougal | Jan 2014 | B2 |
8627476 | Satish et al. | Jan 2014 | B1 |
8635079 | McDougal | Jan 2014 | B2 |
8635696 | Aziz | Jan 2014 | B1 |
8682054 | Xue et al. | Mar 2014 | B2 |
8682812 | Ranjan | Mar 2014 | B1 |
8689333 | Aziz | Apr 2014 | B2 |
8695096 | Zhang | Apr 2014 | B1 |
8713631 | Pavlyushchik | Apr 2014 | B1 |
8713681 | Silberman et al. | Apr 2014 | B2 |
8726392 | McCorkendale et al. | May 2014 | B1 |
8739280 | Chess et al. | May 2014 | B2 |
8776229 | Aziz | Jul 2014 | B1 |
8782792 | Bodke | Jul 2014 | B1 |
8789172 | Stolfo et al. | Jul 2014 | B2 |
8789178 | Kejriwal et al. | Jul 2014 | B2 |
8793278 | Frazier et al. | Jul 2014 | B2 |
8793787 | Ismael et al. | Jul 2014 | B2 |
8805947 | Kuzkin et al. | Aug 2014 | B1 |
8806629 | Cherepov | Aug 2014 | B1 |
8806647 | Daswani et al. | Aug 2014 | B1 |
8832829 | Manni et al. | Sep 2014 | B2 |
8850570 | Ramzan | Sep 2014 | B1 |
8850571 | Staniford et al. | Sep 2014 | B2 |
8881234 | Narasimhan et al. | Nov 2014 | B2 |
8881271 | Butler, II | Nov 2014 | B2 |
8881282 | Aziz et al. | Nov 2014 | B1 |
8898788 | Aziz et al. | Nov 2014 | B1 |
8935779 | Manni et al. | Jan 2015 | B2 |
8949257 | Shiffer et al. | Feb 2015 | B2 |
8984638 | Aziz et al. | Mar 2015 | B1 |
8990939 | Staniford et al. | Mar 2015 | B2 |
8990944 | Singh et al. | Mar 2015 | B1 |
8997219 | Staniford et al. | Mar 2015 | B2 |
9009822 | Ismael et al. | Apr 2015 | B1 |
9009823 | Ismael et al. | Apr 2015 | B1 |
9027135 | Aziz | May 2015 | B1 |
9071638 | Aziz et al. | Jun 2015 | B1 |
9104867 | Thioux et al. | Aug 2015 | B1 |
9106630 | Frazier et al. | Aug 2015 | B2 |
9106694 | Aziz et al. | Aug 2015 | B2 |
9118715 | Staniford et al. | Aug 2015 | B2 |
9159035 | Ismael et al. | Oct 2015 | B1 |
9171160 | Vincent et al. | Oct 2015 | B2 |
9176843 | Ismael et al. | Nov 2015 | B1 |
9189627 | Islam | Nov 2015 | B1 |
9195829 | Goradia et al. | Nov 2015 | B1 |
9197664 | Aziz et al. | Nov 2015 | B1 |
9223972 | Vincent et al. | Dec 2015 | B1 |
9225740 | Ismael et al. | Dec 2015 | B1 |
9241010 | Bennett et al. | Jan 2016 | B1 |
9251343 | Vincent et al. | Feb 2016 | B1 |
9262635 | Paithane et al. | Feb 2016 | B2 |
9268936 | Butler | Feb 2016 | B2 |
9275229 | LeMasters | Mar 2016 | B2 |
9282109 | Aziz et al. | Mar 2016 | B1 |
9292686 | Ismael et al. | Mar 2016 | B2 |
9294486 | Chiang | Mar 2016 | B1 |
9294501 | Mesdaq et al. | Mar 2016 | B2 |
9300686 | Pidathala et al. | Mar 2016 | B2 |
9306960 | Aziz | Apr 2016 | B1 |
9306974 | Aziz et al. | Apr 2016 | B1 |
9311479 | Manni et al. | Apr 2016 | B1 |
9350747 | McLarnon | May 2016 | B2 |
9355247 | Thioux et al. | May 2016 | B1 |
9356944 | Aziz | May 2016 | B1 |
9363280 | Rivlin et al. | Jun 2016 | B1 |
9367681 | Ismael et al. | Jun 2016 | B1 |
9398028 | Karandikar et al. | Jul 2016 | B1 |
9413781 | Cunningham et al. | Aug 2016 | B2 |
9426071 | Caldejon et al. | Aug 2016 | B1 |
9430646 | Mushtaq et al. | Aug 2016 | B1 |
9432389 | Khalid et al. | Aug 2016 | B1 |
9438613 | Paithane et al. | Sep 2016 | B1 |
9438622 | Staniford et al. | Sep 2016 | B1 |
9438623 | Thioux et al. | Sep 2016 | B1 |
9459901 | Jung et al. | Oct 2016 | B2 |
9467460 | Otvagin et al. | Oct 2016 | B1 |
9483644 | Paithane et al. | Nov 2016 | B1 |
9495180 | Ismael | Nov 2016 | B2 |
9497213 | Thompson et al. | Nov 2016 | B2 |
9507935 | Ismael et al. | Nov 2016 | B2 |
9516057 | Aziz | Dec 2016 | B2 |
9519782 | Aziz et al. | Dec 2016 | B2 |
9536091 | Paithane et al. | Jan 2017 | B2 |
9537972 | Edwards et al. | Jan 2017 | B1 |
9560059 | Islam | Jan 2017 | B1 |
9565202 | Kindlund et al. | Feb 2017 | B1 |
9591015 | Amin et al. | Mar 2017 | B1 |
9591020 | Aziz | Mar 2017 | B1 |
9594904 | Jain et al. | Mar 2017 | B1 |
9594905 | Ismael et al. | Mar 2017 | B1 |
9594912 | Thioux et al. | Mar 2017 | B1 |
9609007 | Rivlin et al. | Mar 2017 | B1 |
9626509 | Khalid et al. | Apr 2017 | B1 |
9628498 | Aziz et al. | Apr 2017 | B1 |
9628507 | Haq et al. | Apr 2017 | B2 |
9633134 | Ross | Apr 2017 | B2 |
9635039 | Islam et al. | Apr 2017 | B1 |
9641546 | Manni et al. | May 2017 | B1 |
9654485 | Neumann | May 2017 | B1 |
9661009 | Karandikar et al. | May 2017 | B1 |
9661018 | Aziz | May 2017 | B1 |
9674298 | Edwards et al. | Jun 2017 | B1 |
9680862 | Ismael et al. | Jun 2017 | B2 |
9690606 | Ha et al. | Jun 2017 | B1 |
9690933 | Singh et al. | Jun 2017 | B1 |
9690935 | Shiffer et al. | Jun 2017 | B2 |
9690936 | Malik et al. | Jun 2017 | B1 |
9716617 | Ahuja et al. | Jul 2017 | B1 |
9736179 | Ismael | Aug 2017 | B2 |
9740857 | Ismael et al. | Aug 2017 | B2 |
9747446 | Pidathala et al. | Aug 2017 | B1 |
9756074 | Aziz et al. | Sep 2017 | B2 |
9773112 | Rathor et al. | Sep 2017 | B1 |
9781144 | Otvagin et al. | Oct 2017 | B1 |
9787700 | Amin et al. | Oct 2017 | B1 |
9787706 | Otvagin et al. | Oct 2017 | B1 |
9792196 | Ismael et al. | Oct 2017 | B1 |
9824209 | Ismael et al. | Nov 2017 | B1 |
9824211 | Wilson | Nov 2017 | B2 |
9824216 | Khalid et al. | Nov 2017 | B1 |
9825976 | Gomez et al. | Nov 2017 | B1 |
9825989 | Mehra et al. | Nov 2017 | B1 |
9838408 | Karandikar et al. | Dec 2017 | B1 |
9838411 | Aziz | Dec 2017 | B1 |
9838416 | Aziz | Dec 2017 | B1 |
9838417 | Khalid et al. | Dec 2017 | B1 |
9846776 | Paithane et al. | Dec 2017 | B1 |
9876701 | Caldejon et al. | Jan 2018 | B1 |
9888016 | Amin et al. | Feb 2018 | B1 |
9888019 | Pidathala et al. | Feb 2018 | B1 |
9910988 | Vincent et al. | Mar 2018 | B1 |
9912644 | Cunningham | Mar 2018 | B2 |
9912681 | Ismael et al. | Mar 2018 | B1 |
9912684 | Aziz et al. | Mar 2018 | B1 |
9912691 | Mesdaq et al. | Mar 2018 | B2 |
9912698 | Thioux et al. | Mar 2018 | B1 |
9916440 | Paithane et al. | Mar 2018 | B1 |
9921978 | Chan et al. | Mar 2018 | B1 |
9934376 | Ismael | Apr 2018 | B1 |
9934381 | Kindlund et al. | Apr 2018 | B1 |
9946568 | Ismael et al. | Apr 2018 | B1 |
9954890 | Staniford et al. | Apr 2018 | B1 |
9973531 | Thioux | May 2018 | B1 |
10002252 | Ismael et al. | Jun 2018 | B2 |
10019338 | Goradia et al. | Jul 2018 | B1 |
10019573 | Silberman et al. | Jul 2018 | B2 |
10025691 | Ismael et al. | Jul 2018 | B1 |
10025927 | Khalid et al. | Jul 2018 | B1 |
10027689 | Rathor et al. | Jul 2018 | B1 |
10027690 | Aziz et al. | Jul 2018 | B2 |
10027696 | Rivlin et al. | Jul 2018 | B1 |
10033747 | Paithane et al. | Jul 2018 | B1 |
10033748 | Cunningham et al. | Jul 2018 | B1 |
10033753 | Islam et al. | Jul 2018 | B1 |
10033759 | Kabra et al. | Jul 2018 | B1 |
10050998 | Singh | Aug 2018 | B1 |
10057356 | Sherman | Aug 2018 | B2 |
10068091 | Aziz et al. | Sep 2018 | B1 |
10075455 | Zafar et al. | Sep 2018 | B2 |
10083302 | Paithane et al. | Sep 2018 | B1 |
10084813 | Eyada | Sep 2018 | B2 |
10089461 | Ha et al. | Oct 2018 | B1 |
10097573 | Aziz | Oct 2018 | B1 |
10104102 | Neumann | Oct 2018 | B1 |
10108446 | Steinberg et al. | Oct 2018 | B1 |
10121000 | Rivlin et al. | Nov 2018 | B1 |
10122746 | Manni et al. | Nov 2018 | B1 |
10133863 | Bu et al. | Nov 2018 | B2 |
10133866 | Kumar et al. | Nov 2018 | B1 |
10146810 | Shiffer et al. | Dec 2018 | B2 |
10148693 | Singh et al. | Dec 2018 | B2 |
10165000 | Aziz et al. | Dec 2018 | B1 |
10169585 | Pilipenko et al. | Jan 2019 | B1 |
10176321 | Abbasi et al. | Jan 2019 | B2 |
10181029 | Ismael et al. | Jan 2019 | B1 |
10191861 | Steinberg et al. | Jan 2019 | B1 |
10192052 | Singh et al. | Jan 2019 | B1 |
10198574 | Thioux et al. | Feb 2019 | B1 |
10200384 | Mushtaq et al. | Feb 2019 | B1 |
10210329 | Malik et al. | Feb 2019 | B1 |
10216927 | Steinberg | Feb 2019 | B1 |
10218740 | Mesdaq et al. | Feb 2019 | B1 |
10242185 | Goradia | Mar 2019 | B1 |
10432669 | Badhwar et al. | Oct 2019 | B1 |
10439897 | Komarla et al. | Oct 2019 | B1 |
10721275 | Kung et al. | Jul 2020 | B2 |
20010005889 | Albrecht | Jun 2001 | A1 |
20010047326 | Broadbent et al. | Nov 2001 | A1 |
20020018903 | Kokubo et al. | Feb 2002 | A1 |
20020038430 | Edwards et al. | Mar 2002 | A1 |
20020091819 | Melchione et al. | Jul 2002 | A1 |
20020095607 | Lin-Hendel | Jul 2002 | A1 |
20020116627 | Tarbotton et al. | Aug 2002 | A1 |
20020144156 | Copeland | Oct 2002 | A1 |
20020162015 | Tang | Oct 2002 | A1 |
20020166063 | Lachman et al. | Nov 2002 | A1 |
20020169952 | DiSanto et al. | Nov 2002 | A1 |
20020184528 | Shevenell et al. | Dec 2002 | A1 |
20020188887 | Largman et al. | Dec 2002 | A1 |
20020194490 | Halperin et al. | Dec 2002 | A1 |
20030021728 | Sharpe et al. | Jan 2003 | A1 |
20030074578 | Ford et al. | Apr 2003 | A1 |
20030084318 | Schertz | May 2003 | A1 |
20030101381 | Mateev et al. | May 2003 | A1 |
20030115483 | Liang | Jun 2003 | A1 |
20030126464 | McDaniel et al. | Jul 2003 | A1 |
20030161265 | Cao et al. | Aug 2003 | A1 |
20030188190 | Aaron et al. | Oct 2003 | A1 |
20030191957 | Hypponen et al. | Oct 2003 | A1 |
20030200460 | Morota et al. | Oct 2003 | A1 |
20030212902 | van der Made | Nov 2003 | A1 |
20030229801 | Kouznetsov et al. | Dec 2003 | A1 |
20030237000 | Denton et al. | Dec 2003 | A1 |
20040003323 | Bennett et al. | Jan 2004 | A1 |
20040006473 | Mills et al. | Jan 2004 | A1 |
20040015712 | Szor | Jan 2004 | A1 |
20040019832 | Arnold et al. | Jan 2004 | A1 |
20040047356 | Bauer | Mar 2004 | A1 |
20040083408 | Spiegel et al. | Apr 2004 | A1 |
20040088581 | Brawn et al. | May 2004 | A1 |
20040093513 | Cantrell et al. | May 2004 | A1 |
20040111531 | Staniford et al. | Jun 2004 | A1 |
20040117478 | Triulzi et al. | Jun 2004 | A1 |
20040117624 | Brandt et al. | Jun 2004 | A1 |
20040128355 | Chao et al. | Jul 2004 | A1 |
20040165588 | Pandya | Aug 2004 | A1 |
20040236963 | Danford et al. | Nov 2004 | A1 |
20040243349 | Greifeneder et al. | Dec 2004 | A1 |
20040249911 | Alkhatib et al. | Dec 2004 | A1 |
20040255161 | Cavanaugh | Dec 2004 | A1 |
20040268147 | Wiederin et al. | Dec 2004 | A1 |
20050005159 | Oliphant | Jan 2005 | A1 |
20050021740 | Bar et al. | Jan 2005 | A1 |
20050033960 | Vialen et al. | Feb 2005 | A1 |
20050033989 | Poletto et al. | Feb 2005 | A1 |
20050050148 | Mohammadioun et al. | Mar 2005 | A1 |
20050086523 | Zimmer et al. | Apr 2005 | A1 |
20050091513 | Mitomo et al. | Apr 2005 | A1 |
20050091533 | Omote et al. | Apr 2005 | A1 |
20050091652 | Ross et al. | Apr 2005 | A1 |
20050108562 | Khazan et al. | May 2005 | A1 |
20050114663 | Cornell et al. | May 2005 | A1 |
20050125195 | Brendel | Jun 2005 | A1 |
20050149726 | Joshi et al. | Jul 2005 | A1 |
20050157662 | Bingham et al. | Jul 2005 | A1 |
20050183143 | Anderholm et al. | Aug 2005 | A1 |
20050201297 | Peikari | Sep 2005 | A1 |
20050210533 | Copeland et al. | Sep 2005 | A1 |
20050238005 | Chen et al. | Oct 2005 | A1 |
20050240781 | Gassoway | Oct 2005 | A1 |
20050262562 | Gassoway | Nov 2005 | A1 |
20050265331 | Stolfo | Dec 2005 | A1 |
20050283839 | Cowburn | Dec 2005 | A1 |
20060010495 | Cohen et al. | Jan 2006 | A1 |
20060015416 | Hoffman et al. | Jan 2006 | A1 |
20060015715 | Anderson | Jan 2006 | A1 |
20060015747 | Van de Ven | Jan 2006 | A1 |
20060021029 | Brickell et al. | Jan 2006 | A1 |
20060021054 | Costa et al. | Jan 2006 | A1 |
20060031476 | Mathes et al. | Feb 2006 | A1 |
20060047665 | Neil | Mar 2006 | A1 |
20060070130 | Costea et al. | Mar 2006 | A1 |
20060075496 | Carpenter et al. | Apr 2006 | A1 |
20060095968 | Portolani et al. | May 2006 | A1 |
20060101516 | Sudaharan et al. | May 2006 | A1 |
20060101517 | Banzhof et al. | May 2006 | A1 |
20060117385 | Mester et al. | Jun 2006 | A1 |
20060123477 | Raghavan et al. | Jun 2006 | A1 |
20060143709 | Brooks et al. | Jun 2006 | A1 |
20060150249 | Gassen et al. | Jul 2006 | A1 |
20060161983 | Cothrell et al. | Jul 2006 | A1 |
20060161987 | Levy-Yurista | Jul 2006 | A1 |
20060161989 | Reshef et al. | Jul 2006 | A1 |
20060164199 | Glide et al. | Jul 2006 | A1 |
20060173992 | Weber et al. | Aug 2006 | A1 |
20060179147 | Tran et al. | Aug 2006 | A1 |
20060184632 | Marino et al. | Aug 2006 | A1 |
20060191010 | Benjamin | Aug 2006 | A1 |
20060221956 | Narayan et al. | Oct 2006 | A1 |
20060236393 | Kramer et al. | Oct 2006 | A1 |
20060242709 | Seinfeld et al. | Oct 2006 | A1 |
20060248519 | Jaeger et al. | Nov 2006 | A1 |
20060248582 | Panjwani et al. | Nov 2006 | A1 |
20060251104 | Koga | Nov 2006 | A1 |
20060288417 | Bookbinder et al. | Dec 2006 | A1 |
20070006288 | Mayfield et al. | Jan 2007 | A1 |
20070006313 | Porras et al. | Jan 2007 | A1 |
20070011174 | Takaragi et al. | Jan 2007 | A1 |
20070016951 | Piccard et al. | Jan 2007 | A1 |
20070019286 | Kikuchi | Jan 2007 | A1 |
20070033645 | Jones | Feb 2007 | A1 |
20070038943 | FitzGerald et al. | Feb 2007 | A1 |
20070064689 | Shin et al. | Mar 2007 | A1 |
20070074169 | Chess et al. | Mar 2007 | A1 |
20070094730 | Bhikkaji et al. | Apr 2007 | A1 |
20070101435 | Konanka et al. | May 2007 | A1 |
20070128855 | Cho et al. | Jun 2007 | A1 |
20070142030 | Sinha et al. | Jun 2007 | A1 |
20070143827 | Nicodemus et al. | Jun 2007 | A1 |
20070156895 | Vuong | Jul 2007 | A1 |
20070157180 | Tillmann et al. | Jul 2007 | A1 |
20070157306 | Elrod et al. | Jul 2007 | A1 |
20070168988 | Eisner et al. | Jul 2007 | A1 |
20070171824 | Ruello et al. | Jul 2007 | A1 |
20070174915 | Gribble et al. | Jul 2007 | A1 |
20070192500 | Lum | Aug 2007 | A1 |
20070192858 | Lum | Aug 2007 | A1 |
20070198275 | Malden et al. | Aug 2007 | A1 |
20070208822 | Wang et al. | Sep 2007 | A1 |
20070220607 | Sprosts et al. | Sep 2007 | A1 |
20070240218 | Tuvell et al. | Oct 2007 | A1 |
20070240219 | Tuvell et al. | Oct 2007 | A1 |
20070240220 | Tuvell et al. | Oct 2007 | A1 |
20070240222 | Tuvell et al. | Oct 2007 | A1 |
20070250930 | Aziz et al. | Oct 2007 | A1 |
20070256132 | Oliphant | Nov 2007 | A2 |
20070271446 | Nakamura | Nov 2007 | A1 |
20080005782 | Aziz | Jan 2008 | A1 |
20080018122 | Zierler et al. | Jan 2008 | A1 |
20080028463 | Dagon et al. | Jan 2008 | A1 |
20080040710 | Chiriac | Feb 2008 | A1 |
20080046781 | Childs et al. | Feb 2008 | A1 |
20080066179 | Liu | Mar 2008 | A1 |
20080072326 | Danford et al. | Mar 2008 | A1 |
20080077793 | Tan et al. | Mar 2008 | A1 |
20080080518 | Hoeflin et al. | Apr 2008 | A1 |
20080086720 | Lekel | Apr 2008 | A1 |
20080098476 | Syversen | Apr 2008 | A1 |
20080120722 | Sima et al. | May 2008 | A1 |
20080134178 | Fitzgerald et al. | Jun 2008 | A1 |
20080134334 | Kim et al. | Jun 2008 | A1 |
20080141376 | Clausen et al. | Jun 2008 | A1 |
20080184367 | McMillan et al. | Jul 2008 | A1 |
20080184373 | Traut et al. | Jul 2008 | A1 |
20080189787 | Arnold et al. | Aug 2008 | A1 |
20080201778 | Guo et al. | Aug 2008 | A1 |
20080209557 | Herley et al. | Aug 2008 | A1 |
20080215742 | Goldszmidt et al. | Sep 2008 | A1 |
20080222729 | Chen et al. | Sep 2008 | A1 |
20080263665 | Ma et al. | Oct 2008 | A1 |
20080295172 | Bohacek | Nov 2008 | A1 |
20080301810 | Lehane et al. | Dec 2008 | A1 |
20080307524 | Singh et al. | Dec 2008 | A1 |
20080313738 | Enderby | Dec 2008 | A1 |
20080320594 | Jiang | Dec 2008 | A1 |
20090003317 | Kasralikar et al. | Jan 2009 | A1 |
20090007100 | Field et al. | Jan 2009 | A1 |
20090013408 | Schipka | Jan 2009 | A1 |
20090031423 | Liu et al. | Jan 2009 | A1 |
20090036111 | Danford et al. | Feb 2009 | A1 |
20090037835 | Goldman | Feb 2009 | A1 |
20090044024 | Oberheide et al. | Feb 2009 | A1 |
20090044274 | Budko et al. | Feb 2009 | A1 |
20090064332 | Porras et al. | Mar 2009 | A1 |
20090077666 | Chen et al. | Mar 2009 | A1 |
20090083369 | Marmor | Mar 2009 | A1 |
20090083855 | Apap et al. | Mar 2009 | A1 |
20090089879 | Wang et al. | Apr 2009 | A1 |
20090094697 | Provos et al. | Apr 2009 | A1 |
20090113425 | Ports et al. | Apr 2009 | A1 |
20090125976 | Wassermann et al. | May 2009 | A1 |
20090126015 | Monastyrsky et al. | May 2009 | A1 |
20090126016 | Sobko et al. | May 2009 | A1 |
20090133125 | Choi et al. | May 2009 | A1 |
20090144823 | Lamastra et al. | Jun 2009 | A1 |
20090158430 | Borders | Jun 2009 | A1 |
20090172815 | Gu et al. | Jul 2009 | A1 |
20090187992 | Poston | Jul 2009 | A1 |
20090193293 | Stolfo et al. | Jul 2009 | A1 |
20090198651 | Shiffer et al. | Aug 2009 | A1 |
20090198670 | Shiffer et al. | Aug 2009 | A1 |
20090198689 | Frazier et al. | Aug 2009 | A1 |
20090199274 | Frazier et al. | Aug 2009 | A1 |
20090199296 | Xie et al. | Aug 2009 | A1 |
20090228233 | Anderson et al. | Sep 2009 | A1 |
20090241187 | Troyansky | Sep 2009 | A1 |
20090241190 | Todd et al. | Sep 2009 | A1 |
20090265692 | Godefroid et al. | Oct 2009 | A1 |
20090271867 | Zhang | Oct 2009 | A1 |
20090300415 | Zhang et al. | Dec 2009 | A1 |
20090300761 | Park et al. | Dec 2009 | A1 |
20090328185 | Berg et al. | Dec 2009 | A1 |
20090328221 | Blumfield et al. | Dec 2009 | A1 |
20100005146 | Drako et al. | Jan 2010 | A1 |
20100011205 | McKenna | Jan 2010 | A1 |
20100017546 | Poo et al. | Jan 2010 | A1 |
20100030996 | Butler, II | Feb 2010 | A1 |
20100031353 | Thomas et al. | Feb 2010 | A1 |
20100037314 | Perdisci et al. | Feb 2010 | A1 |
20100043073 | Kuwamura | Feb 2010 | A1 |
20100054278 | Stolfo et al. | Mar 2010 | A1 |
20100058474 | Hicks | Mar 2010 | A1 |
20100064044 | Nonoyama | Mar 2010 | A1 |
20100077481 | Polyakov et al. | Mar 2010 | A1 |
20100083376 | Pereira et al. | Apr 2010 | A1 |
20100115621 | Staniford et al. | May 2010 | A1 |
20100132038 | Zaitsev | May 2010 | A1 |
20100154056 | Smith et al. | Jun 2010 | A1 |
20100180344 | Malyshev et al. | Jul 2010 | A1 |
20100192223 | Ismael et al. | Jul 2010 | A1 |
20100220863 | Dupaquis et al. | Sep 2010 | A1 |
20100235831 | Dittmer | Sep 2010 | A1 |
20100251104 | Massand | Sep 2010 | A1 |
20100281102 | Chinta et al. | Nov 2010 | A1 |
20100281541 | Stolfo et al. | Nov 2010 | A1 |
20100281542 | Stolfo et al. | Nov 2010 | A1 |
20100287260 | Peterson et al. | Nov 2010 | A1 |
20100299754 | Amit et al. | Nov 2010 | A1 |
20100306173 | Frank | Dec 2010 | A1 |
20110004737 | Greenebaum | Jan 2011 | A1 |
20110025504 | Lyon et al. | Feb 2011 | A1 |
20110041179 | St Hlberg | Feb 2011 | A1 |
20110047594 | Mahaffey et al. | Feb 2011 | A1 |
20110047620 | Mahaffey et al. | Feb 2011 | A1 |
20110055907 | Narasimhan et al. | Mar 2011 | A1 |
20110078794 | Manni et al. | Mar 2011 | A1 |
20110093951 | Aziz | Apr 2011 | A1 |
20110099620 | Stavrou et al. | Apr 2011 | A1 |
20110099633 | Aziz | Apr 2011 | A1 |
20110099635 | Silberman et al. | Apr 2011 | A1 |
20110113231 | Kaminsky | May 2011 | A1 |
20110145918 | Jung et al. | Jun 2011 | A1 |
20110145920 | Mahaffey et al. | Jun 2011 | A1 |
20110145934 | Abramovici et al. | Jun 2011 | A1 |
20110167493 | Song et al. | Jul 2011 | A1 |
20110167494 | Bowen et al. | Jul 2011 | A1 |
20110173213 | Frazier et al. | Jul 2011 | A1 |
20110173460 | Ito et al. | Jul 2011 | A1 |
20110219449 | St. Neitzel et al. | Sep 2011 | A1 |
20110219450 | McDougal et al. | Sep 2011 | A1 |
20110225624 | Sawhney et al. | Sep 2011 | A1 |
20110225655 | Niemela et al. | Sep 2011 | A1 |
20110247072 | Staniford et al. | Oct 2011 | A1 |
20110265182 | Peinado et al. | Oct 2011 | A1 |
20110289582 | Kejriwal et al. | Nov 2011 | A1 |
20110302587 | Nishikawa et al. | Dec 2011 | A1 |
20110307954 | Melnik et al. | Dec 2011 | A1 |
20110307955 | Kaplan et al. | Dec 2011 | A1 |
20110307956 | Yermakov et al. | Dec 2011 | A1 |
20110314546 | Aziz et al. | Dec 2011 | A1 |
20120011560 | Natarajan et al. | Jan 2012 | A1 |
20120023593 | Puder et al. | Jan 2012 | A1 |
20120054869 | Yen et al. | Mar 2012 | A1 |
20120066698 | Yanoo | Mar 2012 | A1 |
20120079596 | Thomas et al. | Mar 2012 | A1 |
20120084859 | Radinsky et al. | Apr 2012 | A1 |
20120096553 | Srivastava et al. | Apr 2012 | A1 |
20120110667 | Zubrilin et al. | May 2012 | A1 |
20120117652 | Manni et al. | May 2012 | A1 |
20120121154 | Xue et al. | May 2012 | A1 |
20120124426 | Maybee et al. | May 2012 | A1 |
20120174186 | Aziz et al. | Jul 2012 | A1 |
20120174196 | Bhogavilli et al. | Jul 2012 | A1 |
20120174218 | McCoy et al. | Jul 2012 | A1 |
20120198279 | Schroeder | Aug 2012 | A1 |
20120210423 | Friedrichs et al. | Aug 2012 | A1 |
20120222121 | Staniford et al. | Aug 2012 | A1 |
20120255015 | Sahita et al. | Oct 2012 | A1 |
20120255017 | Sallam | Oct 2012 | A1 |
20120260342 | Dube et al. | Oct 2012 | A1 |
20120266244 | Green et al. | Oct 2012 | A1 |
20120278886 | Luna | Nov 2012 | A1 |
20120297489 | Dequevy | Nov 2012 | A1 |
20120330801 | McDougal et al. | Dec 2012 | A1 |
20120331553 | Aziz et al. | Dec 2012 | A1 |
20130014259 | Gribble et al. | Jan 2013 | A1 |
20130036472 | Aziz | Feb 2013 | A1 |
20130047257 | Aziz | Feb 2013 | A1 |
20130074185 | McDougal et al. | Mar 2013 | A1 |
20130086684 | Mohler | Apr 2013 | A1 |
20130097699 | Balupari et al. | Apr 2013 | A1 |
20130097706 | Titonis et al. | Apr 2013 | A1 |
20130111587 | Goel et al. | May 2013 | A1 |
20130117852 | Stute | May 2013 | A1 |
20130117855 | Kim et al. | May 2013 | A1 |
20130139264 | Brinkley et al. | May 2013 | A1 |
20130160125 | Likhachev et al. | Jun 2013 | A1 |
20130160127 | Jeong et al. | Jun 2013 | A1 |
20130160130 | Mendelev et al. | Jun 2013 | A1 |
20130160131 | Madou et al. | Jun 2013 | A1 |
20130167236 | Sick | Jun 2013 | A1 |
20130174214 | Duncan | Jul 2013 | A1 |
20130185789 | Hagiwara et al. | Jul 2013 | A1 |
20130185795 | Winn et al. | Jul 2013 | A1 |
20130185798 | Saunders et al. | Jul 2013 | A1 |
20130191915 | Antonakakis et al. | Jul 2013 | A1 |
20130196649 | Paddon et al. | Aug 2013 | A1 |
20130227691 | Aziz et al. | Aug 2013 | A1 |
20130246370 | Bartram et al. | Sep 2013 | A1 |
20130247186 | LeMasters | Sep 2013 | A1 |
20130263260 | Mahaffey et al. | Oct 2013 | A1 |
20130291109 | Staniford et al. | Oct 2013 | A1 |
20130298243 | Kumar et al. | Nov 2013 | A1 |
20130318038 | Shiffer et al. | Nov 2013 | A1 |
20130318073 | Shiffer et al. | Nov 2013 | A1 |
20130325791 | Shiffer et al. | Dec 2013 | A1 |
20130325792 | Shiffer et al. | Dec 2013 | A1 |
20130325871 | Shiffer et al. | Dec 2013 | A1 |
20130325872 | Shiffer et al. | Dec 2013 | A1 |
20140032875 | Butler | Jan 2014 | A1 |
20140053260 | Gupta et al. | Feb 2014 | A1 |
20140053261 | Gupta et al. | Feb 2014 | A1 |
20140130158 | Wang et al. | May 2014 | A1 |
20140137180 | Lukacs et al. | May 2014 | A1 |
20140169762 | Ryu | Jun 2014 | A1 |
20140179360 | Jackson et al. | Jun 2014 | A1 |
20140181131 | Ross | Jun 2014 | A1 |
20140189687 | Jung et al. | Jul 2014 | A1 |
20140189866 | Shiffer et al. | Jul 2014 | A1 |
20140189882 | Jung et al. | Jul 2014 | A1 |
20140237600 | Silberman et al. | Aug 2014 | A1 |
20140280245 | Wilson | Sep 2014 | A1 |
20140283037 | Sikorski et al. | Sep 2014 | A1 |
20140283063 | Thompson et al. | Sep 2014 | A1 |
20140328204 | Klotsche et al. | Nov 2014 | A1 |
20140337836 | Ismael | Nov 2014 | A1 |
20140344926 | Cunningham et al. | Nov 2014 | A1 |
20140351935 | Shao et al. | Nov 2014 | A1 |
20140380473 | Bu et al. | Dec 2014 | A1 |
20140380474 | Paithane et al. | Dec 2014 | A1 |
20150007312 | Pidathala et al. | Jan 2015 | A1 |
20150096022 | Vincent et al. | Apr 2015 | A1 |
20150096023 | Mesdaq et al. | Apr 2015 | A1 |
20150096024 | Haq et al. | Apr 2015 | A1 |
20150096025 | Ismael | Apr 2015 | A1 |
20150180886 | Staniford et al. | Jun 2015 | A1 |
20150186645 | Aziz et al. | Jul 2015 | A1 |
20150199513 | Ismael et al. | Jul 2015 | A1 |
20150199531 | Ismael et al. | Jul 2015 | A1 |
20150199532 | Ismael et al. | Jul 2015 | A1 |
20150220735 | Paithane et al. | Aug 2015 | A1 |
20150372980 | Eyada | Dec 2015 | A1 |
20160004869 | Ismael et al. | Jan 2016 | A1 |
20160006756 | Ismael et al. | Jan 2016 | A1 |
20160044000 | Cunningham | Feb 2016 | A1 |
20160127393 | Aziz et al. | May 2016 | A1 |
20160191547 | Zafar et al. | Jun 2016 | A1 |
20160191550 | Ismael et al. | Jun 2016 | A1 |
20160224787 | Guy | Aug 2016 | A1 |
20160261612 | Mesdaq et al. | Sep 2016 | A1 |
20160285914 | Singh et al. | Sep 2016 | A1 |
20160301703 | Aziz | Oct 2016 | A1 |
20160314491 | Shani et al. | Oct 2016 | A1 |
20160335110 | Paithane et al. | Nov 2016 | A1 |
20170083703 | Abbasi et al. | Mar 2017 | A1 |
20180013770 | Ismael | Jan 2018 | A1 |
20180048660 | Paithane et al. | Feb 2018 | A1 |
20180121316 | Ismael et al. | May 2018 | A1 |
20180234459 | Kung et al. | Aug 2018 | A1 |
20180288077 | Siddiqui et al. | Oct 2018 | A1 |
20190327271 | Saxena et al. | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
2439806 | Jan 2008 | GB |
2490431 | Oct 2012 | GB |
0206928 | Jan 2002 | WO |
0223805 | Mar 2002 | WO |
2007117636 | Oct 2007 | WO |
2008041950 | Apr 2008 | WO |
2011084431 | Jul 2011 | WO |
2011112348 | Sep 2011 | WO |
2012075336 | Jun 2012 | WO |
2012145066 | Oct 2012 | WO |
2013067505 | May 2013 | WO |
Entry |
---|
“Mining Specification of Malicious Behavior”—Jha et al, UCSB, Sep. 2007 https://www.cs.ucsb.edu/.about.chris/research/doc/esec07.sub.--mining.pdf-. |
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003). |
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.isp?reload=true&arnumbe-r=990073, (Dec. 7, 2013). |
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108. |
Adetoye, Adedayo , et al., “Network Intrusion Detection & Response System”, (“Adetoye”), (Sep. 2003). |
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126. |
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006. |
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184. |
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77. |
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003). |
Chaudet, C. , et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82. |
Chen, P. M. and Noble, B. D., “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”) (2001). |
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012). |
Cohen, M.I. , “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120. |
Costa, M. , et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005). |
Didier Stevens, “Malicious PDF Documents Explained”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 9, No. 1, Jan. 1, 2011, pp. 80-82, XP011329453, ISSN: 1540-7993, DOI: 10.1109/MSP.2011.14. |
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007). |
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002). |
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010. |
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010. |
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011. |
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28. |
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:http://www.informationweek.com/microsofts-honeymonkeys-show-patching-windows-works/d/d-id/1035069? [retrieved on Jun. 1, 2016]. |
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase @ CMU, Carnegie Mellon University, 2007. |
Hiroshi Shinotsuka, Malware Authors Using New Techniques to Evade Automated Threat Analysis Systems, Oct. 26, 2012, http://www.symantec.com/connect/blogs/, pp. 1-4. |
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University. |
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011. |
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003). |
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6. |
Khaled Salah et al: “Using Cloud Computing to Implement a Security Overlay Network”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 11, No. 1, Jan. 1, 2013 (Jan. 1, 2013). |
Kim, H. , et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286. |
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”), (2003). |
Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003). |
Kristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages. |
Lastline Labs, The Threat of Evasive Malware, Feb. 25, 2013, Lastline Labs, pp. 1-8. |
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711. |
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011. |
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001). |
Moore, D. , et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910. |
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34. |
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg. |
Natvig, Kurt , “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002). |
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987. |
Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005). |
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302. |
Oberheide et al., CloudAV.sub.--N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA. |
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doom, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”). |
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25. |
Singh, S. , et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004). |
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998). |
Venezia, Paul , “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003). |
Vladimir Getov: “Security as a Service in Smart Clouds—Opportunities and Concerns”, Computer Software and Applications Conference (COMPSAC), 2012 IEEE 36th Annual, IEEE, Jul. 16, 2012 (Jul. 16, 2012). |
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350. |
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages. |
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9. |
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1. |
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82. |
MacDonald, Neil et al. “How to make Cloud IaaS Workloads More Secure Than Your Own Data Center” Gartner Research ID: G00300337, https://www.gartner.com/en/documents/3352444/how-to-make-cloud-iaas-workloads-more-secure-than-your-o, last accessed May 13, 2020. |
U.S. Appl. No. 15/878,386 dated Jan. 23, 2018 Non-Final Office Action dated Nov. 12, 2019. |
U.S. Appl. No. 15/878,386 dated Jan. 23, 2018 Notice of Allowance dated Mar. 3, 2020. |