None.
The present invention is in the field computer system engineering in recreational cannabis commerce. Specifically, the use of an advanced predictive decision system to match new recreational cannabis users to strains that provide desired effects and to allow experienced users to determine strains that produce unexperienced effects of interest to them.
Recently, multiple states have passed legislation legalizing cannabis for recreational usage. This change promises to greatly change the cannabis usage landscape as significant numbers of people use cannabis for the first time and those with prior cannabis experience find that the number and variety of cannabis strains, which include the range and subtlety of effects, may greatly increase over that available to them before and these experienced users determine that they may want to take advantage of these changes to expand their range of experience with cannabis to discover favorites for different moods and circumstances or to “spice things up” on occasion.
What is needed is a system to predictively assist both first time and experienced recreational cannabis users in the selection of cannabis strains most likely to provide a desired set of effects accounting for current perceived status and any previous reported experience with known cannabis strains and route of consumption.
Accordingly, the inventor has developed a system and method for predictive recreational cannabis strain recommendation comprising centralized servers and data stores that retrieve and process such data as, but not limited to, scientific analysis results from cannabis strain and strain material source study of active compound ratios and levels, the latest findings on cannabis active compound effects and cannabis user reviews and reported effect potency data for specific strains and material from specific cannabis sources. These data as well as data that may not have been mentioned are then employed to predict suitable cannabis strain and delivery route recommendations for both recreational users new to cannabis, who may have little or no experience with the many strains and possible effects or mixes of effects, and experienced users who may have significant experience with a limited number of strains of cannabis but want to expand their knowledge, possibly fine tuning one or more desirable effects they have had or looking for new effect driven experiences. In both cases, the customer may enter one or more standardized effects that they desire and the system then may recommend one or more strains, possible legal cannabis sources of known quality and potency for the recommendations, and route of delivery that is expected to produce those effects, the embodiment also taking into account any previous cannabis experience or general medical drug sensitivity levels that the customer may have entered during account setup and embodiment usage representing multiple cannabis experiences. Customers are encouraged to keep a “diary” of their strain usage, delivery method and subjective reactions to the effects of each strain tried to better recommendation accuracy over time and more generally across the embodiment which employs artificial intelligence algorithms and learning in the classification of strain specific effects and user's response to them.
According to a preferred embodiment of the invention, a system predictive recreational cannabis strain recommendation comprising: an input portal stored in a memory of and operating on a processor of a computing device and configured to: receive cannabis use experience feedback from clients and normalize at least a portion of that data for predictive analytics computation; retrieve the results of scientifically controlled cannabis strain analysis and normalize at least a portion of that data for predictive analytics computation; and receive requests comprising at least one effect desired by the client for a future cannabis experience and normalize at least a portion of that data for predictive analytics computation; and an experience analytics module stored in a memory of and operating on a processor of a computing device and configured to: retrieve normalized client supplied cannabis use experience feedback data; retrieve normalized scientifically controlled cannabis strain analysis data; receive normalized request comprising at least one cannabis effect desired by the client for a future cannabis experience; retrieve normalized data that attributes physiological effects to known active cannabis resident compounds; programmatically calculate effect rating scores for cannabis strains based at least in part upon the analysis determined active cannabis resident compound levels and known effects of active cannabis resident compounds; programmatically determine at least one cannabis strain from at least one legal cannabis source that closely matches client's normalized request and accounts for at least the client's previous use experience feedback data using predictive inference functions engineered for recreational cannabis trade; and a recommended product choices display stored in a memory of and operating on a processor of a computing device and configured to: output at least one recommended recreational cannabis strain that closely matches clients' normalized requests in a format best suited for this task.
According to a preferred embodiment of the invention, a method for predictive recreational cannabis strain recommendation comprising the steps of: a) receiving cannabis use experience feedback from clients and normalizing at least a portion of that data for predictive analytic computation using an input portal stored in a memory of and operating on a processor of a computing device; b) retrieving the results of scientifically controlled cannabis strain analysis and normalizing at least a portion of that data for predictive analytics computation using the input portal; c) receiving requests comprising at least one effect desired by the client for a future cannabis experience and normalize at least a portion of that data for predictive analytics computation using the input portal; d) retrieving normalized data that assigns physiological effects to known active cannabis resident compounds using an experience analytics module stored in a memory of and operating on a processor of a computing device; e) calculating effect rating scores for cannabis strains based at least in part upon the analysis determined active cannabis resident compound levels and at least in part upon known effects of active cannabis resident compounds using the experience analytics module; f) determining at least one cannabis strain from at least one legal cannabis source that closely matches client's normalized request and accounts for at least the client's previous use experience feedback data employing predictive inference functions engineered for recreational cannabis trade using the experience analytics module; g) outputting at least one recommended recreational cannabis strain that closely matches clients' normalized requests in a format best suited to convey this information using a recommended product choices display stored in a memory of and operating on a processor of a computing device.
The accompanying drawings illustrate several embodiments of the invention and, together with the description, serve to explain the principles of the invention according to the embodiments. One skilled in the art will recognize that the particular embodiments illustrated in the drawings are merely exemplary, and are not intended to limit the scope of the present invention.
While strictly illegal in all states until recently, cannabis, more commonly known as marijuana since the mid-1930's, has been extensively cultivated throughout the world for centuries and secretly cultivated within the United States and elsewhere where the plant and its products are illegal to the point where there are tens if not hundreds of cultivars or strains which comprise differing levels of the many active compounds that give cannabis its wide range of sought after effects. A family of active compounds that are specific to cannabis and its close relative plant species is the cannabinoids of which nearly 70 have been identified that have overlapping but different effect profiles. Perhaps best known and present at high but varying concentration in cannabis strains are delta-9-tetrahydrocannabinol (THC) which can vary from approximately 27% to as low as 0.1% (wt/total isolate wt. Steep Hill Labs/steephill.com) depending on the cannabis strain and which is the psychoactive agent responsible for cannabis' ability to alter mood, to give the impression of altered consciousness and to cause feelings of euphoria which people consider the “cannabis high.” Another cannabinoid, cannabidiol (CBD) can vary depending on the strain from approximately 30% to as low as 0.02% and to which the calming, contentment, “stoned feeling” effects of certain cannabis strains is attributed. A third major cannabinoid, cannabinol (CBN) is found in stored, dried cannabis and may also be a thermal breakdown product of THC. CBN is therefore usually found in higher concentrations in smoke or vaporization delivery methods. It is strongly sedative and again may add the “stoned”, inactive, reputation of some cannabis users. A second family of active compounds, the terpenes, are a very large family of aromatic branched hydrocarbons that are produced by a wide variety of plant species and are among the active ingredients of essential oils created from them. Different cannabis strains produce widely different terpenes and their derivative terpenoids at widely different levels that may range from 0% to 5% wt/wt and which may give different cannabis strains their unique odors. Terpene's impact on recreational cannabis effects include potentiating the effects of specific cannabinoids such as THC and having weak sedative, anti-anxiety and pain-reducing properties of their own.
It is the differences in the levels and types of both cannabinoids and terpenes as well as the presence of lesser compounds such as flavonoids that impart cannabis strains with a wide range of recreationally desirable effects that the aspects of the invention described herein employs to match the desired experience of clients with known strains.
The inventor has conceived, and reduced to practice, a system and method for predictive recreational cannabis strain recommendation.
One or more different inventions may be described in the present application. Further, for one or more of the inventions described herein, numerous alternative embodiments may be described; it should be understood that these are presented for illustrative purposes only. The described embodiments are not intended to be limiting in any sense. One or more of the inventions may be widely applicable to numerous embodiments, as is readily apparent from the disclosure. In general, embodiments are described in sufficient detail to enable those skilled in the art to practice one or more of the inventions, and it is to be understood that other embodiments may be utilized and that structural, logical, software, electrical and other changes may be made without departing from the scope of the particular inventions. Accordingly, those skilled in the art will recognize that one or more of the inventions may be practiced with various modifications and alterations. Particular features of one or more of the inventions may be described with reference to one or more particular embodiments or figures that form a part of the present disclosure, and in which are shown, by way of illustration, specific embodiments of one or more of the inventions. It should be understood, however, that such features are not limited to usage in the one or more particular embodiments or figures with reference to which they are described. The present disclosure is neither a literal description of all embodiments of one or more of the inventions nor a listing of features of one or more of the inventions that must be present in all embodiments.
Headings of sections provided in this patent application and the title of this patent application are for convenience only, and are not to be taken as limiting the disclosure in any way.
Devices that are in communication with each other need not be in continuous communication with each other, unless expressly specified otherwise. In addition, devices that are in communication with each other may communicate directly or indirectly through one or more intermediaries, logical or physical.
A description of an embodiment with several components in communication with each other does not imply that all such components are required. To the contrary, a variety of optional components may be described to illustrate a wide variety of possible embodiments of one or more of the inventions and in order to more fully illustrate one or more aspects of the inventions. Similarly, although process steps, method steps, algorithms or the like may be described in a sequential order, such processes, methods and algorithms may generally be configured to work in alternate orders, unless specifically stated to the contrary. In other words, any sequence or order of steps that may be described in this patent application does not, in and of itself, indicate a requirement that the steps be performed in that order. The steps of described processes may be performed in any order practical. Further, some steps may be performed simultaneously despite being described or implied as occurring sequentially (e.g., because one step is described after the other step). Moreover, the illustration of a process by its depiction in a drawing does not imply that the illustrated process is exclusive of other variations and modifications thereto, does not imply that the illustrated process or any of its steps are necessary to one or more of the invention(s), and does not imply that the illustrated process is preferred. Also, steps are generally described once per embodiment, but this does not mean they must occur once, or that they may only occur once each time a process, method, or algorithm is carried out or executed. Some steps may be omitted in some embodiments or some occurrences, or some steps may be executed more than once in a given embodiment or occurrence.
When a single device or article is described, it will be readily apparent that more than one device or article may be used in place of a single device or article. Similarly, where more than one device or article is described, it will be readily apparent that a single device or article may be used in place of the more than one device or article.
The functionality or the features of a device may be alternatively embodied by one or more other devices that are not explicitly described as having such functionality or features. Thus, other embodiments of one or more of the inventions need not include the device itself
Techniques and mechanisms described or referenced herein will sometimes be described in singular form for clarity. However, it should be noted that particular embodiments include multiple iterations of a technique or multiple manifestations of a mechanism unless noted otherwise. Process descriptions or blocks in figures should be understood as representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of embodiments of the present invention in which, for example, functions may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those having ordinary skill in the art.
This hint augmented data is passed to the experience analytics module 160 where it is combined with client generated strain 135 and source 140 data, active ingredient make-up data generated from a plurality of laboratory based cannabis strain analyses from multiple possible test centers 145 which may be retrieved by the laboratory result portal 150 using one of several possible network types 147. Some of this laboratory-generated data may pertain to determined effects of cannabinoids and other constituent compounds of cannabis strains. These data may be stored in a cannabinoid effects data store 155. The active compound make-up of a plurality of cannabis strains 135 from a plurality of suppliers 140, the effects each active compound, individually as well as when combined, in addition to available matching client experience reports 125 may be predictively analyzed using the software engineered functions of the experience analytics module 160 to calculate the strains and suppliers most likely to fulfill the experience request of the client. The recommendations may be displayed on that client's computing device by the recommended product choices display 162, possibly over a type of network connection 165.
Much research has been done on the use of cannabis to treat medical conditions with cannabis showing great effect in the treatment and even towards the cure of a great plurality. Some illnesses may be minor enough to be considered ailments for which over-the-counter level diagnosis and remedy purchase is safe and effective. For this purpose, an embodiment may also include a choice 720 that allows clients to receive strain recommendations for minor ailments after presentation of a disclaimer that the embodiment is specifically aimed at recreational use, that chronic affliction, even with the seemingly minor symptoms listed may point to serious disease and that while none of the recommendations present the client with danger, health related cannabis use is a much more serious matter than recreational use. As disclosed, the screen layout of this figure is presented to make specific interface points about a possible method of organizing and gathering client information and is not meant to be a complete disclosure of all aspects that may be deemed necessary by those skilled in the art, thus these illustrations do not reflect a full set of capabilities nor to disclose possible limitations of embodiments of the invention.
Generally, the techniques disclosed herein may be implemented on hardware or a combination of software and hardware. For example, they may be implemented in an operating system kernel, in a separate user process, in a library package bound into network applications, on a specially constructed machine, on an application-specific integrated circuit (ASIC), or on a network interface card.
Software/hardware hybrid implementations of at least some of the embodiments disclosed herein may be implemented on a programmable network-resident machine (which should be understood to include intermittently connected network-aware machines) selectively activated or reconfigured by a computer program stored in memory. Such network devices may have multiple network interfaces that may be configured or designed to utilize different types of network communication protocols. A general architecture for some of these machines may be described herein in order to illustrate one or more exemplary means by which a given unit of functionality may be implemented. According to specific embodiments, at least some of the features or functionalities of the various embodiments disclosed herein may be implemented on one or more general-purpose computers associated with one or more networks, such as for example an end-user computer system, a client computer, a network server or other server system, a mobile computing device (e.g., tablet computing device, mobile phone, smartphone, laptop, or other appropriate computing device), a consumer electronic device, a music player, or any other suitable electronic device, router, switch, or other suitable device, or any combination thereof. In at least some embodiments, at least some of the features or functionalities of the various embodiments disclosed herein may be implemented in one or more virtualized computing environments (e.g., network computing clouds, virtual machines hosted on one or more physical computing machines, or other appropriate virtual environments).
Referring now to
In one embodiment, computing device 10 includes one or more central processing units (CPU) 12, one or more interfaces 15, and one or more busses 14 (such as a peripheral component interconnect (PCI) bus). When acting under the control of appropriate software or firmware, CPU 12 may be responsible for implementing specific functions associated with the functions of a specifically configured computing device or machine. For example, in at least one embodiment, a computing device 10 may be configured or designed to function as a server system utilizing CPU 12, local memory 11 and/or remote memory 16, and interface(s) 15. In at least one embodiment, CPU 12 may be caused to perform one or more of the different types of functions and/or operations under the control of software modules or components, which for example, may include an operating system and any appropriate applications software, drivers, and the like.
CPU 12 may include one or more processors 13 such as, for example, a processor from one of the Intel, ARM, Qualcomm, and AMD families of microprocessors. In some embodiments, processors 13 may include specially designed hardware such as application-specific integrated circuits (ASICs), electrically erasable programmable read-only memories (EEPROMs), field-programmable gate arrays (FPGAs), and so forth, for controlling operations of computing device 10.
In a specific embodiment, a local memory 11 (such as non-volatile random access memory (RAM) and/or read-only memory (ROM), including for example one or more levels of cached memory) may also form part of CPU 12. However, there are many different ways in which memory may be coupled to system 10. Memory 11 may be used for a variety of purposes such as, for example, caching and/or storing data, programming instructions, and the like. It should be further appreciated that CPU 12 may be one of a variety of system-on-a-chip (SOC) type hardware that may include additional hardware such as memory or graphics processing chips, such as a QUALCOMM SNAPDRAGON™ or SAMSUNG EXYNOS™ CPU as are becoming increasingly common in the art, such as for use in mobile devices or integrated devices.
As used herein, the term “processor” is not limited merely to those integrated circuits referred to in the art as a processor, a mobile processor, or a microprocessor, but broadly refers to a microcontroller, a microcomputer, a programmable logic controller, an application-specific integrated circuit, and any other programmable circuit.
In one embodiment, interfaces 15 are provided as network interface cards (NICs). Generally, NICs control the sending and receiving of data packets over a computer network; other types of interfaces 15 may for example support other peripherals used with computing device 10. Among the interfaces that may be provided are Ethernet interfaces, frame relay interfaces, cable interfaces, DSL interfaces, token ring interfaces, graphics interfaces, and the like. In addition, various types of interfaces may be provided such as, for example, universal serial bus (USB), Serial, Ethernet, FIREWIRE™, THUNDERBOLT™, PCI, parallel, radio frequency (RF), BLUETOOTH™, near-field communications (e.g., using near-field magnetics), 802.11 (Wi-Fi), frame relay, TCP/IP, ISDN, fast Ethernet interfaces, Gigabit Ethernet interfaces, Serial ATA (SATA) or external SATA (ESATA) interfaces, high-definition multimedia interface (HDMI), digital visual interface (DVI), analog or digital audio interfaces, asynchronous transfer mode (ATM) interfaces, high-speed serial interface (HSSI) interfaces, Point of Sale (POS) interfaces, fiber data distributed interfaces (FDDIs), and the like. Generally, such interfaces 15 may include physical ports appropriate for communication with appropriate media. In some cases, they may also include an independent processor (such as a dedicated audio or video processor, as is common in the art for high-fidelity A/V hardware interfaces) and, in some instances, volatile and/or non-volatile memory (e.g., RAM).
Although the system shown in
Regardless of network device configuration, the system of the present invention may employ one or more memories or memory modules (such as, for example, remote memory block 16 and local memory 11) configured to store data, program instructions for the general-purpose network operations, or other information relating to the functionality of the embodiments described herein (or any combinations of the above). Program instructions may control execution of or comprise an operating system and/or one or more applications, for example. Memory 16 or memories 11, 16 may also be configured to store data structures, configuration data, encryption data, historical system operations information, or any other specific or generic non-program information described herein.
Because such information and program instructions may be employed to implement one or more systems or methods described herein, at least some network device embodiments may include nontransitory machine-readable storage media, which, for example, may be configured or designed to store program instructions, state information, and the like for performing various operations described herein. Examples of such nontransitory machine-readable storage media include, but are not limited to, magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROM disks; magneto-optical media such as optical disks, and hardware devices that are specially configured to store and perform program instructions, such as read-only memory devices (ROM), flash memory (as is common in mobile devices and integrated systems), solid state drives (SSD) and “hybrid SSD” storage drives that may combine physical components of solid state and hard disk drives in a single hardware device (as are becoming increasingly common in the art with regard to personal computers), memristor memory, random access memory (RAM), and the like. It should be appreciated that such storage means may be integral and non-removable (such as RAM hardware modules that may be soldered onto a motherboard or otherwise integrated into an electronic device), or they may be removable such as swappable flash memory modules (such as “thumb drives” or other removable media designed for rapidly exchanging physical storage devices), “hot-swappable” hard disk drives or solid state drives, removable optical storage discs, or other such removable media, and that such integral and removable storage media may be utilized interchangeably. Examples of program instructions include both object code, such as may be produced by a compiler, machine code, such as may be produced by an assembler or a linker, byte code, such as may be generated by for example a JAVA™ compiler and may be executed using a Java virtual machine or equivalent, or files containing higher level code that may be executed by the computer using an interpreter (for example, scripts written in Python, Perl, Ruby, Groovy, or any other scripting language).
In some embodiments, systems according to the present invention may be implemented on a standalone computing system. Referring now to
In some embodiments, systems of the present invention may be implemented on a distributed computing network, such as one having any number of clients and/or servers. Referring now to
In addition, in some embodiments, servers 32 may call external services 37 when needed to obtain additional information, or to refer to additional data concerning a particular call. Communications with external services 37 may take place, for example, via one or more networks 31. In various embodiments, external services 37 may comprise web-enabled services or functionality related to or installed on the hardware device itself. For example, in an embodiment where client applications 24 are implemented on a smartphone or other electronic device, client applications 24 may obtain information stored in a server system 32 in the cloud or on an external service 37 deployed on one or more of a particular enterprise's or user's premises.
In some embodiments of the invention, clients 33 or servers 32 (or both) may make use of one or more specialized services or appliances that may be deployed locally or remotely across one or more networks 31. For example, one or more databases 34 may be used or referred to by one or more embodiments of the invention. It should be understood by one having ordinary skill in the art that databases 34 may be arranged in a wide variety of architectures and using a wide variety of data access and manipulation means. For example, in various embodiments one or more databases 34 may comprise a relational database system using a structured query language (SQL), while others may comprise an alternative data storage technology such as those referred to in the art as “NoSQL” (for example, HADOOP CASSANDRA™, GOOGLE BIGTABLE™, and so forth). In some embodiments, variant database architectures such as column-oriented databases, in-memory databases, clustered databases, distributed databases, or even flat file data repositories may be used according to the invention. It will be appreciated by one having ordinary skill in the art that any combination of known or future database technologies may be used as appropriate, unless a specific database technology or a specific arrangement of components is specified for a particular embodiment herein. Moreover, it should be appreciated that the term “database” as used herein may refer to a physical database machine, a cluster of machines acting as a single database system, or a logical database within an overall database management system. Unless a specific meaning is specified for a given use of the term “database”, it should be construed to mean any of these senses of the word, all of which are understood as a plain meaning of the term “database” by those having ordinary skill in the art.
Similarly, most embodiments of the invention may make use of one or more security systems 36 and configuration systems 35. Security and configuration management are common information technology (IT) and web functions, and some amount of each are generally associated with any IT or web systems. It should be understood by one having ordinary skill in the art that any configuration or security subsystems known in the art now or in the future may be used in conjunction with embodiments of the invention without limitation, unless a specific security 36 or configuration system 35 or approach is specifically required by the description of any specific embodiment.
In various embodiments, functionality for implementing systems or methods of the present invention may be distributed among any number of client and/or server components. For example, various software modules may be implemented for performing various functions in connection with the present invention, and such modules may be variously implemented to run on server and/or client components.
The skilled person will be aware of a range of possible modifications of the various embodiments described above. Accordingly, the present invention is defined by the claims and their equivalents.