The invention relates to a system for preparing a predetermined amount of beverage suitable for consumption, provided with an exchangeable holder and an apparatus provided with a fluid dispensing device which is detachably connected to the holder for dispensing at least one amount of at least a first fluid such as a liquid and/or a gas, in particular such as water and/or steam, under pressure to the exchangeable holder, while the exchangeable holder is provided with at least one storage space which is filled with a second fluid such as a concentrate.
The invention further relates to an exchangeable holder designed to be connected to an apparatus provided with a fluid dispensing device for dispensing at least a first fluid such as a gas and/or liquid under pressure to the exchangeable holder for preparing a beverage suitable for consumption, while the exchangeable holder is provided with at least one storage space filled with a second fluid such as a concentrate.
Such a system and such an exchangeable holder are known per se.
With the known system, the apparatus is provided with, for instance, a needle which, in use, is pierced through a wall of the storage space for supplying the first fluid to the storage space. In the storage space, the first fluid and the second fluid mix together so that the beverage suitable for consumption is obtained which can then flow from the apparatus to be consumed.
A drawback of the known system is that the strength of the amount of beverage which is dispensed can vary in an uncontrollable manner. The fact is that if at the start of the preparation of the beverage, the storage space still comprises relatively much of the second fluid, the beverage leaving the exchangeable holder will comprise a relatively high concentration of the second fluid and comprise a relatively low concentration of the first fluid. By contrast, at the end of the preparation cycle, the beverage that flows from the holder will comprise a relatively low concentration of the second fluid and a relatively high concentration of the first fluid. Further, with the known system, it is not possible to vary the properties of the beverage in a user-friendly manner, other than by varying the type of first fluid, the type of second fluid and/or the amount of the first fluid or the second fluid. The object of the invention is to provide a system with which, if desired, the above-mentioned drawbacks can be prevented and, furthermore, other advantages can be realized.
Accordingly, the system according to the invention is characterized in that the holder is further provided with at least a first mixing chamber, at least one outflow opening which is in fluid communication with the first mixing chamber for dispensing the beverage from the first mixing chamber, at least one fluid communication between the storage space and the first mixing chamber for dispensing the second fluid to the first mixing chamber, and at least one inlet opening which is detachably connected to an outlet opening of the fluid dispensing device for supplying the first fluid to the first mixing chamber, the system being further provided with a dosing device which is designed to supply the second fluid in a dosed manner from the storage space to the first mixing chamber, while the fluid dispensing device is designed to supply the first fluid under pressure to the first mixing chamber so that in the first mixing chamber the first fluid and the second fluid mix together for obtaining the beverage which, then, leaves the exchangeable holder via the outflow opening.
As presently, the second fluid is dispensed from the storage space to the first mixing chamber in a dosed manner, the concentration of the second fluid in the beverage leaving the first mixing chamber can be accurately controlled. The fact is that the second fluid is dispensed to the first mixing chamber in a dosed manner. The first fluid too can be dispensed by the fluid dispensing device to the first mixing chamber in a dosed manner so that consequently, the properties of the beverage formed by mixing the first fluid and the second fluid in the first mixing chamber can be well defined.
In particular it holds that the dosing device relates to a controllable, active dosing device for supplying the second fluid to the fixed mixing chamber by means of applying an increased pressure or force to the second fluid. Supplying the second fluid to the first mixing chamber can then be controlled as desired. In particular, it holds here that the system is further provided with a control device for controlling the dosing device and the fluid dispensing device. The dosing device and the fluid dispensing device can, for instance, be controlled independently of each other by the control device.
More in general it holds that the system is designed such that the fluid dispensing device and the dosing device can supply the first fluid and the second fluid, respectively, to the first mixing chamber independently of each other. In this manner, the preparation of the beverage can be varied at will by controlling the amount and the period of supply of the first and second fluid independently of each other.
It further preferably holds that the system is further provided with a restriction which is included in a fluid flow path which reaches, via the outlet opening of the fluid dispensing device, the inlet opening of the holder and the first mixing chamber, from the fluid dispensing device to the outflow opening. With the restriction, for instance a jet and/or mist can be generated.
Preferably, it can also hold that the system is further provided with a restriction which is included in a fluid flow path which reaches, via the outlet opening and the inlet opening, from the fluid dispensing device to the first mixing chamber. Here, it holds for instance, that the restriction is designed such that in use, with the restriction, a jet of the first fluid is generated which spouts into the first mixing chamber. As a result, the first and the second fluid can mix well in the first chamber.
In particular it holds that the system is further provided with an air inlet opening for supplying air to the first mixing chamber so that, in use, air is whipped into the beverage for obtaining a beverage with a fine-bubble froth layer. According to a preferred embodiment, it holds here that the air inlet opening forms part of the holder. As the air inlet opening forms part of the exchangeable holder, per exchangeable holder for instance a size of the air inlet opening can be predetermined in order to determine, per exchangeable holder, how much air is whipped into the beverage. Depending on the type of beverage that is to be prepared, the size of the air inlet opening can be determined. If the second fluid involves, for instance, a coffee concentrate and the first fluid, for instance, water, while it is intended that coffee with a fine-bubble froth layer is prepared, the size of the air inlet opening can be chosen to be relatively small. If, by contrast, the exchangeable holder is filled with a second fluid in the form of, for instance, a milk concentrate, while, once more, the first fluid involves water, while it is intended that the beverage consists of frothed milk, the air inlet opening can be relatively large. As the air inlet opening in this example forms part of the exchangeable holder, the consumer needs not set anything. All this can be optimized in advance by the manufacturer.
In particular, it further holds that the restriction forms part of the holder. In this manner too, if desired, the size of the restriction can be predetermined depending on the type of beverage that is to be prepared and, in this example, for instance depending on the type of second fluid present in the storage space. If the restriction is, for instance, relative small, a relatively powerful jet of, for instance, water can be generated. Such a relatively powerful jet may be desirable when the second fluid comprises, for instance, a concentrate with a high viscosity. Here, due to the relatively powerful jet of the first fluid, the concentrate can dissolve well. In this manner too, it can be effected that in the first mixing chamber a relatively strong turbulence is formed of the liquids present there so that, when the air inlet opening is present, relatively much air is whipped into the beverage. Thus, it is advantageous when the restriction forms part of the exchangeable holder.
It preferably holds that the storage space is bound, at least partly, by a movable wall which is movable relative to the rest of the storage space so that through movement of the movable part of the wall, a volume of the storage space can be varied, more particularly that the storage space is bounded, at least partly, by a wall manufactured from a movable, flexible materials such as a foil. In particular is holds here that the dosing device is provided with at least one actuator for moving the movable part of the wall so that the volume is reduced for dispensing the second fluid to the mixing chamber in a dosed manner, more particularly for compressing the storage space for dispensing the second fluid in a dosed manner to the first mixing chamber through compression.
As the storage space is bounded, at least partly, by a movable wall, the volume of the storage space can be reduced with the aid of an actuator for dispensing the second fluid to the first mixing chamber in a dosed manner. Combined, the storage space with the movable wall and the actuator form a dosing device.
According to an advanced embodiment, it holds that the exchangeable holder is provided with a plurality of storage spaces, separated from each other, which are each filled with a second fluid. A first storage space can be filled with, for instance, a coffee concentrate while a second storage space is filled with a milk concentrate. In this manner, coffee with milk can be generated when the first fluid comprises, for instance, water. In particular it holds here that each storage space is bounded, at least partly, by a movable wall which is movable relative to the rest of the respective storage space so that a volume of the respective storage space can be varied through movement of the movable part of the wall, more in particular that each storage space is bounded, at least partly, by a wall manufactured from a flexible or deformable material such as a foil so that through movement of the outer wall a volume of the respective storage space can be varied.
According to a preferred embodiment it further holds that the dosing device is provided with a plurality of dosing devices for dispensing fluids, with several dosing devices, in a dosed manner, from mutually different storage spaces to the first mixing chamber.
In this manner, first, from a first storage space a coffee concentrate can be supplied to the first mixing chamber while the liquid dispensing device can supply the liquid in the form of, for instance, hot water to the first mixing chamber for preparing coffee. Thereupon, from the second storage space, milk concentrate is supplied in a dosed manner to the first mixing chamber, while, also, the hot water is supplied to the first mixing chamber. Here, when further an air inlet opening is present, air can be whipped in, so that a frothed milk is obtained. This frothed milk is then dispensed from the exchangeable holder. Thus, when the coffee and, then, the frothed milk are captured in the same cup, a good cappuccino can be prepared with a white froth layer which is formed by hot milk.
According to an advanced embodiment it holds that between each storage space on the one side, and the first mixing chamber on the other side a closure is present which will open when the pressure which is applied by one of the fluids to the closure rises above a particular value. In particular, here, at least a number of the closures will open at mutually different pressures. When, in this manner, each storage space is compressed by, for instance, one and the same actuator, and hence with one and the same force, as long as the closures are closed, this will result in the pressures in the different storage spaces being equal, and then gradually increasing when the storage spaces are compressed. This will be the case, for instance, when the storage spaces abut against each other with flexible walls and, as it were, form one whole. When, subsequently, the pressure in each storage space rises further, first, at least one closure will open when the pressure in the respective storage space rises above a particular value belonging to the respective closure. At least a number of other closures will then not open yet. The result is that at the at least one closure which opens first, the second fluid can flow away to the mixing chamber so that in the first mixing chamber, under the influence of the liquid, a beverage can be generated. When the compression of the storage places is continued, the pressure in the storage places will generally not rise because the volume of one of the storage places reduces as a result of its emptying. Only when the respective storage space with the opened closure is completely empty, the pressure in the other storage places whose closures are not open yet, will rise further. This will have as a consequence that at a somewhat later moment, at least one of the other closures will open so that from the associated storage space, the respective second fluid can be dispensed to the first mixing chamber for preparing a different beverage. In this manner, first, for instance coffee can be formed and then milk, in particular frothed milk, while first, the coffee can flow from the first mixing chamber into a holder such as a cup after which the frothed milk can flow from the first mixing chamber into the cup so that at least the froth of the milk will float on the coffee, resulting in the formation of an attractive white cappuccino.
More in general it holds that the system is designed to dispense fluids with mutually different flow rates and/or during mutually different periods with at least two different dosing devices from at least two storage spaces. Here, once more, the dosing devices can operate or be controlled independently of the fluid dispensing device. In other words, the first fluid and the second fluids can be dispensed in a controllable manner with mutually different flow rates and/or within mutually different periods.
The air inlet can form part of the apparatus or the holder. In particular it holds that the at least one air inlet is provided with an adjustable valve for setting the size of the airflow. The valve can be controlled by the apparatus as well as by the consumer (manually). The valve can for instance be set depending on the type of beverage to be prepared. The exchangeable holder can for instance be provided with a code, readable by the apparatus, so that the apparatus knows which type of beverage is to be prepared, and in this manner, the apparatus can for instance set the adjustable valve and/or control the liquid dispensing device for determining for instance the pressure, the amount, and the temperature of the liquid which is supplied to the exchangeable holder.
The holder according to the invention is characterized in that the holder is further provided with at least one first mixing chamber, at least one outflow opening which is in fluid communication with the first mixing chamber for dispensing the beverage from the first mixing chamber, at least one fluid communication between the storage space and the first mixing chamber for dispensing the first fluid to the first mixing chamber and at least one inlet opening which, in use, is detachably connected to an outlet opening of the fluid dispensing device for supplying the second fluid to the first mixing chamber, while the storage space forms part, at least partly, of a dosing device and is bounded to this end, at least partly, by a movable wall which is movable relative to the rest of the storage space so that, through movement of the movable wall, a volume of the storage space can be reduced for dispensing the second fluid in a dosed manner from the storage space to the first mixing chamber while, in use, the first fluid is also supplied under pressure to the mixing chamber so that the second fluid and the first fluid mix together for obtaining the beverage which then leaves the holder via the outflow opening.
The invention will presently be further elucidated on the basis of the drawing.
In the drawing:
a shows a first embodiment of a system according to the invention provided with a holder according to the invention;
b shows the system according to
c shows the system according to
a shows a cross-section of a second embodiment of a system according to the invention provided with a holder according to the invention;
b shows a partly cutaway side view of the holder of
c shows a cross-section of the holder according to
a shows a third embodiment of a system according to the invention provided with a holder according to the invention;
b shows a bottom view of a system according to
c shows a side view of the holder of the system according to
a shows a fourth embodiment of a system according to the invention provided with a holder according to the invention;
b shows a cross-section of a part of the holder according to
a shows a fifth embodiment of a system according to the invention;
b shows a cross-section of the storage space of the holder according to
a shows a sixth embodiment of a system according to the invention;
b shows a cross-section of the fluid communication of the holder according to
a shows a seventh embodiment of a system according to the invention;
b shows a cross-section of the fluid communication of the holder according to
c shows a cross-section of the storage spaces of the holder according to
a shows an eighth embodiment of a system according to the invention;
b shows a cross-section of the fluid communication of the holder according to
In
The exchangeable holder 2 is provided with at least one storage space 8 which is filled with a second fluid such as a beverage, a concentrate or a powder. In this example, a concentrate for preparing coffee is involved. The holder 2 is further provided with at least a first mixing chamber 10 and at least one outflow opening 12 which is in fluid communication with the first mixing chamber 10. The holder is further provided with a fluid communication 14 between the storage space 8 and the first mixing chamber 10. Furthermore, the holder is provided with at least one inlet opening 16 which is detachably connected to an outlet opening 18 of the fluid dispensing device 6. In
In this example, the system is further provided with a restriction 20 which is included in a fluid flow path 21 which reaches, via the outlet opening 18 of the fluid dispensing device 6, the inlet opening 16 and the first mixing chamber 10, from the fluid dispensing device to the outflow opening 12.
More particularly it holds in this example that the restriction 20 is included in a fluid flow path 22 which reaches, via the outlet opening 18 of the fluid dispensing device 6 and the inlet opening 16 of the exchangeable holder 2, from the fluid dispensing device to the first mixing chamber 10. In this example, the storage space 8 is bounded, at least partly, by a movable wall which is movable relative to the rest of the storage space so that through movement of the movable wall, a volume of the storage space can be varied. In this example, the storage space is bounded, at least partly, by a flexible or deformable material such as a foil. In this example, the wall 9 which bounds the storage space 8 is manufactured at least virtually completely from a flexible material such as a foil.
In this manner, the storage space forms at least a part of a dosing device as will be further set forth hereinafter. This dosing device 24 is further provided with at least one actuator, in this example in the form of a compressing unit 26 for compressing the storage space 8 for dispensing the second fluid in a dosed manner to the first mixing chamber through compression.
In this example, the compressing unit 26 is provided with two pressing members 28a, 28b which are located, in use, on both sides of the storage space 8. The pressing members are connected to a drive 32 by means of arms 30a and 30b. The apparatus 4 is further also provided with a control device 34 for controlling the fluid dispensing device 6 and the drive 32. To control the fluid dispensing device 6 and the drive 32, the control device 34 generates control signals ŝ which are supplied to the fluid dispensing device 6 and the drive 32.
The apparatus described heretofore works as follows. For the purpose of preparing a predetermined amount of beverage suitable for consumption, the exchangeable holder 2 is placed in the apparatus. Here, the storage space 8 of the exchangeable holder is received between the two pressing members 28a, 28b. Also, as shown in
It further holds that the dosing device relates to a controllable and active dosing device for supplying the second fluid to the first mixing chamber by applying an increased pressure or force to the second fluid. Here, an active dosing device is understood to mean that the second fluid flows through the fluid communication from the storage space to the first mixing chamber as a result of the applied excess pressure or force on the side of the storage space.
In the example, the system is further provided with an air inlet opening 42. The air inlet opening 42 ensures that air is supplied to the first mixing chamber so that in use, air is whipped into the beverage for obtaining a beverage with a fine-bubble froth layer. Thus, a café crème can be obtained. In this example, downstream of the restriction 20, the air inlet opening 42 is in fluid communication with the first mixing chamber 10. In this example, the air inlet opening 42 terminates, via a fluid communication 44, into the fluid flow path 22. In this example it therefore holds that the air inlet opening and the restriction 20 each form part of the apparatus 4.
After the beverage, in this example coffee with a fine-bubble froth layer, has been prepared, the control device 34 stops the fluid dispensing device 6. The control device 34 also ensures that the pressing members 28a, 28b are no longer moved together but, instead thereof, are moved apart. Here, it may be such that the control device first provides that the dispensing of the second fluid to the first mixing chamber is stopped and that thereafter the supply of the liquid is stopped. Thus, the risk of the second fluid contaminating for instance the restriction 20 is reduced.
c shows when the pressing members 28a, 28b are moved together for squeezing the storage space 8 empty at the time the control device 34 will stop the supply of hot water to the first mixing chamber and the arms 30a, 30b will no longer move together but, instead thereof, will start moving apart so that the holder can then be taken from the apparatus again.
Hereafter, a user can remove the exchangeable holder and, if a new amount of beverage is to be prepared, place a new exchangeable holder in the apparatus 4. The new exchangeable holder can be provided with an entirely different type of second fluid such as, for instance, a milk concentrate. When, with the aid of the new exchangeable holder, milk is prepared in a comparable manner as described for the preparation of coffee based on coffee concentrate, in the prepared milk no trace will be found of the type of beverage prepared before that. The fact is that the first mixing chamber forms part of the exchangeable holder and when a new exchangeable holder is placed in the apparatus, also an entirely new and, hence, clean first mixing chamber is placed in the holder. Therefore, contamination cannot be involved.
Now, with reference to
As is clearly visible in
Before it can be used, the holder, as shown in
The size of the air inlet opening 42 can be completely geared to the type of beverage that is to be prepared. If a different holder is placed in the apparatus, with which another type of beverage than, for instance, coffee is to be prepared, the air inlet, that is, the size of the air inlet can be adjusted accordingly. For preparing frothed milk based on a milk concentrate, the size of the air inlet 42 can for instance be greater than when coffee extract is to be prepared. For preparing other beverages, with which it is not desired to whip in air, the air inlet 42 can be omitted. It is also possible that the air inlet 42 is provided with an adjustable valve which can be set by, for instance, a user for determining the amount of air that is to be whipped into the beverage. This valve can also be, for instance, set automatically by the apparatus. In the case of, for instance,
With reference to
A difference with the system according to
With reference to
The system according to
Presently, with reference to
In this example, the holder substantially corresponds to what is described with reference to
Completely analogously to what is described hereinabove, the inlet opening 16 and the outflow opening 12 are cleared through removal of the earlier mentioned seals. After this, the holder 2 can be placed in the apparatus 4. The inlet opening 16 is then connected to the outlet opening 18 in a fluid-tight manner. The user starts the process for preparing the beverage by energizing the button 38. As a result, completely analogously to what is described hereinabove, the control device 35 provides that the fluid dispensing device 6 is started for dispensing, under pressure, the first fluid, in this example hot water. Thus, a jet is generated with the aid of the restriction 20, which jet spouts into the first mixing chamber 10. The control device 34 also provides that the pressing members 28a, 28b are moved together. In this example, once more, the fluid communication 14a is closed off by a breakable skin 38a while the fluid communication 14b is closed off by means of a breakable skin 38b. Completely analogously to what is discussed hereinabove, the outside edge 62 of the storage spaces 8a, 8b will be pressed together. The result is that the pressure starts rising both in the storage space 8a and in the storage space 8b. Here, the breakable skins 38a, 38b may be constructed such that first the breakable skin 38a opens as it is, for instance, of thinner design. If then the storage space 8a is filled with a coffee concentrate, first of all, coffee concentrate will be supplied to the first mixing chamber. Thus, first, coffee is formed which leaves the mixing chamber via the outflow opening 12. When the pressing members 28a, 28b are moved further together, the pressure in the storage space 8b will not rise further significantly because the storage space 8a is slowly squeezed empty. Only when the storage space 8a is at least virtually empty, so that all coffee concentrate has disappeared from the storage space 8a and has been used for preparing coffee, then, when the pressing members 28a, 28b are moved further together, the second breakable skin 38b which is, for instance, slightly thicker than the first breakable skin 38a, will tear open. This means that only when at least virtually all coffee concentrate has been dispensed from the storage space 8a to the first mixing chamber, the fluid from the storage space 8b will be supplied to the first mixing chamber in a dosed to manner. The fluid at the storage space 8b can for instance consist of milk concentrate. The result is that then, while hot water is being supplied, milk is generated in the first mixing chamber. Furthermore, as a result of the air inlet opening 42, frothing milk will be created. This frothed milk will then end up on top of the coffee extract already present in the cup 40, while the frothed part of the milk will float on top of this. Thus, a perfect cappuccino is obtained.
Further, other variants are conceivable. For instance, the through-flow opening 64a can be designed to be greater than the through-flow opening 64b. When for instance the tearable skins 38a and 38b open exactly at a similar pressure and will therefore, in this case, open at least virtually simultaneously, then, when the outer wall 62 is compressed, first, the pressure in the storage space 8a and 8b will rise to an equal extent. When, thereupon, the two tearable skins 38a, 38b break approximately simultaneously, via the through-flow opening 64a, coffee concentrate will be supplied from the storage space 8a to the first mixing chamber 10. At the same time, milk concentrate will be supplied from the storage space 8b to the first mixing chamber 10. Both concentrates will mix with the jet of the hot water which is supplied by the fluid dispensing device 6 to the first mixing chamber 10. Thus, a beverage is formed consisting of coffee with milk, and which is captured in a mug 40 when the beverage leaves the first mixing chamber 10 via the outflow opening 12. However, as the through-flow opening 64a in this example has a much greater surface than the through-flow opening 64b, the flow rate of the coffee concentrate that is supplied to the first mixing chamber will initially be greater than the flow rate of the milk concentrate that is supplied to the first mixing chamber 10. The result is that because in this example the volume of the storage space 8a is approximately equal to the volume of the storage space 8b, the storage space 8a is empty first. When the storage space 8a is empty, while the storage space 8b is not yet empty, then, only milk concentrate will be supplied to the mixing chamber 10. As a result, only frothed milk will be formed which then ends up on the coffee already received in the mug 40. Again, this frothed milk will float on top of the coffee and form a pretty white froth layer. Thus, once more, a cappuccino is formed.
It is also possible that the through-flow opening 64a and the through-flow opening 64b have, for instance, a similar size. It may be such that for instance the volume of the storage space 8a is smaller than the volume of the storage space 8b. Here, it can also be provided that the coffee concentrate in the storage space 8a is much stronger, that is, has a higher concentration than milk concentrate in the storage space 8b. As the through-flow openings 64a, 64b are approximately equally great, initially, the flow rate of the coffee concentrate will be approximately equal to the flow rate of the milk concentrate. Here, the starting point is that both concentrates have the same viscosity. The result is that the storage space 8a will be empty sooner than the storage space 8b. This means that when the storage space 8a is empty, only milk concentrate is supplied from the storage space 8b to the first mixing chamber so that, once more, after initially coffee with milk has been formed in the mixing chamber, thereafter only milk is formed in the first mixing chamber. Thus, once more, a cappuccino is obtained.
It is further also possible that the volume of the storage space 8a and the storage space 8b are approximately equal. The size of the through-flow openings 64a and 64b can be equal too. Now however, it has been provided that the coffee concentrate is less viscous than the milk concentrate. The result is that when compressing the outer wall 62, it holds once more that the flow rate of the coffee concentrate from the storage space 8a is greater than the flow rate of the milk concentrate from the storage space 8b. As a result, it holds once more that, initially, both coffee concentrate and milk concentrate are supplied to the first mixing chamber 10 so that coffee is formed that leaves the first mixing chamber via the outflow opening 12 and ends up in the holder 40. When, after some time, the storage space 8a is at least virtually empty, this will not yet be the case for the storage space 8b with the milk concentrate. The milk concentrate was, after all, more viscous, so that the flow rate was smaller. That is why thereafter, at least substantially only milk concentrate will be supplied to the mixing chamber 10 so that at least substantially frothed milk is formed which, once more, ends up on top of the coffee already present in the holder 40 so that, once more, a cappuccino is formed. Such variants are all understood to fall within the framework of the invention.
With reference to
With the system according to
In this manner it is possible to squeeze the storage spaces 8a and 8b empty in mutually different paces and/or during mutually different periods. For instance, for preparing a beverage, first, the concentrate from the storage space 8a can be supplied to the first mixing chamber and then the concentrate from the storage space 8b can be supplied to the first mixing chamber. The result is for instance that first, coffee is formed in the first mixing chamber and then milk. Here, further, the air inlet may comprise the valve 50 mentioned. The code reading unit 52 reads, for instance, the code when the inlet opening 16 and the outlet opening 18 are interconnected in a fluid-tight manner. This code 52 comprises information which is related to the type of fluids with which the first storage space 8a and the second storage space 8b, respectively, are filled, in this example coffee concentrate and milk concentrate, respectively. If, thus, the holder is intended for the preparation of cappuccino, the control device 34 can determine this on the basis of the read-out code. To this end, when for instance the button 36 is pushed again, the control device will first, by means of the drive 32, start moving the pressing member 28a in the direction of the pressing member 28b. As a result, first, coffee concentrate will be supplied from the storage space 8a to the mixing chamber 10. Simultaneously, the control device 34 can for instance provide that the air inlet valve 50 is closed. When the air inlet valve 50 is closed and, with the aid of the fluid dispensing device 6, hot water is supplied under pressure to the restriction 20 (at the same time or just after the dosing of the coffee concentrate has started), a jet of water is generated while no air is drawn in via the air inlet opening 42. The hot water will mix with the coffee extract while at least substantially no air is whipped into the coffee. First, via the outflow opening 12, the coffee extract will be dispensed without this being provided with a fine-bubble froth layer. When, after some time, the storage space 8a is at least virtually empty, the control device 34 will provide that subsequently, the pressing member 28c is moved in the direction of the pressing member 28b. As a result, the second storage space 8b is slowly squeezed empty. Thus, milk concentrate is supplied to the mixing chamber 10. Now, the control device 34 can provide that the air valve 50 is opened. As a result, the jet of hot water which is generated with the aid of the restriction 20, draws air along into the first mixing chamber. In this manner, in the first mixing chamber milk is formed with whipped-in air. This milk therefore comprises a fine-bubble froth layer. When, thereafter, the hot milk is supplied via the outflow opening 12 to the coffee extract, the frothed milk will float on the coffee extract so that, once more, a cappuccino is formed. The fluid dispensing device can continue to dispense hot water when the storage space 8a is empty and, after that, the storage space 8b is squeezed empty. The fluid dispensing device can also be temporarily stopped when a switch is made from dispensing coffee concentrate to dispensing milk concentrate.
In
It is also conceivable that the rod 85 and 86 are interconnected by means of a cross arm 88, which cross arm is connected to the drive 32 by means of a rod 90. All this entails that in that case, the wall 82 and the wall 84 are driven by means of one and the same actuator. The rod 86 may then also, for instance, be longer than the rod 85 so that when the rods 85 and 86 move downwards simultaneously, first the wall 84 will start moving downwards so that initially, for instance, dispensing milk concentrate from the storage space 8b is started, and that only after this, when the wall 84 has already moved downwards somewhat, the rod 85 will contact the wall 82 so that then, the wall 82 too will move downward together with the wall 84. From that moment, also coffee concentrate is supplied from the storage space 8a to the first mixing chamber. The result is that first, only milk concentrate is supplied to the first mixing chamber so that initially, only milk is prepared which is supplied to the holder 40. After that, coffee with milk is supplied to the holder 40. Thus, once again as described hereinabove, and when furthermore, in any case during the period in which only milk concentrate is supplied to the first mixing chamber, the air inlet opening is opened and air is whipped into the milk so that frothed milk is dispensed, a good cappuccino can be prepared. The fact is that first, only frothed milk is dispensed and after that coffee (optionally frothed when the air inlet opening is still open) with milk is dispensed.
In
The system according to
In
In this example too it holds that the system is further provided with a restriction 20 included in the fluid flow path 21 which reaches, via the outlet opening 18, the inlet opening 16 and the first mixing chamber 10 (and, in this example also via the second chamber 100), from the fluid dispensing device 6 to the outflow opening 12. In this example, the restriction 20 is located in a fluid communication 104 between the first mixing chamber 10 and the second mixing chamber 100. The restriction 20 is designed such that, in use, with the restriction, a jet of the beverage is generated which spouts into the second mixing chamber 100. In this example too, the system is provided with an air inlet opening 42 for supplying air to the beverage in the system.
In this example, the air supply opening 42 terminates, via the fluid communication 44, downstream of the restriction 20 and upstream of the second mixing chamber 100, in the fluid flow path 21 (in this example in the fluid communication 104).
The operation of the system is as follows. Completely analogously to what is discussed with
In the second mixing chamber 100 the jet will impact on the bottom 102 for whipping in air. The beverage and the air will mix together so that air is whipped into the beverage. The beverage with the whipped-in air then flows from the second mixing chamber 100 via the outflow opening 12 as the beverage with a fine-bubble froth layer.
In the second mixing chamber 100, a further jet impact element 106 can be included (shown in interrupted lines in
It is noted that each of the embodiments according to
Further, with the apparatus according to
In the examples given hereinabove, with the dosing device the second fluid can be dispensed under pressure to the first chamber. As a result, in the embodiment according to
In each of the outlined embodiments, the first fluid can consist of a gas such as steam. In such a case, the second fluid will often already contain a beverage to which the gas is added in the first mixing chamber 10, for instance for heating the beverage. The gas can also comprise carbon dioxide (CO2) for obtaining a carbonated beverage. Also, the first fluid can comprise both a liquid and a gas.
In each of the embodiments according to
In the embodiments outlined hereinabove, the first fluid is supplied to the first mixing chamber during at least a first period and the second fluid is supplied to the first mixing chamber during at least a second period.
Here, the first and second period may start at the same time and end at the same time. It is also possible that the second period starts sooner than the first period. However, other variations are possible too.
Further, the fluid dispensing device 6 can be designed to dispense, at wish, different types of first fluids, such as steam, water, CO2 etc. Once more, the selection hereof can be controlled by the control unit 34 and will often coincide with the type of second fluid or second fluids in the exchangeable holder. Also, if desired, this choice can be set manually or be determined with the aid of the code reading unit 52.
The invention is not limited in any manner to the embodiments outlined hereinabove. In the embodiment according to
The volume of a storage space can vary from, for instance, 5 to 150 millilitres, more particularly from 6 to 50 millilitres. A passage of the restriction can vary from, for instance, 0.4 to 1.5 millimetre, more particularly from 0.6 to 1.3 millimetre, still more particularly from 0.7 to 0.9 millimeters. The pressure at which, in use, the liquid dispensing device dispenses the first fluid can vary from 0.6 to 12 bar, more particularly from 0.7 to 2 bars and preferably from 0.9 to 1.5 bar. The period during which the first fluid is supplied to the first mixing chamber for preparing the beverage can vary from 2 to 90 seconds, more particularly from 10 to 50 seconds. The size of the air inlet opening, if this is completely opened, can vary from, for instance, 0.005 to 0.5 mm2.
Number | Date | Country | Kind |
---|---|---|---|
1027295 | Oct 2004 | NL | national |
1029155 | May 2005 | NL | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NL05/00750 | 10/19/2005 | WO | 00 | 7/10/2009 |