SYSTEM AND METHOD FOR PREDICTING THE PRESENCE OF RARE EARTH ELEMENTS

Information

  • Patent Application
  • 20240011965
  • Publication Number
    20240011965
  • Date Filed
    June 29, 2023
    a year ago
  • Date Published
    January 11, 2024
    a year ago
Abstract
A system for predicting rare earth elements (REEs) in a feedstock sample includes a measurement instrument that records a measurement for a sample, a processor communicatively coupled to the measuring instrument, and a memory communicatively coupled to the processor and containing machine readable instructions that, when executed by the processor, cause the processor to correlate the measurement series using a model; and predict a presence of one or more rare earth element based at least in part on the correlation. A method for predicting rare earth elements includes measuring feedstock samples via DGA, XRF or PGNAA, to generate a measurements of elements of interest with a lower atomic weight than REEs; correlating the measurements with a model; and predicting a presence of one or more rare earth elements based at least in part on the correlation.
Description
BACKGROUND

Rare earth elements (REE) are crucial materials in many electronic devices, energy system components and military defense applications. The rare earth group of elements includes lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), scandium (Sc), yttrium (Y), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu). REE include light rare earth elements (LREE) and heavy rare earth elements (HREE). LREE include lanthanum, cerium, praseodymium, neodymium, samarium, europium, and gadolinium. HREE include scandium, yttrium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Other elements experiencing increasing demand in the production of high-tech devices include gallium and germanium. Locating these elements in feedstock and mined materials can be challenging.


Recently, coal and coal byproducts have been identified as a promising sources of REE. However, methods for detecting these elements in a feedstock sample are limited. Measuring equipment may have high power and processing requirements that are not suitable for some applications, such as in the field. It is often necessary to bring samples to laboratory-based equipment that is expensive and non-portable. One lab-based method for detecting and measuring REE in samples is inductively-coupled plasma optical emission spectroscopy (ICP-OES), which require expensive instrumentation that is not fit for deployable use near mining sites.


SUMMARY OF THE INVENTION

In a first aspect, a system and method predict REE levels in a feedstock without requiring direct measurement of the REEs. Sensors are combined with predictive algorithms to enable selective mining and sorting of high rare earth element (REE) content coal and coal-related feedstocks. In embodiments, sensors may be incorporated in stationary and handheld devices that may be used in a wide variety of locations, such as a mining site or feedstock processing facility.


A method for predicting the presence of rare earth elements (REEs) in a feedstock includes measuring a feedstock sample using a spectrum analyzer to generate measurements of elements of interest with a lower atomic weight than REEs; correlating the measurements with a model; and predicting presence of one or more REEs based at least in part on the correlation.


A system for predicting the presence of rare earth elements in a feedstock includes a measuring instrument that records a measurement for a feedstock sample; a processor, communicatively coupled to the measuring instrument; and a memory communicatively coupled to the processor and containing machine readable instructions that, when executed by the processor, causes the processor to execute the method.


Sensors may include elemental analyzers such as X-ray fluorescence (XRF) analyzers and prompt gamma neutron activation analysis (PGNAA) sensors, which identify REE-rich layers in coal seams using a relatively simple and inexpensive sensor technology. Sensors may also include dual gamma analyzers (DGA). XRF is fast and field deployable and can be employed in combination with selective mining and real-time on-belt coal sorting using PGNAA to provide more efficient identification of REE-rich feedstocks. DGA analyzers measure material density, ash content and BTU. Any of the sensors and/or analyzers disclosed herein may be used alone or in combination.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a flowchart illustrating a method for predicting the presence of REEs, in embodiments.



FIG. 2 shows a system for predicting the presence of REEs, in embodiments.





DETAILED DESCRIPTION OF THE EMBODIMENTS

Spectral analysis can be used to identify the presence and quantity, or abundance, of elements in a feedstock, such as coal and coal byproducts. X-ray fluorescence (XRF) identifies elements by irradiating a sample with high-energy X-rays and capturing the resulting fluorescence with a spectrum analyzer. Each element in the sample will exhibit a characteristic fluorescence signature, which can be used to identify the element and its abundance in the sample.


Another technique for spectral analysis is prompt-gamma neutron activation analysis (PGNAA), which irradiates a sample with a beam of neutrons. Elements in the sample will emit gamma rays with can be measured with a gamma ray spectrometer. While similar, XRF and PGNAA may capture different information. For example, XRF measures limited depths and surface areas whereas PGNAA is able to penetrate an entire cross-section of a sample. A spectrum captured by spectral analysis of a sample is typically shown as wavelength vs. count rate, or number of emissions per second, for example. A graph of the spectrum will show peaks at various wavelengths, which can be associated elements in the sample.


Yet another technique for spectral analysis is dual gamma analysis (DGA). DGA utilizes a low-energy gamma-ray isotope and a high-energy gamma-ray isotope to measure ash, weight, and density of a feedstock. This process involves measuring the signal attenuation of both radioisotopes individually and using ratios of these signal attenuations to provide measurements of ash, and density.


Analyzers using XRF, PGNAA and DGA may be used independently or in combination. In particular, PGNAA and DGA may be combined in a Full Stream Elemental Analyzer (FSEA). Identifying the REE presence and abundance in a feedstock is best done as close to the mining process as possible. Since REEs are rare, not all mined feedstocks contain any REEs at all, or enough to justify extraction. Mixing of feedstocks during transport and/or processing can dilute the concentration of REEs, which makes identification close to the point of mining i.e., before a quantity of ore has been intermixed with other ore, beneficial.


REEs are among the heaviest atoms in the periodic table. Thus, detecting REEs with spectral analysis requires irradiating a sample with higher energy particles to generate emissions that can be captured with a spectrometer. Providing these higher energy particles can be difficult or impossible in the field or at locations, where identifying REE content of a sample provides the best information for further processing. Embodiments are discussed herein in terms of identifying REEs but other elements may also be identified, such as gallium and germanium. Any reference to REE should be understood to also refer at least to gallium and germanium.


In embodiments, a method of predicting REE presence and abundance uses spectral analysis of a sample to detect key elements which are quantifiable by XRF, PGNAA and/or DGA. Measurements of these elements are then used to predict REEs by a model that correlates presence of the key elements with presence of REEs. Table 1 shows REEs that are predicted using embodiments discussed herein in the left column. Elements that are measured using XRF are shown in the center column and elements that are measured using PGNAA are shown in the right column.













TABLE 1







Predicted REE
XRF
PGNAA









La
Na
Al2O3



Ce
Mg
CaO



Pr
Al
Fe2O3



Nd
Si
K2O



Pm
P
MgO



Sm
K
MnO2



Eu
Ca
Na2O



Gd
Ti
SiO2



Tb
Fe
SO3



Dy
Ba
TiO2



Ho
Mn



Er
Sr



Tm



Yb



Lu



Ge



Ga










XRF and PGNAA methods produce a spectrum from a sample. From the spectrum, the peaks are separated from the background (valleys/parts of the curves outside of the peaks). The peak areas are used to provide elemental compositions of a sample based on standard compositions. When XRF and PGNAA analyzers provide an output for elemental measurements, there are calibrations and algorithms used to process this peak area data to output a final number for the amount of the element associated with each peak. The final elemental output measurement may be used to make statistical correlations between elements and REE.


In embodiments, the full raw spectra captured by XRF or PGNAA is used instead of the calculated elemental measurements. A model is built, or trained, using samples with known REE presence and abundance to generate coefficients incorporating the background as well as the peaks of a spectrum. The background can also be understood as the valleys between peaks. While coefficients are labeled with an element such as “Na, K, Ca, etc.” herein, the coefficients are not the final elemental output measurements but the raw spectral values (including some of the background). As further samples are processed, neural networks or other computational analysis techniques may be used to continue to develop the model algorithms using the original, or training, coefficients.


A similar modeling process may be used to develop coefficients using DGA measurements of density, ash content, heating value, weight, and moisture, for example.


A general form of the model is represented as follows. Measurements made by DGA analysis may include a measurement series having a plurality of y individual DGA measurements, m1, m2, . . . my. The model also includes a set of x predictions p1, p2, . . . px, for REE abundance predictions of x REE species. Each prediction uses y fitting constants C, one for each individual measurement m, such that






p
1
=m
1
*C11+m2*C12+ . . . +my*C1y  (1)






p
2
=m
1
*C21+m2*C22+ . . . +my*C2y  (2)





. . .






p
x
=m
1
*Cx
1
+m
2
*Cx
2
+ . . . +m
y
*Cx
y.  (3)


The value of each fitting constant is variable and is fit based on a measured abundance for each REE using a complementary technique, for example ICP-OES. The set of all y*x=N fitting constants can be fit using a training set where the measured abundance of each of the x REE species is known experimentally. The model, using these fitting constants, is then used to predict the presence of one or more of the x REE species using a measurement series recorded for a new sample. In embodiments, a neural network may be used to generate the model.


In an embodiment, the model described above includes using the fitting coefficients as exponents in addition to multipliers. For example, given the same individual measurements m1, m2, . . . my, a set of prediction p1, p2, . . . px is calculated using two sets of fitting coefficients C and D, both having y*x=N coefficients in the set, such that






p
1
=C11*(m1)D11+C12*(m2)D12+ . . . +C1y*(my)D1y  (4)






p
2
=C21*(m1)D21+C22*(m2)D22+ . . . +C2y*(my)D2y  (5)






p
x
=Cx
1*(m1)Dx1+Cx2*(m2)Dx2+ . . . +Cxy*(my)Dxy.  (6)


In an embodiment, each measurement is normalized to a value between zero and one based at least in part on a peak-value measured for that measurement of the measurement series.


In an embodiment, the predicted abundances include one or more of total rare earth element, light rare earth element, heavy rare earth element, the ratio of light rare earth element to heavy rare earth element, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, scandium, yttrium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.



FIG. 1 is a flowchart illustrating a method 300 for predicting the presence and abundance of rare earth elements. Method 300 may include blocks 302, 308 and 312. In embodiments, the block 302 includes one of blocks 304 or 306, block 308 includes block 310, and block 312 includes block 314.


In block 302, feedstock samples are measured to generate measurements of elements of interest in the sample. In an example of block 302, elements of interest are measured using a spectrum analyzer and include elements that have a lower atomic weight than rare earth elements. Block 304 includes measuring the feedstock sample using x-ray fluorescence. Block 306 includes measuring the feedstock sample using prompt-gamma neutron activation analysis. Block 307 includes measuring the feedstock sample using dual gamma analysis. Embodiments discussed herein may use any type of spectrum analysis or a combination of two or more types.


In block 308, the measurements are correlated using a model. In block 310, the model includes a corresponding fitting constant for each element of interest. In an example of block 310, the fitting constants are similar to those shown in FIGS. 1 and 2.


In block 312 the presence of one or more rare earth elements is predicted based at least in part on the model correlation. In block 314, the rare earth elements may include one or more of total rare earth element, light rare earth elements, heavy rare earth elements, and the ratio of light rare earth elements to heavy rare earth elements. In an example of blocks 312 and 314, the processor 130 predicts the presence of rare earth elements based at least in part on the correlation of spectrum analyzer measurements of a feedstock sample with coefficients of the model.


The method 300 is not limited, unless otherwise specified or understood by those of ordinary skill in the art, to the order shown in FIG. 1.



FIG. 2 illustrates a system 400 for predicting the abundance of rare earth elements using measuring instrument 410, a processor 430, and a memory 440. The memory includes instructions 442, model 444, and predictions 448. The measuring instrument 410 records a measurement series of a feedstock sample 420 to generate corresponding measurement data 450 that, in an embodiment, is stored in memory 440. The instructions 442, when executed by the processor 430 cause the processor 430 to correlate the measurement series using the model 444 to generate predictions 448. The processor 430 then predicts the presence of one or more rare earth elements based at least in part on the predictions 448. In an embodiment, measuring instrument 410 is a handheld X-ray fluorescence instrument (XRF). In an embodiment, measuring instrument 410 is a prompt gamma neutron activation analysis (PGNAA) sensor. In a further embodiment, measuring instrument 410 is a dual gamma analyzer (DGA).


In an embodiment, the model 444 includes a plurality of fitting constants 446 that include one fitting constant 446 for each measurement of a measurement series. Each fitting constant 446 is multiplied by the corresponding measurement. In an embodiment, one or more of the measurements is raised to the respective power of the corresponding fitting constant.


In an embodiment, the model 444 includes a plurality of fitting constants 447 that include fitting constant 447 for ash content data. Each fitting constant 447 is multiplied by a corresponding measurement of ash content data. In an embodiment, one or more of the measurements is raised to the respective power of the corresponding fitting constant.


In an embodiment, the measuring instrument 410 records a measurement of the sample 420 that includes an abundance measurement of elements of interest, which may include one or more of sodium, magnesium, aluminum, silicon, phosphorus, sulfur, potassium, calcium, titanium, iron, barium, strontium, manganese and yttrium. In embodiments, other elements may be measured. Measuring instrument 410 may record a single measurement from sample 420, or a series of measurements. In an embodiment, the measurement data 450 of sample 420 recorded by measurement instrument 410 is combined with ash content data 452. The instructions 442, when executed by the processor 430 cause the processor 430 to correlate the measurement data 450 and ash content data 452 using the model 444 that includes fitting constants 446 and fitting constants 447 to generate predictions 448. The processor 430 then predicts the presence of one or more rare earth elements based at least in part on the predictions 448.


In an embodiment, the measuring instrument 410 records a measurement of the sample 420 that includes an abundance measurement of silicon, titanium and barium. By including fewer species in the measurement series, system 400 is more efficient in one or more of energy consumption, time, and processing power.


In an embodiment, measuring instrument 410 is a prompt gamma neutron activation analysis (PGNAA) sensor that is communicatively coupled to the processor 430 and that records a measurement of sample 420 to generate corresponding measurement series data 450, that in an embodiment is stored in memory 440. The sample 420 may be present on a conveyor belt and the system 400 measuring instrument 410 can be operated in combination with selective mining to perform real-time on-belt coal sorting.


Changes may be made in the above methods and systems without departing from the scope hereof. It should thus be noted that the matter contained in the above description or shown in the accompanying drawings should be interpreted as illustrative and not in a limiting sense. The following claims are intended to cover all generic and specific features described herein, as well as all statements of the scope of the present method and system, which, as a matter of language, might be said to fall therebetween.

Claims
  • 1. A method for predicting the presence of rare earth elements (REEs) in a feedstock, comprising: measuring a feedstock sample using a dual gamma analyzer (DGA) to generate measurements of elements of interest with a lower atomic weight than REEs;correlating the measurements with a model; andpredicting presence of one or more REEs based at least in part on the correlation.
  • 2. The method of claim 1, wherein the model comprises a corresponding fitting constant for each element of interest.
  • 3. The method of claim 1, wherein the elements of interest include one or more of sodium, magnesium, aluminum, silicon, phosphorous, potassium, calcium, titanium, iron, barium, manganese and strontium.
  • 4. The method of claim 1, wherein the elements of interest include one or more of Al2O3, CaO, Fe2O3, K2O, MgO, MnO2, Na2O, SiO2, SO3 and TiO2.
  • 5. The method of claim 4, wherein the model comprises a corresponding fitting constant for each element of interest.
  • 6. The method of claim 1, wherein the model comprises an ash fitting constant corresponding to an ash content.
  • 7. The method of claim 6, wherein the elements of interest include one or more of sodium, magnesium, aluminum, silicon, phosphorous, sulfur, potassium, calcium, iron, strontium, manganese and yttrium.
  • 8. The method of claim 6, wherein the elements of interest include one or more of silicon, titanium, barium and gallium.
  • 9. The method of claim 1, wherein the rare earth elements comprise one or more of total rare earth elements, light rare earth elements, heavy rare earth elements, and a ratio of light rare earth elements to heavy rare earth elements.
  • 10. The method of claim 1, wherein the feedstock further comprises coal and coal byproducts.
  • 11. The method of claim 10, wherein the coal byproducts further comprise ash content.
  • 12. A system for predicting the presence of rare earth elements in a feedstock, comprising: a measuring instrument that records a measurement for a feedstock sample;a processor, communicatively coupled to the measuring instrument; anda memory communicatively coupled to the processor and containing machine readable instructions that, when executed by the processor, causes the processor to: measure a feedstock sample using a dual gamma analyzer (DGA) to generate measurements of properties of interest;correlate the measurements with a model; andpredict presence of one or more REEs based at least in part on the correlation.
  • 13. The system of claim 12, wherein the model comprises a corresponding fitting constant for each element of interest.
  • 14. The system of claim 13, wherein the feedstock further comprises coal and coal byproducts.
  • 15. The system of claim 14, wherein the coal byproducts further comprise ash content.
  • 16. A system for predicting the presence of rare earth elements (REEs) in a feedstock, comprising: a dual gamma analyzer (DGA) operably configured to measure a sample of the feedstock and record a measurement data for the feedstock sample;a processor communicatively coupled to the spectrum analyzer, the processor configured to process the measurement data; anda memory assembly communicatively coupled to the spectrum analyzer and the processor, the memory assembly comprising one or more machine readable instructions, one or more models, and one or more predictions;wherein the one or more instructions, when executed by the processor, cause the processor to measure the feedstock sample using the spectrum analyzer to generate the measurement data corresponding to elements of interest with a lower atomic weight than REEs, correlate the measurement data using the one or more models, and predict the presence of one or more REEs based at least in part on the correlation.
  • 17. The system of claim 16, wherein the elements of interest include one or more of sodium, magnesium, aluminum, silicon, phosphorous, potassium, calcium, titanium, iron, barium, manganese and strontium.
  • 18. The system of claim 17, wherein the model comprises a corresponding fitting constant for each element of interest.
  • 19. The system of claim 16, wherein the elements of interest include one or more of Al2O3, CaO, Fe2O3, K2O, MgO, MnO2, Na2O, SiO2, SO3 and TiO2.
  • 20. The system of claim 16, wherein the elements of interest include one or more of silicon, titanium, barium and gallium.
PRIORITY

This application claims the benefit of and priority to U.S. Provisional Application No. 63/367,859 filed Jul. 7, 2022, the entirety of which is incorporated herein by reference.

Provisional Applications (1)
Number Date Country
63367859 Jul 2022 US