Ventricular fibrillation (VF) is the most common arrhythmia causing sudden cardiac death. Electrical defibrillation remains the method of choice for the treatment of VF. However, the probability of a successful defibrillation decreases after a prolonged duration of VF. Adequate coronary perfusion during cardiopulmonary resuscitation (CPR) is crucial for successful defibrillation following a prolonged VF (or late VF). Studies have demonstrated that a brief period of myocardial perfusion with CPR before defibrillation could improve outcome for selected patients in whom defibrillation is not likely to succeed.
Since out-of-hospital cardiac arrest (OOHCA) does not allow invasive measurement of coronary perfusion status, noninvasive methods have been developed to monitor coronary perfusion status. One such method is based on the VF waveform of surface electrocardiogram (ECG). However, there remains a need to rapidly distinguish early VF and late VF so as to provide timely guidance on the CPR and electrical defibrillation treatments to the patient.
The systems and methods described in the present application can rapidly and quantitatively distinguish early stage and the late stage of ventricular fibrillation, which can provide timely guidance to the medical personnel on the most effective treatments to patients suffering from ventricular fibrillation. Specifically, the disclosed methods can help medical personnel to determine when CPR is needed, and whether to apply electrical defibrillation in accordance to the stage of the VF. The disclosed systems and methods are non-invasive, and can be conveniently applied in OOHCA. The disclosed systems and methods do not interfere with the CPR treatment, and can thus be applied in conjunction with CPR to increase the rate of successful defibrillation in ventricular fibrillation cardiac arrest.
In a general aspect, the present invention relates to a computer-assisted method for quantitative characterization and treatment of ventricular fibrillation. The method includes acquiring a time series of a ventricular fibrillation (VF) signal using a probe from a patient; subtracting the mean from the time series of the VF signal; calculating a cumulative VF signal by a computer system after the mean is subtracted from the time series of the VF signal; segmenting the cumulative VF signal by a plurality of sampling boxes by the computer system; calculating the root-mean-square of the cumulative VF signal as a function of the sampling box size by the computer system; extracting, by the computer system, an exponent of the root-mean-square of the cumulative VF signal as a function of the sampling box size; applying electrical defibrillation to the patient if the exponent is below a predetermined value; and applying cardiopulmonary resuscitation (CPR) to the patient if the exponent is above a predetermined value. The algorithm of the computer system described here is called Detrended Fluctuation Analysis (DFA).
Implementations of the system may include one or more of the following. The computer-assisted method can further include applying electrical defibrillation to the patient after the step of applying CPR to the patient. The VF signal can include a surface electrocardiogram (ECG) signal. The step of calculating root-mean-square of the cumulative VF signal can include calculating a trend in the cumulative VF signal in each of the plurality of sampling boxes; and subtracting the trend from the cumulative VF signal in each of the plurality of sampling boxes to produce a detrended cumulative VF signal, wherein the root-mean-square of the detrended cumulative VF signal is calculated. The trend in a sampling box can be a linear line with the least square fit to the cumulative VF signal in that sampling box. The computer-assisted method can further include identifying a first region and a second region in the detrended cumulative VF signal separated by a crossover point, wherein the detrended cumulative VF signal in the first region and the second region have different exponents as a function of the sampling box size. The second region can have larger sampling box sizes than the first region. The step of extracting an exponent of the root-mean-square of the detrended cumulative VF signal an include computing the exponent in the second region of the detrended cumulative VF signal. The exponent in the first region can be larger than the exponent in the second region.
In another general aspect, the present invention relates to a computer-assisted method for quantitative characterization and treatment of ventricular fibrillation. The method includes applying cardiopulmonary resuscitation (CPR) to a patient; acquiring a time series of a ventricular fibrillation (VF) signal using a probe from the patient during CPR; subtracting the mean from the time series of the VF signal; calculating a cumulative VF signal by a computer system after the mean is subtracted from the time series of the VF signal; segmenting the cumulative VF signal by a plurality of sampling boxes by the computer system; calculating the root-mean-square of the cumulative VF signal as a function of the sampling box size by the computer system; extracting, by the computer system, an exponent of the root-mean-square of the cumulative VF signal as a function of the sampling box size; and applying electrical defibrillation to the patient if the exponent decreases in response to the CPR.
Implementations of the system may include one or more of the following. The VF signal can include a surface electrocardiogram (ECG) signal. The step of calculating root-mean-square of the cumulative VF signal can include calculating a trend in the cumulative VF signal in each of the plurality of sampling boxes; and subtracting the trend from the cumulative VF signal in each of the plurality of sampling boxes to produce a detrended cumulative VF signal, wherein the root-mean-square of the detrended cumulative VF signal is calculated. The computer-assisted method can further include identifying a first region and a second region separated by a crossover point in the detrended cumulative VF signal, wherein the detrended cumulative VF signal in the first region and the second region have different exponents as a function of the sampling box size. The second region can have larger sampling box sizes than the first region. The exponent can be extracted from the root-mean-square of the detrended cumulative VF signal in the second region. The exponent in the first region can be larger than the exponent in the second region. The electrical defibrillation can be applied to the patient if the exponent decreases by 0.1 or more in response to the CPR.
In another general aspect, the present invention relates to a system for quantitative characterization and treatment of ventricular fibrillation. The system includes a probe configured to acquire a time series of a ventricular fibrillation (VF) signal using a probe from a patient; and a computer processor in communication with the probe. The computer processor can subtract the mean from the time series of the VF signal, calculate a cumulative VF signal after the mean is subtracted from the time series of the VF signal, segment the cumulative VF signal by a plurality of sampling boxes, calculate the root-mean-square of the cumulative VF signal as a function of the sampling box size, and extract an exponent of the root-mean-square of the cumulative VF signal as a function of the sampling box size. The computer processor can recommend electrical defibrillation to the patient if the exponent is below a predetermined value. The computer processor can recommend application of cardiopulmonary resuscitation (CPR) to the patient if the exponent is above a predetermined value.
Implementations of the system may include one or more of the following. The system can recommend electrical defibrillation to the patient after the application of CPR to the patient if the exponent is above the predetermined value. The computer system can calculate a trend in the cumulative VF signal in each of the plurality of sampling boxes and to subtract the trend from the cumulative VF signal in each of the plurality of sampling boxes to produce a detrended cumulative VF signal. The root-mean-square of the detrended cumulative VF signal can be calculated. The computer system can identify a first region and a second region in the detrended cumulative VF signal, wherein the second region has larger sampling box sizes than the first region, wherein the detrended cumulative VF signal has a larger exponent in the first region than in the second region. The computer system can extract the exponent of the root-mean-square of the detrended cumulative VF signal in the second region. The system can further include a display device configured to display the detrended cumulative VF signal as a function of the sampling box size. The probe can record the VF signal from the patient during a CPR applied to the patient. The computer system can extract the exponent of the root-mean-square of the cumulative VF signal during the CPR. The system can recommend electrical defibrillation to the patient after the application of CPR to the patient if the exponent decreases in response to the CPR.
Although the invention has been particularly shown and described with reference to multiple embodiments, it will be understood by persons skilled in the relevant art that various changes in form and details can be made therein without departing from the spirit and scope of the invention.
The following drawings, which are incorporated in and form a part of the specification, illustrate embodiments of the present invention and, together with the description, serve to explain the principles of the invention.
Referring to
In some embodiments, referring to
In our analysis, it is conceptualized that VF signals are generated by multiple interacting systems within the heart in a complex but nonrandom process. Analytical methods from the field of nonlinear dynamics are adopted to describe the underlying structure of non periodic but deterministic data series. Specifically, the VF signals are analyzed using detrended fluctuation analysis (DFA) by the analyzer 110 (
In the analysis by the analyzer 110 (
A root-mean-square value is then computed for the detrended cumulative VF signal in each of sampling boxes (step 260). The sampling box size is then varied to a different value (step 270). Root-mean-square values are computed for the detrended cumulative VF signal in each of the sampling boxes having the new box size (step 270). The steps 220-260 are repeated to produce root-mean-square values of the detrended cumulative VF signal as a function of sampling box size, as shown (e.g. S0 and S1) in
Referring to
In accordance to the present invention, referring back to
Mechanism
The electrocardiogram recorded from the surface of the body represents the superposition of the electrical fields generated by different volume elements of the heart. Thus the patterns in the VF signal are likely related to the underlying organization of the myocardial electrical activities. The presently disclosed analysis has identified several different VF phases ranging from large periodic waveforms in the early VF to infrequent episodic electric activities within a segment of myocardium failing to conduct to adjacent segments. It is observed that the second slope α2 is related to the VF conditions in a patient. It is observed that in early VF, few large periodic waveforms render the surface ECG similar to a sinusoidal wave, characterized by a low slope α2. In late VF, the waveforms break and degenerate into small infrequent electric activities, resulting in higher slope α2. In other words, the slope α2 increases as VF worsens over time. The slope α2 or DFAα2 can therefore be used to help medical personnel rapidly quantify the organization property of VF signals in an emergency response to a patient suffering VF.
Validation
The mechanism of the previously described observations is validated with clinical data.
The second slope α2 (exponent DFAα2) is calculated for each 10-second period and averaged every one minute in the entire 10 minute period.
In accordance to the present invention, referring back to
In some embodiments, referring to
A root-mean-square value is then computed for the detrended cumulative VF signal in each of sampling boxes (step 570). The sampling box size is then varied to a different value. Root-mean-square values are computed for the detrended cumulative VF signal in each of the sampling boxes having the new box size (step 580). The steps 530-570 are repeated to produce root-mean-square values of the detrended cumulative VF signal as a function of sampling box size (step 580).
The sampling size is varied. The root-mean-square of the detrended cumulative VF signal (i.e. the DFA curve) is calculated as a function of sampling box sizes (step 580). Two regions having different exponents are identified in the DFA curve (step 590), and the exponents calculated in the two regions (step 600). The second exponent DFA α2 is monitored during the CPR treatment (step 610). If the DFA α2 is found to decrease by more than a predetermined magnitude (e.g. a decrease of 0.1 or 0.2 in DFA α2 ), electrical defibrillation can be applied to the patient (step 620).
Alternatively, the overall magnitude of the detrended root-mean-square curve can be monitored (step 610). If the DFA curve drops in value as a function of the sampling box sizes in the second region, as observed from a display (115,
The disclosed system and methods can include one or more of the following advantages. The systems and methods described in the present application can rapidly and quantitatively distinguish early stage and the late stage of ventricular fibrillation, which can provide timely guidance to the medical personnel on the most effective treatments to patients suffering from ventricular fibrillation. Specifically, the disclosed methods can help medical personnel to determine when CPR is needed, and whether to apply electrical defibrillation in accordance to the stage of the VF. The disclosed systems and methods are non-invasive, and can be conveniently applied in OOHCA. The disclosed systems and methods do not interfere with the CPR treatment, and can thus be applied in conjunction with CPR to increase the rate of successful defibrillation in ventricular fibrillation cardiac arrest.
It should be understood that the above described systems and methods are compatible to with different configurations and variations without deviating from the spirit of the present invention. For example, VF signals are not limited to surface ECG waveforms. Moreover, the VF signals can be analyzed in different scaling analyses that can extract exponent versus sampling box size. The VF fluctuations can be characterized by two of more regions each characterized by different exponent. The values for the exponents, the crossover point, and the range for the sampling box sizes can differ from the examples used in the present specification and drawings. Furthermore, different detrending techniques can be used; the trends in sampling boxes can be determined using different approaches.
Number | Name | Date | Kind |
---|---|---|---|
4610254 | Morgan et al. | Sep 1986 | A |
4619265 | Morgan et al. | Oct 1986 | A |
4989000 | Chevion et al. | Jan 1991 | A |
5092341 | Kelen | Mar 1992 | A |
5109862 | Kelen et al. | May 1992 | A |
5571142 | Brown et al. | Nov 1996 | A |
5676690 | Noren | Oct 1997 | A |
5683424 | Brown et al. | Nov 1997 | A |
6438419 | Callaway et al. | Aug 2002 | B1 |
6859664 | Daum | Feb 2005 | B2 |
7231244 | Laitio et al. | Jun 2007 | B2 |
7569018 | Geddes | Aug 2009 | B1 |
7590443 | Bharmi | Sep 2009 | B2 |
7643877 | Dujmovic | Jan 2010 | B2 |
7974687 | Farazi et al. | Jul 2011 | B1 |
8032213 | Qu et al. | Oct 2011 | B1 |
20030176798 | Simon | Sep 2003 | A1 |
20050131465 | Freeman et al. | Jun 2005 | A1 |
20060270952 | Freeman et al. | Nov 2006 | A1 |
20070244402 | Brockway et al. | Oct 2007 | A1 |
20080046015 | Freeman et al. | Feb 2008 | A1 |
20080188762 | John et al. | Aug 2008 | A1 |
20080188763 | John et al. | Aug 2008 | A1 |
20080208070 | Snyder et al. | Aug 2008 | A1 |
20080312708 | Snyder | Dec 2008 | A1 |
20090037740 | Moskowitz | Feb 2009 | A1 |
20090149903 | Freeman | Jun 2009 | A1 |
20090292180 | Mirow | Nov 2009 | A1 |
20100185225 | Albrecht et al. | Jul 2010 | A1 |
20110112593 | Freeman et al. | May 2011 | A1 |
20110118800 | Sullivan | May 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20120004693 A1 | Jan 2012 | US |