System and method for presentation of media related to a context

Abstract
A system and method for presentation of media related to a context. A request is received over a network from a requesting device for media related to a context, wherein the request comprises at least one criteria. A query is formulated based on the context criteria so as to search, via the network, for user profile data, social network data, spatial data, temporal data and topical data that is available via the network and relates to the context and to media files so as to identify at least one media file that is relevant to the context criteria. A playlist is assembled via the network containing a reference to the media files. The media files on the playlist are transmitted over the network to the requesting device.
Description

This application includes material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent disclosure, as it appears in the Patent and Trademark Office files or records, but otherwise reserves all copyright rights whatsoever.


FIELD OF THE INVENTION

The present invention relates to systems and methods for selecting and presenting media on a network and, more particularly, to systems and methods for selecting and presenting media which relates to a specific topic using, in part, data collected and stored by multiple devices on a network.


BACKGROUND OF THE INVENTION

A great deal of information is generated when people use electronic devices, such as when people use mobile phones and cable set-top boxes. Such information, such as location, applications used, social network, physical and online locations visited, to name a few, could be used to deliver useful services and information to end users, and provide commercial opportunities to advertisers and retailers. However, most of this information is effectively abandoned due to deficiencies in the way such information can be captured. For example, and with respect to a mobile phone, information is generally not gathered while the mobile phone is idle (i.e., not being used by a user). Other information, such as presence of others in the immediate vicinity, time and frequency of messages to other users, and activities of a user's social network are also not captured effectively.


SUMMARY OF THE INVENTION

In one embodiment, the invention is a method, a request is received over a network from a requesting device for media related to a context, wherein the request comprises at least one criteria. A query is formulated based on the context criteria so as to search, via the network, for user profile data, social network data, spatial data, temporal data and topical data that is available via the network and relates to the context and to media files so as to identify at least one media file that is relevant to the context criteria. A playlist is assembled via the network containing a reference to the media files. The media files on the playlist are transmitted over the network to the requesting device.


In another embodiment, the invention is a system. The system comprise: a context entry module that enables entry of a request on a requesting device for media related to a context, wherein the request contains at least one criteria; a query module that uses context criteria entered through the context entry module to formulate a query based on the context criteria so as to search, via the network, for user profile data, social network data, spatial data, temporal data and topical data that is available via the network and relates to the context and to media files so as to identify at least one media file that is relevant to the context criteria; a playlist generation module that assembles playlists containing a reference to the at least one media file; and a media delivery module that transmitting the media files on the playlist over a network to the requesting device.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features, and advantages of the invention will be apparent from the following more particular description of preferred embodiments as illustrated in the accompanying drawings, in which reference characters refer to the same parts throughout the various views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating principles of the invention.



FIG. 1 illustrates relationships between real-world entities (RWE) and information objects (IO) on one embodiment of a W4 Communications Network (W4 COMN.)



FIG. 2 illustrates metadata defining the relationships between RWEs and IOs on one embodiment of a W4 COMN.



FIG. 3 illustrates a conceptual model of one embodiment of a W4 COMN.



FIG. 4 illustrates the functional layers of one embodiment of the W4 COMN architecture.



FIG. 5 illustrates the analysis components of one embodiment of a W4 engine as shown in FIG. 2.



FIG. 6 illustrates one embodiment of a W4 engine showing different components within the sub-engines shown in FIG. 5.



FIG. 7 illustrates one embodiment of a data model showing how a network such as a W4 COMN can store media files and relate such files to RWEs, such as persons and places, and IOs, such as topics and other types of metadata.



FIG. 8 illustrates one embodiment of a process of how a network containing temporal, spatial, and social network and topical data for a plurality of users, devices, and media, such as a W4 COMN, can be used to enable customized music delivery for complex user contexts having who, where, when, and what criteria.



FIG. 9 further illustrates how the process illustrated in FIG. 8 can be supported by one embodiment of a W4 COMN or other network providing similar data and processing capabilities.



FIG. 10 illustrates the components of one embodiment of a context query engine.





DETAILED DESCRIPTION

The present invention is described below with reference to block diagrams and operational illustrations of methods and devices to select and present media related to a specific topic. It is understood that each block of the block diagrams or operational illustrations, and combinations of blocks in the block diagrams or operational illustrations, can be implemented by means of analog or digital hardware and computer program instructions.


These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, ASIC, or other programmable data processing apparatus, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, implements the functions/acts specified in the block diagrams or operational block or blocks.


In some alternate implementations, the functions/acts noted in the blocks can occur out of the order noted in the operational illustrations. For example, two blocks shown in succession can in fact be executed substantially concurrently or the blocks can sometimes be executed in the reverse order, depending upon the functionality/acts involved.


For the purposes of this disclosure the term “server” should be understood to refer to a service point which provides processing, database, and communication facilities. By way of example, and not limitation, the term “server” can refer to a single, physical processor with associated communications and data storage and database facilities, or it can refer to a networked or clustered complex of processors and associated network and storage devices, as well as operating software and one or more database systems and applications software which support the services provided by the server.


For the purposes of this disclosure the term “end user” or “user” should be understood to refer to a consumer of data supplied by a data provider. By way of example, and not limitation, the term “end user” can refer to a person who receives data provided by the data provider over the Internet in a browser session, or can refer to an automated software application which receives the data and stores or processes the data.


For the purposes of this disclosure the term “media” and “media content” should be understood to refer to binary data which contains content which can be of interest to an end user. By way of example, and not limitation, the term “media” and “media content” can refer to multimedia data, such as video data or audio data, or any other form of data capable of being transformed into a form perceivable by an end user. Such data can, furthermore, be encoded in any manner currently known, or which can be developed in the future, for specific purposes. By way of example, and not limitation, the data can be encrypted, compressed, and/or can contained embedded metadata.


For the purposes of this disclosure, a computer readable medium stores computer data in machine readable form. By way of example, and not limitation, a computer readable medium can comprise computer storage media and communication media. Computer storage media includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid-state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other mass storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.


For the purposes of this disclosure a module is a software, hardware, or firmware (or combinations thereof) system, process or functionality, or component thereof, that performs or facilitates the processes, features, and/or functions described herein (with or without human interaction or augmentation). A module can include sub-modules. Software components of a module may be stored on a computer readable medium. Modules may be integral to one or more servers, or be loaded and executed by one or more servers. One or more modules may grouped into an engine or an application.


Embodiments of the present invention utilize information provided by a network which is capable of providing data collected and stored by multiple devices on a network. Such information may include, without limitation, temporal information, spatial information, and user information relating to a specific user or hardware device. User information may include, without limitation, user demographics, user preferences, user social networks, and user behavior. One embodiment of such a network is a W4 Communications Network.


A “W4 Communications Network” or W4 COMN, provides information related to the “Who, What, When and Where” of interactions within the network. In one embodiment, the W4 COMN is a collection of users, devices and processes that foster both synchronous and asynchronous communications between users and their proxies providing an instrumented network of sensors providing data recognition and collection in real-world environments about any subject, location, user or combination thereof.


In one embodiment, the W4 COMN can handle the routing/addressing, scheduling, filtering, prioritization, replying, forwarding, storing, deleting, privacy, transacting, triggering of a new message, propagating changes, transcoding and linking. Furthermore, these actions can be performed on any communication channel accessible by the W4 COMN.


In one embodiment, the W4 COMN uses a data modeling strategy for creating profiles for not only users and locations, but also any device on the network and any kind of user-defined data with user-specified conditions. Using Social, Spatial, Temporal and Logical data available about a specific user, topic or logical data object, every entity known to the W4 COMN can be mapped and represented against all other known entities and data objects in order to create both a micro graph for every entity as well as a global graph that relates all known entities with one another. In one embodiment, such relationships between entities and data objects are stored in a global index within the W4 COMN.


In one embodiment, a W4 COMN network relates to what may be termed “real-world entities”, hereinafter referred to as RWEs. A RWE refers to, without limitation, a person, device, location, or other physical thing known to a W4 COMN. In one embodiment, each RWE known to a W4 COMN is assigned a unique W4 identification number that identifies the RWE within the W4 COMN.


RWEs can interact with the network directly or through proxies, which can themselves be RWEs. Examples of RWEs that interact directly with the W4 COMN include any device such as a sensor, motor, or other piece of hardware connected to the W4 COMN in order to receive or transmit data or control signals. RWE may include all devices that can serve as network nodes or generate, request and/or consume data in a networked environment or that can be controlled through a network. Such devices include any kind of “dumb” device purpose-designed to interact with a network (e.g., cell phones, cable television set top boxes, fax machines, telephones, and radio frequency identification (RFID) tags, sensors, etc.).


Examples of RWEs that may use proxies to interact with W4 COMN network include non-electronic entities including physical entities, such as people, locations (e.g., states, cities, houses, buildings, airports, roads, etc.) and things (e.g., animals, pets, livestock, gardens, physical objects, cars, airplanes, works of art, etc.), and intangible entities such as business entities, legal entities, groups of people or sports teams. In addition, “smart” devices (e.g., computing devices such as smart phones, smart set top boxes, smart cars that support communication with other devices or networks, laptop computers, personal computers, server computers, satellites, etc.) may be considered RWE that use proxies to interact with the network, where software applications executing on the device that serve as the devices' proxies.


In one embodiment, a W4 COMN may allow associations between RWEs to be determined and tracked. For example, a given user (an RWE) can be associated with any number and type of other RWEs including other people, cell phones, smart credit cards, personal data assistants, email and other communication service accounts, networked computers, smart appliances, set top boxes and receivers for cable television and other media services, and any other networked device. This association can be made explicitly by the user, such as when the RWE is installed into the W4 COMN.


An example of this is the set up of a new cell phone, cable television service or email account in which a user explicitly identifies an RWE (e.g., the user's phone for the cell phone service, the user's set top box and/or a location for cable service, or a username and password for the online service) as being directly associated with the user. This explicit association can include the user identifying a specific relationship between the user and the RWE (e.g., this is my device, this is my home appliance, this person is my friend/father/son/etc., this device is shared between me and other users, etc.). RWEs can also be implicitly associated with a user based on a current situation. For example, a weather sensor on the W4 COMN can be implicitly associated with a user based on information indicating that the user lives or is passing near the sensor's location.


In one embodiment, a W4 COMN network may additionally include what may be termed “information-objects”, hereinafter referred to as IOs. An information object (IO) is a logical object that may store, maintain, generate or otherwise provides data for use by RWEs and/or the W4 COMN. In one embodiment, data within in an IO can be revised by the act of an RWE An IO within in a W4 COMN can be provided a unique W4 identification number that identifies the IO within the W4 COMN.


In one embodiment, IOs include passive objects such as communication signals (e.g., digital and analog telephone signals, streaming media and interprocess communications), email messages, transaction records, virtual cards, event records (e.g., a data file identifying a time, possibly in combination with one or more RWEs such as users and locations, that can further be associated with a known topic/activity/significance such as a concert, rally, meeting, sporting event, etc.), recordings of phone calls, calendar entries, web pages, database entries, electronic media objects (e.g., media files containing songs, videos, pictures, images, audio messages, phone calls, etc.), electronic files and associated metadata.


In one embodiment, IOs include any executing process or application that consumes or generates data such as an email communication application (such as OUTLOOK by MICROSOFT, or YAHOO! MAIL by YAHOO!), a calendaring application, a word processing application, an image editing application, a media player application, a weather monitoring application, a browser application and a web page server application. Such active IOs can or can not serve as a proxy for one or more RWEs. For example, voice communication software on a smart phone can serve as the proxy for both the smart phone and for the owner of the smart phone.


In one embodiment, for every IO there are at least three classes of associated RWEs. The first is the RWE that owns or controls the IO, whether as the creator or a rights holder (e.g., an RWE with editing rights or use rights to the IO). The second is the RWE(s) that the IO relates to, for example by containing information about the RWE or that identifies the RWE. The third are any RWEs that access the IO in order to obtain data from the IO for some purpose.


Within the context of a W4 COMN, “available data” and “W4 data” means data that exists in an IO or data that can be collected from a known IO or RWE such as a deployed sensor. Within the context of a W4 COMN, “sensor” means any source of W4 data including PCs, phones, portable PCs or other wireless devices, household devices, cars, appliances, security scanners, video surveillance, RFID tags in clothes, products and locations, online data or any other source of information about a real-world user/topic/thing (RWE) or logic-based agent/process/topic/thing (IO).



FIG. 1 illustrates one embodiment of relationships between RWEs and IOs on a W4 COMN. A user 102 is a RWE provided with a unique network ID. The user 102 may be a human that communicates with the network using proxy devices 104, 106, 108, 110 associated with the user 102, all of which are RWEs having a unique network ID. These proxies can communicate directly with the W4 COMN or can communicate with the W4 COMN using IOs such as applications executed on or by a proxy device.


In one embodiment, the proxy devices 104, 106, 108, 110 can be explicitly associated with the user 102. For example, one device 104 can be a smart phone connected by a cellular service provider to the network and another device 106 can be a smart vehicle that is connected to the network. Other devices can be implicitly associated with the user 102.


For example, one device 108 can be a “dumb” weather sensor at a location matching the current location of the user's cell phone 104, and thus implicitly associated with the user 102 while the two RWEs 104, 108 are co-located. Another implicitly associated device 110 can be a sensor 110 for physical location 112 known to the W4 COMN. The location 112 is known, either explicitly (through a user-designated relationship, e.g., this is my home, place of employment, parent, etc.) or implicitly (the user 102 is often co-located with the RWE 112 as evidenced by data from the sensor 110 at that location 112), to be associated with the first user 102.


The user 102 can be directly associated with one or more persons 140, and indirectly associated with still more persons 142, 144 through a chain of direct associations. Such associations can be explicit (e.g., the user 102 can have identified the associated person 140 as his/her father, or can have identified the person 140 as a member of the user's social network) or implicit (e.g., they share the same address). Tracking the associations between people (and other RWEs as well) allows the creation of the concept of “intimacy”, where intimacy may be defined as a measure of the degree of association between two people or RWEs. For example, each degree of removal between RWEs can be considered a lower level of intimacy, and assigned lower intimacy score. Intimacy can be based solely on explicit social data or can be expanded to include all W4 data including spatial data and temporal data.


In one embodiment, each RWE 102, 104, 106, 108, 110, 112, 140, 142, 144 of a W4 COMN can be associated with one or more IOs as shown. FIG. 1 illustrates two IOs 122, 124 as associated with the cell phone device 104. One IO 122 can be a passive data object such as an event record that is used by scheduling/calendaring software on the cell phone, a contact IO used by an address book application, a historical record of a transaction made using the device 104 or a copy of a message sent from the device 104. The other IO 124 can be an active software process or application that serves as the device's proxy to the W4 COMN by transmitting or receiving data via the W4 COMN. Voice communication software, scheduling/calendaring software, an address book application or a text messaging application are all examples of IOs that can communicate with other IOs and RWEs on the network. IOs may additionally relate to topics of interest to one or more RWEs, such topics including, without limitation, musical artists, genre of music, a location and so forth.


The IOs 122, 124 can be locally stored on the device 104 or stored remotely on some node or datastore accessible to the W4 COMN, such as a message server or cell phone service datacenter. The IO 126 associated with the vehicle 108 can be an electronic file containing the specifications and/or current status of the vehicle 108, such as make, model, identification number, current location, current speed, current condition, current owner, etc. The IO 128 associated with sensor 108 can identify the current state of the subject(s) monitored by the sensor 108, such as current weather or current traffic. The IO 130 associated with the cell phone 110 can be information in a database identifying recent calls or the amount of charges on the current bill.


RWEs which can only interact with the W4 COMN through proxies, such as people 102, 140, 142, 144, computing devices 104, 106 and locations 112, can have one or more IOs 132, 134, 146, 148, 150 directly associated with them which contain RWE-specific information for the associated RWE. For example, IOs associated with a person 132, 146, 148, 150 can include a user profile containing email addresses, telephone numbers, physical addresses, user preferences, identification of devices and other RWEs associated with the user. The IOs may additionally include records of the user's past interactions with other RWE's on the W4 COMN (e.g., transaction records, copies of messages, listings of time and location combinations recording the user's whereabouts in the past), the unique W4 COMN identifier for the location and/or any relationship information (e.g., explicit user-designations of the user's relationships with relatives, employers, co-workers, neighbors, service providers, etc.).


Another example of IOs associated with a person 132, 146, 148, 150 includes remote applications through which a person can communicate with the W4 COMN such as an account with a web-based email service such as Yahoo! Mail. A location's IO 134 can contain information such as the exact coordinates of the location, driving directions to the location, a classification of the location (residence, place of business, public, non-public, etc.), information about the services or products that can be obtained at the location, the unique W4 COMN identifier for the location, businesses located at the location, photographs of the location, etc.


In one embodiment, RWEs and IOs are correlated to identify relationships between them. RWEs and IOs may be correlated using metadata. For example, if an IO is a music file, metadata for the file can include data identifying the artist, song, etc., album art, and the format of the music data. This metadata can be stored as part of the music file or in one or more different IOs that are associated with the music file or both. W4 metadata can additionally include the owner of the music file and the rights the owner has in the music file. As another example, if the IO is a picture taken by an electronic camera, the picture can include in addition to the primary image data from which an image can be created on a display, metadata identifying when the picture was taken, where the camera was when the picture was taken, what camera took the picture, who, if anyone, is associated (e.g., designated as the camera's owner) with the camera, and who and what are the subjects of/in the picture. The W4 COMN uses all the available metadata in order to identify implicit and explicit associations between entities and data objects.



FIG. 2 illustrates one embodiment of metadata defining the relationships between RWEs and IOs on the W4 COMN. In the embodiment shown, an IO 202 includes object data 204 and five discrete items of metadata 206, 208, 210, 212, 214. Some items of metadata 208, 210, 212 can contain information related only to the object data 204 and unrelated to any other IO or RWE. For example, a creation date, text or an image that is to be associated with the object data 204 of the IO 202.


Some of items of metadata 206, 214, on the other hand, can identify relationships between the IO 202 and other RWEs and IOs. As illustrated, the IO 202 is associated by one item of metadata 206 with an RWE 220 that RWE 220 is further associated with two IOs 224, 226 and a second RWE 222 based on some information known to the W4 COMN. For example, could describe the relations between an image (IO 202) containing metadata 206 that identifies the electronic camera (the first RWE 220) and the user (the second RWE 224) that is known by the system to be the owner of the camera 220. Such ownership information can be determined, for example, from one or another of the IOs 224, 226 associated with the camera 220.



FIG. 2 also illustrates metadata 214 that associates the IO 202 with another IO 230. This IO 230 is itself associated with three other IOs 232, 234, 236 that are further associated with different RWEs 242, 244, 246. This part of FIG. 2, for example, could describe the relations between a music file (IO 202) containing metadata 206 that identifies the digital rights file (the first IO 230) that defines the scope of the rights of use associated with this music file 202. The other IOs 232, 234, 236 are other music files that are associated with the rights of use and which are currently associated with specific owners (RWEs 242, 244, 246).



FIG. 3 illustrates one embodiment of a conceptual model of a W4 COMN. The W4 COMN 300 creates an instrumented messaging infrastructure in the form of a global logical network cloud conceptually sub-divided into networked-clouds for each of the 4Ws: Who, Where, What and When. In the Who cloud 302 are all users whether acting as senders, receivers, data points or confirmation/certification sources as well as user proxies in the forms of user-program processes, devices, agents, calendars, etc.


In the Where cloud 304 are all physical locations, events, sensors or other RWEs associated with a spatial reference point or location. The When cloud 306 is composed of natural temporal events (that is events that are not associated with particular location or person such as days, times, seasons) as well as collective user temporal events (holidays, anniversaries, elections, etc.) and user-defined temporal events (birthdays, smart-timing programs).


The What cloud 308 is comprised of all known data-web or private, commercial or user-accessible to the W4 COMN, including for example environmental data like weather and news, RWE-generated data, IOs and IO data, user data, models, processes and applications. Thus, conceptually, most data is contained in the What cloud 308.


Some entities, sensors or data may potentially exist in multiple clouds either disparate in time or simultaneously. Additionally, some IOs and RWEs can be composites in that they combine elements from one or more clouds. Such composites can be classified as appropriate to facilitate the determination of associations between RWEs and IOs. For example, an event consisting of a location and time could be equally classified within the When cloud 306, the What cloud 308 and/or the Where cloud 304.


In one embodiment, a W4 engine 310 is center of the W4 COMN's intelligence for making all decisions in the W4 COMN. The W4 engine 310 controls all interactions between each layer of the W4 COMN and is responsible for executing any approved user or application objective enabled by W4 COMN operations or interoperating applications. In an embodiment, the W4 COMN is an open platform with standardized, published APIs for requesting (among other things) synchronization, disambiguation, user or topic addressing, access rights, prioritization or other value-based ranking, smart scheduling, automation and topical, social, spatial or temporal alerts.


One function of the W4 COMN is to collect data concerning all communications and interactions conducted via the W4 COMN, which can include storing copies of IOs and information identifying all RWEs and other information related to the IOs (e.g., who, what, when, where information). Other data collected by the W4 COMN can include information about the status of any given RWE and IO at any given time, such as the location, operational state, monitored conditions (e.g., for an RWE that is a weather sensor, the current weather conditions being monitored or for an RWE that is a cell phone, its current location based on the cellular towers it is in contact with) and current status.


The W4 engine 310 is also responsible for identifying RWEs and relationships between RWEs and IOs from the data and communication streams passing through the W4 COMN. The function of identifying RWEs associated with or implicated by IOs and actions performed by other RWEs may be referred to as entity extraction. Entity extraction can include both simple actions, such as identifying the sender and receivers of a particular IO, and more complicated analyses of the data collected by and/or available to the W4 COMN, for example determining that a message listed the time and location of an upcoming event and associating that event with the sender and receiver(s) of the message based on the context of the message or determining that an RWE is stuck in a traffic jam based on a correlation of the RWE's location with the status of a co-located traffic monitor.


It should be noted that when performing entity extraction from an IO, the IO can be an opaque object with only where only W4 metadata related to the object is visible, but internal data of the IO (i.e., the actual primary or object data contained within the object) are not, and thus metadata extraction is limited to the metadata. Alternatively, if internal data of the IO is visible, it can also be used in entity extraction, e.g. strings within an email are extracted and associated as RWEs to for use in determining the relationships between the sender, user, topic or other RWE or IO impacted by the object or process.


In the embodiment shown, the W4 engine 310 can be one or a group of distributed computing devices, such as a general-purpose personal computers (PCs) or purpose built server computers, connected to the W4 COMN by communication hardware and/or software. Such computing devices can be a single device or a group of devices acting together. Computing devices can be provided with any number of program modules and data files stored in a local or remote mass storage device and local memory (e.g., RAM) of the computing device. For example, as mentioned above, a computing device can include an operating system suitable for controlling the operation of a networked computer, such as the WINDOWS XP or WINDOWS SERVER operating systems from MICROSOFT CORPORATION.


Some RWEs can also be computing devices such as, without limitation, smart phones, web-enabled appliances, PCs, laptop computers, and personal data assistants (PDAs). Computing devices can be connected to one or more communications networks such as the Internet, a publicly switched telephone network, a cellular telephone network, a satellite communication network, a wired communication network such as a cable television or private area network. Computing devices can be connected any such network via a wired data connection or wireless connection such as a wi-fi, a WiMAX (802.36), a Bluetooth or a cellular telephone connection.


Local data structures, including discrete IOs, can be stored on a computer-readable medium (not shown) that is connected to, or part of, any of the computing devices described herein including the W4 engine 310. For example, in one embodiment, the data backbone of the W4 COMN, discussed below, includes multiple mass storage devices that maintain the IOs, metadata and data necessary to determine relationships between RWEs and IOs as described herein.



FIG. 4 illustrates one embodiment of the functional layers of a W4 COMN architecture. At the lowest layer, referred to as the sensor layer 402, is the network 404 of the actual devices, users, nodes and other RWEs. Sensors include known technologies like web analytics, GPS, cell-tower pings, use logs, credit card transactions, online purchases, explicit user profiles and implicit user profiling achieved through behavioral targeting, search analysis and other analytics models used to optimize specific network applications or functions.


The data layer 406 stores and catalogs the data produced by the sensor layer 402. The data can be managed by either the network 404 of sensors or the network infrastructure 406 that is built on top of the instrumented network of users, devices, agents, locations, processes and sensors. The network infrastructure 408 is the core under-the-covers network infrastructure that includes the hardware and software necessary to receive that transmit data from the sensors, devices, etc. of the network 404. It further includes the processing and storage capability necessary to meaningfully categorize and track the data created by the network 404.


The user profiling layer 410 performs the W4 COMN's user profiling functions. This layer 410 can further be distributed between the network infrastructure 408 and user applications/processes 412 executing on the W4 engine or disparate user computing devices. Personalization is enabled across any single or combination of communication channels and modes including email, IM, texting (SMS, etc.), photobloging, audio (e.g. telephone call), video (teleconferencing, live broadcast), games, data confidence processes, security, certification or any other W4 COMM process call for available data.


In one embodiment, the user profiling layer 410 is a logic-based layer above all sensors to which sensor data are sent in the rawest form to be mapped and placed into the W4 COMN data backbone 420. The data (collected and refined, related and deduplicated, synchronized and disambiguated) are then stored in one or a collection of related databases available applications approved on the W4 COMN. Network-originating actions and communications are based upon the fields of the data backbone, and some of these actions are such that they themselves become records somewhere in the backbone, e.g. invoicing, while others, e.g. fraud detection, synchronization, disambiguation, can be done without an impact to profiles and models within the backbone.


Actions originating from outside the network, e.g., RWEs such as users, locations, proxies and processes, come from the applications layer 414 of the W4 COMN. Some applications can be developed by the W4 COMN operator and appear to be implemented as part of the communications infrastructure 408, e.g. email or calendar programs because of how closely they operate with the sensor processing and user profiling layer 410. The applications 412 also serve as a sensor in that they, through their actions, generate data back to the data layer 406 via the data backbone concerning any data created or available due to the applications execution.


In one embodiment, the applications layer 414 can also provide a user interface (UI) based on device, network, carrier as well as user-selected or security-based customizations. Any UI can operate within the W4 COMN if it is instrumented to provide data on user interactions or actions back to the network. In the case of W4 COMN enabled mobile devices, the UI can also be used to confirm or disambiguate incomplete W4 data in real-time, as well as correlation, triangulation and synchronization sensors for other nearby enabled or non-enabled devices.


At some point, the network effects enough enabled devices allow the network to gather complete or nearly complete data (sufficient for profiling and tracking) of a non-enabled device because of its regular intersection and sensing by enabled devices in its real-world location.


Above the applications layer 414, or hosted within it, is the communications delivery network 416. The communications delivery network can be operated by the W4 COMN operator or be independent third-party carrier service. Data may be delivered via synchronous or asynchronous communication. In every case, the communication delivery network 414 will be sending or receiving data on behalf of a specific application or network infrastructure 408 request.


The communication delivery layer 418 also has elements that act as sensors including W4 entity extraction from phone calls, emails, blogs, etc. as well as specific user commands within the delivery network context. For example, “save and prioritize this call” said before end of call can trigger a recording of the previous conversation to be saved and for the W4 entities within the conversation to analyzed and increased in weighting prioritization decisions in the personalization/user profiling layer 410.



FIG. 5 illustrates one embodiment of the analysis components of a W4 engine as shown in FIG. 3. As discussed above, the W4 Engine is responsible for identifying RWEs and relationships between RWEs and IOs from the data and communication streams passing through the W4 COMN.


In one embodiment the W4 engine connects, interoperates and instruments all network participants through a series of sub-engines that perform different operations in the entity extraction process. The attribution engine 504 tracks the real-world ownership, control, publishing or other conditional rights of any RWE in any IO. Whenever a new IO is detected by the W4 engine 502, e.g., through creation or transmission of a new message, a new transaction record, a new image file, etc., ownership is assigned to the IO. The attribution engine 504 creates this ownership information and further allows this information to be determined for each IO known to the W4 COMN.


The correlation engine 506 can operates two capacities: first, to identify associated RWEs and IOs and their relationships (such as by creating a combined graph of any combination of RWEs and IOs and their attributes, relationships and reputations within contexts or situations) and second, as a sensor analytics pre-processor for attention events from any internal or external source.


In one embodiment, the identification of associated RWEs and IOs function of the correlation engine 506 is done by graphing the available data, using, for example, one or more histograms A histogram is a mapping technique that counts the number of observations that fall into various disjoint categories (i.e. bins.). By selecting each IO, RWE, and other known parameters (e.g., times, dates, locations, etc.) as different bins and mapping the available data, relationships between RWEs, IOs and the other parameters can be identified. A histogram of all RWEs and IOs is created, from which correlations based on the graph can be made.


As a pre-processor, the correlation engine 506 monitors the information provided by RWEs in order to determine if any conditions are identified that can trigger an action on the part of the W4 engine 502. For example, if a delivery condition has been associated with a message, when the correlation engine 506 determines that the condition is met, it can transmit the appropriate trigger information to the W4 engine 502 that triggers delivery of the message.


The attention engine 508 instruments all appropriate network nodes, clouds, users, applications or any combination thereof and includes close interaction with both the correlation engine 506 and the attribution engine 504.



FIG. 6 illustrates one embodiment of a W4 engine showing different components within the sub-engines described above with reference to FIG. 4. In one embodiment the W4 engine 602 includes an attention engine 608, attribution engine 604 and correlation engine 606 with several sub-managers based upon basic function.


The attention engine 608 includes a message intake and generation manager 610 as well as a message delivery manager 612 that work closely with both a message matching manager 614 and a real-time communications manager 616 to deliver and instrument all communications across the W4 COMN.


The attribution engine 604 works within the user profile manager 618 and in conjunction with all other modules to identify, process/verify and represent ownership and rights information related to RWEs, IOs and combinations thereof.


The correlation engine 606 dumps data from both of its channels (sensors and processes) into the same data backbone 620 which is organized and controlled by the W4 analytics manager 622. The data backbone 620 includes both aggregated and individualized archived versions of data from all network operations including user logs 624, attention rank place logs 626, web indices and environmental logs 618, e-commerce and financial transaction information 630, search indexes and logs 632, sponsor content or conditionals, ad copy and any and all other data used in any W4 COMN process, IO or event. Because of the amount of data that the W4 COMN will potentially store, the data backbone 620 includes numerous database servers and datastores in communication with the W4 COMN to provide sufficient storage capacity.


The data collected by the W4 COMN includes spatial data, temporal data, RWE interaction data, IO content data (e.g., media data), and user data including explicitly-provided and deduced social and relationship data. Spatial data can be any data identifying a location associated with an RWE. For example, the spatial data can include any passively collected location data, such as cell tower data, global packet radio service (GPRS) data, global positioning service (GPS) data, WI-FI data, personal area network data, IP address data and data from other network access points, or actively collected location data, such as location data entered by the user.


Temporal data is time based data (e.g., time stamps) that relate to specific times and/or events associated with a user and/or the electronic device. For example, the temporal data can be passively collected time data (e.g., time data from a clock resident on the electronic device, or time data from a network clock), or the temporal data can be actively collected time data, such as time data entered by the user of the electronic device (e.g., a user maintained calendar).


Logical and IO data refers to the data contained by an IO as well as data associated with the IO such as creation time, owner, associated RWEs, when the IO was last accessed, the topic or subject of the IO (from message content or “re” or subject line, as some examples) etc. For example, an IO may relate to media data. Media data can include any data relating to presentable media, such as audio data, visual data, and audiovisual data. Audio data can be data relating to downloaded music, such as genre, artist, album and the like, and includes data regarding ringtones, ringbacks, media purchased, playlists, and media shared, to name a few. The visual data can be data relating to images and/or text received by the electronic device (e.g., via the Internet or other network). The visual data can be data relating to images and/or text sent from and/or captured at the electronic device.


Audiovisual data can be data associated with any videos captured at, downloaded to, or otherwise associated with the electronic device. The media data includes media presented to the user via a network, such as use of the Internet, and includes data relating to text entered and/or received by the user using the network (e.g., search terms), and interaction with the network media, such as click data (e.g., advertisement banner clicks, bookmarks, click patterns and the like). Thus, the media data can include data relating to the user's RSS feeds, subscriptions, group memberships, game services, alerts, and the like.


The media data can include non-network activity, such as image capture and/or video capture using an electronic device, such as a mobile phone. The image data can include metadata added by the user, or other data associated with the image, such as, with respect to photos, location when the photos were taken, direction of the shot, content of the shot, and time of day, to name a few. Media data can be used, for example, to deduce activities information or preferences information, such as cultural and/or buying preferences information.


Relationship data can include data relating to the relationships of an RWE or IO to another RWE or IO. For example, the relationship data can include user identity data, such as gender, age, race, name, social security number, photographs and other information associated with the user's identity. User identity information can also include e-mail addresses, login names and passwords. Relationship data can further include data identifying explicitly associated RWEs. For example, relationship data for a cell phone can indicate the user that owns the cell phone and the company that provides the service to the phone. As another example, relationship data for a smart car can identify the owner, a credit card associated with the owner for payment of electronic tolls, those users permitted to drive the car and the service station for the car.


Relationship data can also include social network data. Social network data includes data relating to any relationship that is explicitly defined by a user or other RWE, such as data relating to a user's friends, family, co-workers, business relations, and the like. Social network data can include, for example, data corresponding with a user-maintained electronic address book. Relationship data can be correlated with, for example, location data to deduce social network information, such as primary relationships (e.g., user-spouse, user-children and user-parent relationships) or other relationships (e.g., user-friends, user-co-worker, user-business associate relationships). Relationship data also can be utilized to deduce, for example, activities information.


Interaction data can be any data associated with user interaction of the electronic device, whether active or passive. Examples of interaction data include interpersonal communication data, media data, relationship data, transactional data and device interaction data, all of which are described in further detail below. Table 1, below, is a non-exhaustive list including examples of electronic data.









TABLE 1







Examples of Electronic Data









Spatial Data
Temporal Data
Interaction Data





Cell tower
Time stamps
Interpersonal


GPRS
Local clock
communications


GPS
Network clock
Media


WiFi
User input of time
Relationships


Personal area network

Transactions


Network access points

Device interactions


User input of location




Geo-coordinates









Interaction data includes communication data between any RWEs that is transferred via the W4 COMN. For example, the communication data can be data associated with an incoming or outgoing short message service (SMS) message, email message, voice call (e.g., a cell phone call, a voice over IP call), or other type of interpersonal communication related to an RWE. Communication data can be correlated with, for example, temporal data to deduce information regarding frequency of communications, including concentrated communication patterns, which can indicate user activity information.


The interaction data can also include transactional data. The transactional data can be any data associated with commercial transactions undertaken by or at the mobile electronic device, such as vendor information, financial institution information (e.g., bank information), financial account information (e.g., credit card information), merchandise information and costs/prices information, and purchase frequency information, to name a few. The transactional data can be utilized, for example, to deduce activities and preferences information. The transactional information can also be used to deduce types of devices and/or services the user owns and/or in which the user can have an interest.


The interaction data can also include device or other RWE interaction data. Such data includes both data generated by interactions between a user and a RWE on the W4 COMN and interactions between the RWE and the W4 COMN. RWE interaction data can be any data relating to an RWE's interaction with the electronic device not included in any of the above categories, such as habitual patterns associated with use of an electronic device data of other modules/applications, such as data regarding which applications are used on an electronic device and how often and when those applications are used. As described in further detail below, device interaction data can be correlated with other data to deduce information regarding user activities and patterns associated therewith. Table 2, below, is a non-exhaustive list including examples of interaction data.









TABLE 2







Examples of Interaction Data








Type of Data
Example(s)





Interpersonal
Text-based communications, such as SMS and


communication
e-mail


data
Audio-based communications, such as voice



calls, voice notes, voice mail



Media-based communications, such as



multimedia messaging service (MMS)



communications



Unique identifiers associated with a



communication, such as phone numbers, e-mail



addresses, and network addresses


Media data
Audio data, such as music data (artist, genre,



track, album, etc.)



Visual data, such as any text, images and video



data, including Internet data, picture data,



podcast data and playlist data



Network interaction data, such as click patterns



and channel viewing patterns


Relationship
User identifying information, such as name, age,


data
gender, race, and social security number



Social network data


Transactional
Vendors


data
Financial accounts, such as credit cards and banks



data



Type of merchandise/services purchased



Cost of purchases



Inventory of purchases


Device interaction
Any data not captured above dealing with user


data
interaction of the device, such as patterns of use



of the device, applications utilized, and so forth










Presentation of Media Related to a Context


Media such as music, videos, movies, images, books and publications help define and shape human consciousness. Media may evoke deep seated memories and create a picture, an impression, a feeling, of a time or place, a person or a group of persons, or even an abstract idea. So little is within the compass of direct experience, yet through the lens of recorded media, a person can glimpse a flash of another place or time, may in fact, be able to enter the thoughts of another person. The past and the present, and the far reaches of the world carry on an unbroken dialogue through media.


A person may wish, for any number of reasons, to set sail on the ocean of available media to capture an idea, a place, a time, and to live it, think it, experience it on a conscious or unconscious level. It is simple enough to retrieve a playlist or list of videos for a single musical artist. But a person may wish to capture a more complex concept, for example, a person may wish to create a playlist of songs representing the favorite music of immediate family members when each of the family members were a particular age. In another example, a person may wish to listen to music listened to by surfers in Hawaii in 1974.


More abstractly, when a user is requesting a playlist, the user may be said to have a specific context in mind. In one embodiment, the user's context can be defined as a set of criteria that describe or circumscribe one or more related ideas. The criteria can be conceptually divided into four categories: Who, What, When and Where.


“Who” criteria are persons, devices, or proxies who are related to the ideas embodied in the context. “Who” may be a known person, such as the user or a specific person known by the user. “Who” may also be a list of specific persons, such as the contact list stored on the PDA of a user, or persons listed on a user's social network profile as friends. Alternatively, “Who” can be a general description of persons of interest, such as persons who are interested in surfing.


“What” criteria are objects or topics related to the ideas embodied in the context. “What” may be the form of media the user is interested in, such as music or videos. “What” may be a genre of music or video, such as country or rock. “What” may be subject matter addressed in media, such as love songs or even specific lyrical phrases. Alternatively, “What” may be a mood or atmosphere, such as happy, sad, energetic, or relaxed.


“When” criteria are dates and times which are related to the ideas embodied in the context. “When” may be the current date and time. “When” may also be a specific date and time in the past or the future, or a range of dates and times in the past or the future. “When” may be an offset from a specific date, for example, ten days in the past. Alternatively, “When” can be an event on a calendar, such as a birthday, a season or a holiday, or an event in the news, such as the last time a favorite sports team won a championship.


“Where” criteria are physical locations. “Where” may be a user's current location. “Where” may be specific place, such as a country, a state, a city, a neighborhood. “Where” may be defined as the location of an event, such as a concert or some other newsworthy occurrence. Alternatively, “Where” can be a general description of places of interest, such as blues or jazz clubs.


The embodiments of the present invention discussed below illustrate application of the present invention within a W4 COMN. Nevertheless, it is understood that the invention can be implemented using any networked system that is capable of collecting, storing accessing and/or processing user profile data, as well as temporal, spatial, topical and social data relating to users and their devices. Thus the term W4 COMN is used herein for convenience to describe a system and/or network having the features, functions and/or components described herein throughout.


A W4 COMN can provide a platform that stores media files and enables the selection and presentation of such files related using queries based on complex contexts containing who, what, when, and where criteria, allowing a user to experience or re-experience the media of a specific combination of time, place and social network by mining historical and current W4 data, and combining it with, among other things, charts of popular media at the specific time and place specified.



FIG. 7 illustrates one embodiment of a data model showing how a W4 COMN can store media files and relate such files to RWEs, such as persons and places, and IOs, such as topics and other types of metadata.


In the illustrated embodiment, media is stored as media objects 710. Media objects are passive IOs relating to media files containing audio content, visual content, or both. Such media files can contain content such as songs, videos, pictures, images, audio messages, phone calls, and so forth. The media objects themselves contain metadata 712. Such data may be specific to the to the object data 710 and unrelated to any other IO or RWE. At the simplest level, such metadata may relate to basic file properties such as creation date, text or an image that is associated with a media file to which an IO relates.


Additionally, there are existing databases 720 which can reside within or outside of the network that can provide an extensive set of descriptive metadata relating to specific songs, videos and other types of media. For example, the Allmusic database (formerly the All Music Guide, owned by All Media Guide) provides metadata which includes:

    • Basic metadata such as names, genres, credits, copyright information, product numbers.
    • Descriptive content such as styles, tones, moods, themes, nationalities, etc.
    • Relational content such as similar artists and albums, influences, etc.
    • Editorial content such as biographies, reviews, rankings, etc.


Other types of databases that can be used as sources for metadata relating to songs and video include:

    • Historical billboard rankings at a local, regional, or national level, or on foreign billboards.
    • Music and video industry news.
    • Music lyrics.


In one embodiment, metadata originating from such databases can extracted from source databases and embedded 712 in the media objects 710 themselves. Alternatively or additionally, the media objects may be related to IOs that contain or relate to metadata 740. Metadata can include one or more keywords or topics that describe or classify data. For example, a IO relating to metadata can be an topics that relates to all songs within a genre, such as rock, or all songs performed at a specific festival, such as Woodstock. Topic or IOs relating to metadata can be associated with IOs relating to higher level topics 742. For example, a composer may be associated with a topic such as baroque music, which is itself associated with a higher-level IO for classical music.


Alternatively or additionally, a metadata server with its associated databases can be defined as an RWE 722 within the W4 COMN, and media objects and other IOs can be associated with the RWE 722. In one embodiment, metadata relating to a media object can then be retrieved on demand, rather than being stored in static metadata or in a persistent IO. Metadata retrieved on demand can be chosen based on needs of users who have a potential interest in the media object. For example, a user who initially selects a media object based on a topic can then retrieve metadata on demand relating to tone or mood of the music associated with the media object.


If a user wishes to select media objects using a topic for which no topics exists, for example, the top IO hits in the U.K. in 1975, a metadata server which is capable of providing such information can be queried to retrieve a list of such songs. In one embodiment, the list of songs can be used to create an IO relating to a topic, such as IO 740, by associating media objects relating to the list of songs with a newly created IO. In one embodiment, such an IO is created by a correlation engine within a W4 engine (see above and FIGS. 4 through 6, for example). The IO can then be used in subsequent queries.


In one embodiment, media objects are associated with other RWEs, such as musical rights holders 730 (i.e. owners and licensees), and interested listeners 750. In one embodiment, where an owner 730 of a media object can be identified, an attribution engine within a W4 engine tracks the real-world ownership, control, publishing or other conditional rights of any RWE in any media IO whenever a new object is detected.


In one embodiment, users 750, 752, and 754 can be identified as having an interest in a specific song 710 or a topic IO 740 or 742 by a correlation engine within a W4 engine. In one embodiment, the correlation engine identifies relationships between user RWEs and media or IOs relating to metadata by creating a combined graph of the RWEs and IOs and their attributes, relationships and reputations. For example, a user can explicitly state in a user profile that they have an interest in a specific musical artist. Alternatively, the correlation engine can determine a user's interest in a topic or a song or view based on the content of the user's interaction data, sensing attention events from any internal or external source.


In one embodiment, the W4 COMN builds a profile of a user over time by collecting data from the user or from information sources available to the network so as to gain an understanding of where they were born, where they have lived, and where they live today. Using social data, the W4 COMN can also create an overlapping social network profile which places the user in a temporal, geographic and social graph, thus determining where a user lived when and with whom. User RWEs can be also be associated with other RWEs through interaction data. Users who are interested in the same time/place can declare their interests and be connected to a topic based social network through, for example, an IO relating to a topic. In the illustrated embodiment in FIG. 7, users 750 and 752 are identified as being within a social network, 760.


Thus, media objects can be stored and associated with temporal, spatial, social network and topical data derived from, without limitation, traditional metadata sources, user profile data, social networks, and interaction data, building a network of relationships across the universe of media and users. Such relationships may be built on demand, if necessary. Such relationships can then enable queries for media that satisfy the criteria of simple or complex contexts.



FIG. 8 illustrates one embodiment of a process 800 of how a network containing temporal, spatial, and social network and topical data for a plurality of users, devices, and media (such as a W4 COMN), can be used to enable customized music delivery for complex user contexts having who, where, when, and what criteria.


The process begins when a user enters a context criteria 820 using a user proxy device such as, for example, a portable media player, PDA, computer, or cell phone. Data relating to the context can be any combination be any who, what, when, or where criteria. In one embodiment, the criteria can be related to one another using standard relational or set operators. In one embodiment, the query can be stated as a natural language query


The context is used to formulate a query based on the context criteria so as to search, via the network, for user profile data, social network data, spatial data, temporal data and topical data that is available via the network 842 and relates to the context and to media files so as to identify at least one media file that is relevant to the context criteria.


In one embodiment, the criteria are interpreted to take advantage the best available data within the network. A context may be defined in general terms, but the proper data and access paths may not be apparent to an end user. For example, assume a user enters a query “Play the favorite music of surfers in Hawaii in 1974.”


One interpretation of such a query would be to retrieve songs in the genre “surf music”, released in 1974 whose lyrics reference Hawaii. Such an interpretation may be appropriate if the network has data limited to music metadata, but does not fully address the query-surfers in Hawaii 1974 might have liked blues or jazz. The requesting user may, be unaware of, or may not fully appreciate that, the network stores data for a large number of other users. A subset of such users may be users whose hobby is surfing and who lived in Hawaii in 1974.


The query could search for users known to the network whose profile or interaction data indicate have surfing as a hobby or interest and who lived in Hawaii in 1974. The musical preferences of such users, such as musical genre, favorite artists, or favorite songs could then be used to search for media objects for songs relating to such genre, artists, or songs and which were released in 1974.


The query results are then used to assemble a playlist 860 that, in certain embodiments, can be stored on a computer readable medium 862 referencing one or more media objects or files relevant to the context. The playlist 862 is then used to download, stream, or otherwise deliver media 880 on the playlist to one or more user devices associated with the requesting user In one embodiment, a query may be recursively executed 890 and the results delivered based on a trigger condition, for example, if the physical location of the end user changes or if the user arrives at a predetermined location, or at a specific time of day or day of the week.



FIG. 9 further illustrates how the process illustrated in FIG. 8 can be supported by one embodiment of a W4 COMN or other network providing similar data and processing capabilities.


A context query engine 912 resides on a server 910 within the W4 COMN. The context query engine 912 can be defined to the W4 COMN as an RWE, or alternatively, an active IO. The context query engine can be a component of a W4 engine, or, alternatively, may use services provided by components of a W4 engine or any of its constituent engines.


The context query engine 912 provides a user interface on a user's portable media player 924 (known to the network as a user proxy RWE 926) or other media capable device or application, that enables a user 920 (known to the network as an RWE 922) to enter a context. The end user device 924 may contain positioning or other sensors that detect various aspects of the physical environment surrounding the user 920, such as, for example, the user's geographical location. Sensors can also include other environmental sensors such as temperature and lighting sensors, or can also include biometric sensors. Sensed data can be included in the context automatically, or some or all can be included by explicit user selection or by system selection.


The context query engine 912 can use the context data entered on the media player 924 to create an IO 930 relating to the context data owned by the proxy RWE 926 associated with the media player 924. The IO 930 may alternatively or additionally be owned by the user RWE 922. The IO 930 is input to the context query engine 912 which searches the W4 COMN databases and assembles a playlist IO 940 which references media objects 950, 952, 954, and 956 which the context query engine has identified as relevant to the query IO 930.


The context query engine 912 can identify media objects of interest using relationships existing in the W4 COMN databases. Examples include: media 950 directly related to the user RWE 922 (e.g. a user's favorite song); media 952 related to a IO relating to a topic 945; media 945 related to another user 955; and media 956 identified based on metadata embedded within the media object. In one embodiment, such relationships between entities and data objects are stored in a global index within the W4 COMN databases and the context query engine 912 uses the global index to identify media objects of interest.


The user's 920 media player 922, or a software application provided by the media player can use the playlist 930 to request delivery of the media in the playlist to the media player from, for example, a media server or media provider or streaming media server (not shown). Alternatively, the query engine can send the playlist directly to a media server or media provider or streaming media server for delivery of the media to the user's 920 media player 922.


FIG. IO illustrates the components of one embodiment of a context query engine 1000. In one embodiment, the context query engine is a component of a W4 engine 502 within a W4 COMN, such as the context query engine 912 shown in FIG. 9. In alternative embodiments, the context query engine 1000 is a standalone application that has access to one or more databases containing temporal, spatial, social network and topical data relating to one or more users.


The context query engine 1000 includes: a context entry module 1200 that provides a user interface for entry of criteria for contexts; a query module 1300 that searches network databases 1320 for media related to context criteria; a playlist generation module 1400 that generates playlists 1420 using the search results produced by the query module 1300; and a media delivery module 1500 that delivers the media referenced in the playlist to a device associated with the requesting user. Any of the aforementioned modules or the communications between modules (e.g. the playlist or the query) may be stored on computer readable media, for transient, temporary or permanent stage.


The interface provided by the context a context entry module 1200 may be a graphical user interface displayable on computers or PDAs, including HTTP documents accessible over the Internet. Such an interfaces may also take other forms, including text files, such as emails, and APIs usable by software applications located on computing devices.


In one embodiment, the criteria can be related to one another using standard relational or set operators. In one embodiment, temporal and spatial data obtained from sensors within user devices can be included in the context criteria. For example, the current location of a device associated with a user can be automatically identified and included in the context. The user creating the context can be automatically identified through the association of the proxy device with a user within the network and automatically included in the context.


In one embodiment, the context can further specify that the context be processed at a future point in time, periodically, or on the occurrence of a specific event. For example, a context may specify that the context be reprocessed on the occurrence of a trigger condition, such as hourly, when the physical location of a user associated with the context changes, when a calendared event occurs (e.g. an anniversary), or when a news event occurs (e.g. a favorite sports team wins a game.)


In one embodiment, a context can be associated with an advertisement. When a user views an advertisement, a context is entered and processed to generate a playlist which relates to the context, such as a specific era or other topic, and which may further take into account the user's temporal, spatial, social, and topical associations. Thus, an advertisement may supplement basic ad content with media tailored for a specific user. For example, an advertisement for a sports car may be associated with a context specifying the users favorite musical artist and songs with a fast tempo or explicit references to speed, or the year 1975 when the user last owned a sports car.


The query module 1300 searches one or more network databases 1320, for user profile data, social network data, spatial data, temporal data and topical data that is available via the network and relates to the context and to media files so as to identify at least one media file that is relevant to the context criteria. Such searches are performed using the capabilities of the network databases 1320 and their supporting infrastructure.


The query module can, without limitation, parse query terms, identify entities and attributes of entities within the query and further identify relationships between entities and their attributes, as well as relationships to fixed data, such as times, places, and events. Entities and attributes within the query can then be cross referenced against the network databases for correspondence to entities, objects, and attributes within the network database.


In one embodiment, the criteria are interpreted to take advantage the best available data within the network. For example, if data relevant to the context resides on a relational database, the query module can execute a series of SQL statements for retrieving data from a relational database or a procedural language containing embedded SQL. Queries may be nested or otherwise constructed to retrieve data from one set of entities, and to use the result set to drive additional queries against other entities, or to use recursive data retrieval.


In the case of a W4 COMN, the context request can be stored as an IO. Such an IO may itself be comprised of a cluster of linked IOs relating to topics, each IO relating to one or more context criteria. In one embodiment, the query module is a component of a correlation engine of a W4 engine. An IO relating to a context request can be mapped and represented against all other known entities and data objects in order to create both a micro graph for every entity as well as a global graph that relates all known entities with one another, and media objects relevant to the context are thereby identified. In one embodiment, such relationships between entities and data objects are stored in a global index within the W4 COMN.


Where query criteria relate to simple descriptive matter, such as date and time of creation, relationships can be identified using metadata embedded in media objects. Where criteria relate to a topic, such as a genre of music, relationships can be identified through IOs (whether currently existing or dynamically generated) relating to the topic which may then be used to identify media objects associated with the topic.


Where criteria relate to relationships between two or more IOs or RWEs, such as all friends of a particular user, related IOs and RWEs can be identified using social network relationships supported by the W4 COMN. When a specific media object is selected, the media search module can further determine if the user or a user proxy creating the context is permitted to access the content of the media file using ownership data in or associated with the media object.


Specific Examples of Contexts


The disclosure will now discuss specific examples of the above principles. The examples given below are intended to be illustrative, and not limiting.


In one example, if a user wished to listen to Motown music of 1967, the user could enter a context into their media player specifying Motown, music, and 1967. The query engine could search for IOs relating to a topics related to Motown and select media objects associated with that IO where metadata within related media objects indicates the music was released in 1967. The system would also search for metadata within media objects for “Motown” and “1967.” The resulting playlist would enable the user to listen to Motown music from 1967.


In another example, if a user loves Manhattan, in one embodiment, the user could enter a context into their media player specifying music and Manhattan. The query engine could search a lyric database, which in one embodiment is defined to the W4 COMN as a RWE, for music which portrays New York in a positive light. Additionally or alternatively the query engine could search for an IO associated with “Manhattan” and select media objects associated with that IO. If no such IO was present, the system could search for metadata within media objects for “Manhattan.”


In another example, if a user wished to experience “the summer of love” in San Francisco, in one embodiment, the user could enter a context into their media player specifying, for example, either “summer of love” or a date range (the summer of 1967) and a location (San Francisco). If the “summer of love” was entered, the W4 query engine could search for an IO related to that topics and select media objects associated with that IO. If no such IO was present, the system could search for metadata within media objects for “summer of love.” If a date range and location was entered, W4 query engine could search metadata within media objects for “San Francisco” and a date within the specified range. The resulting playlist would contain music, videos or both that would enable the requester to experience the media of the “summer of love” as if they were actually experiencing that era.


In another example, if a user is originally from New York City, and now wishes to listen to the music that was playing during their senior prom, the user would create a context for a year and a place and, possibly a genre, such as popular music, using a W4 interface, for example, a W4 URL. The query engine would search W4 databases for media objects related that time and place. For example, the query engine could search for publications that publish record charts such as Billboard magazine, or other song or album charting or rating services, e.g. Sound Scan from the Nielson Company for the top 40 songs at the time of the user's prom and then locate media objects corresponding to those songs. The user can then listen to the music that would probably have been played at their senior prom.


In another example, if a user then wishes to re-experience his college days in Los Angeles, the user would create a context specifying his college, a specific year and the group of friends he socialized with at that time. The query engine could determine from profile, social networking, and interaction data for the user and for any of his friends who are known to the W4 COMN what kind of music they listen to, who their favorite artists are, and what their favorite songs are. The query engine could then search, for example, using IOs relating to topics and metadata within media objects for songs by favorite artists for the user and his friends that were released that specific year. The query engine could further search, for example, metadata within media objects for references to the user's college, for Los Angeles, or any of his friends. The resulting playlist would contain music, videos or both that would enable the requester to experience the media of his college days.


In another example, if a user wished to listen to the favorite music of surfers in Hawaii in 1974, the user would create a context specifying surfing, Hawaii, and 1974. The query engine could search for users known to the W4 COMN whose profile or interaction data indicate have surfing as a hobby or interest and who lived in Hawaii in 1974. The musical preferences of such users, such as musical genre, favorite artists, or favorite songs could then be used to search IOs relating to such topics or metadata within media objects for songs relating to such genre, artists, or songs which were released in 1974. The resulting playlist would allow the user to experience listen to the music that was probably the favorite music of surfers in Hawaii in 1974.


In another example, if a user wishes to listen to the favorite music of persons who attended (or are attending) a specific concert, the user would create a context specifying the name, date, and time of the concert and specifying persons who attended the concert. The query engine could search the W4 COMN for users whose interaction data indicates they attended the concert. The musical preferences of such users, such as musical genre, favorite artists, or favorite songs could then be used to search IOs relating to such topics or metadata within media objects for songs relating to such genre, artists, or songs. The resulting playlist would contain music, videos or both that would enable the requester to sample music preferred by persons who attended a specific concert.


In another example, if a user wishes to create family playlist of the favorite songs for his family relating to when each of his family members was 11 years old, the user would create a context specifying his family, favorite songs, and age 11. The query engine could then search the users profile and interaction data to determine who his immediate family members are. The query engine would then determine if the users family members are known to the W4 COMN and determine the birthday and musical preferences of such users, such as musical genre, favorite artists, or favorite songs. Such preferences could then be used to search IOs relating to topics or metadata within media objects for songs relating to such genre, artists, or songs which fall in a year in which a specific family member was age 11. The resulting playlist would allow the user to experience the favorite music of his immediate family when they were children.


Real time location data from a users device can also be used to enhance the user experience. For example, assume a user is currently walking through the Haight Ashbury district of San Francisco with a media player whose physical location can be sensed. The user could enter a context specifying a specific year and the user's current location. The query engine could then search W4 databases, for example, using object metadata or IOs relating to such topics, for music released in the selected year and relating to (e.g. written or produced in or performed by artists that reside in or resided in) Haight Ashbury or San Francisco and a playlist relating to that time and place is created. As the user walks from one area of the city to another, the users device detects the change in location and changes the context to reflect the user's new location. The new context is then use to create a new playlist and a different set of music plays that relates to the user's current location. As the user leaves the area and walks or otherwise travels further, the playlist of music may change again to relate to the new location.


In an example illustrating the use of the context in an advertisement, advertisers can create ads for modern day products whose music comes from another era. For example, an ad for Viagra could be associated with a context whose criteria includes 1958, popular music, and energetic music. Such an ad could also be tailored to a user, for example, a context could be defined containing criteria including the current user, the year the user was 18, and the user's favorite music.


Those skilled in the art will recognize that the methods and systems of the present disclosure may be implemented in many manners and as such are not to be limited by the foregoing exemplary embodiments and examples. In other words, functional elements being performed by single or multiple components, in various combinations of hardware and software or firmware, and individual functions, may be distributed among software applications at either the client level or server level or both. In this regard, any number of the features of the different embodiments described herein may be combined into single or multiple embodiments, and alternate embodiments having fewer than, or more than, all of the features described herein are possible. Functionality may also be, in whole or in part, distributed among multiple components, in manners now known or to become known. Thus, myriad software/hardware/firmware combinations are possible in achieving the functions, features, interfaces and preferences described herein. Moreover, the scope of the present disclosure covers conventionally known manners for carrying out the described features and functions and interfaces, as well as those variations and modifications that may be made to the hardware or software or firmware components described herein as would be understood by those skilled in the art now and hereafter.


Furthermore, the embodiments of methods presented and described as flowcharts in this disclosure are provided by way of example in order to provide a more complete understanding of the technology. The disclosed methods are not limited to the operations and logical flow presented herein. Alternative embodiments are contemplated in which the order of the various operations is altered and in which sub-operations described as being part of a larger operation are performed independently.


While various embodiments have been described for purposes of this disclosure, such embodiments should not be deemed to limit the teaching of this disclosure to those embodiments. Various changes and modifications may be made to the elements and operations described above to obtain a result that remains within the scope of the systems and processes described in this disclosure.

Claims
  • 1. A method comprising: generating a database that stores associations between each of a plurality of media objects and temporal, social, or topical data, wherein the database includes relationships between specific media objects and metadata sources associated with a specific media object, user profile data, social network data and interaction data;receiving a request, from a requesting device associated with a user, for media;parsing the request to identify at least two of social criteria, topical criteria, or temporal criteria included in the request, the social criteria describing one or more people or types of people associated with the requested media, the topical criteria describing one or more topics associated with the requested media, and the temporal criteria describing a past time period associated with the requested media;when the request includes social criteria, determining media associated with the one or more people or types of people defined by the social criteria based on the association;when the request includes topical criteria, identifying topics associated with the request and determining media associated with the identified topics based on the association;when the request includes temporal criteria, identifying a time associated with the request and determining media associated with the identified time based on the association;locating a plurality of media files that each match the at least two of social criteria, topical criteria, or temporal criteria included in the request based on the determined media associated with the one or more people or types of people, media associated with the identified topics, or media associated with the identified time; andtransmitting the plurality of media files over the network to the requesting device.
  • 2. The method of claim 1 wherein the social criteria comprise criteria that match a plurality of users within a social network, and the preferences of the plurality of users are used when determining media associated with the one or more people or types of people defined by the social criteria.
  • 3. The method of claim 1 wherein the request for media related to a context has a trigger condition and the request is not processed until the trigger condition occurs.
  • 4. The method of claim 3 wherein the trigger condition is selected from the group consisting of a time, a date, a calendar event, the presence of the requesting device in a physical location, display of an advertisement on the requesting device, selection of an advertisement on the requesting device.
  • 5. The method of claim 1 wherein the request is transmitted from the requesting device when an advertisement is displayed or selected on the requesting device.
  • 6. A system comprising: a processor;a storage medium for tangibly storing thereon program logic for execution by the processor, the program logic comprising:logic executed by the processor for generating a database that stores associations between each of a plurality of media objects and temporal, spatial, social network or topical data, wherein the database includes relationships between specific media objects and metadata sources associated with a specific media object, user profile data, social network data or interaction data;logic executed by the processor for receiving a request from a requesting device associated with a user for media;logic executed by the processor for parsing the request to identify at least two of social criteria, topical criteria, or temporal criteria included in the request, the social criteria describing one or more people or types of people associated with the requested media, the topical criteria describing one or more topics associated with the requested media, and the temporal criteria describing a past time period associated with the requested media;logic executed by the processor for determining, when the request includes social criteria, media associated with the one or more people or types of people defined by the social criteria based on the association;logic executed by the processor for identifying, when the request includes topical criteria, topics associated with the request and determining media associated with the identified topics based on the association;logic executed by the processor for identifying, when the request includes temporal criteria, a time associated with the request and determining media associated with the identified time based on the association;logic executed by the processor for locating a plurality of media files that each match the at least two of social criteria, topical criteria, or temporal criteria included in the request based on the determined media associated with the one or more people or types of people, media associated with the identified topics, or media associated with the identified time; andlogic executed by the processor for transmitting the plurality of media files on the playlist over the network to the requesting device.
  • 7. The system of claim 6 wherein the social criteria comprise criteria that match a plurality of users within a social network, and the preferences of the plurality of users are used when determining media associated with the one or more people or types of people defined by the social criteria.
  • 8. The system of claim 6 wherein the request for media related to a context has a trigger condition and the request is not processed until the trigger condition occurs, wherein the trigger condition is selected from the list: a time, a date, a calendar event, the presence of the requesting device in a physical location, display of an advertisement on the requesting device, selection of an advertisement on the requesting device.
  • 9. The system of claim 6 wherein the request is transmitted from the requesting device when an advertisement is displayed or selected on the requesting device.
  • 10. A non-transitory computer-readable storage medium tangibly encoded with computer-executable instructions, that when executed by a computing device, perform a method comprising: generating a database that stores associations between each of a plurality of media objects and temporal, social or topical data including, wherein the database includes relationships between specific media objects and metadata sources associated with a specific media object, user profile data, social network data and interaction data;receiving a request, from a requesting device associated with a user, for media;parsing the request to identify at least two of social criteria, topical criteria, or temporal criteria included in the request, the social criteria describing one or more people or types of people associated with the requested media, the topical criteria describing one or more topics associated with the requested media, and the temporal criteria describing a past time period associated with the requested media;when the request includes social criteria, determining media associated with the one or more people or types of people defined by the social criteria based on the association;when the request includes topical criteria, identifying topics associated with the request and determining media associated with the identified topics based on the association;when the request includes temporal criteria, identifying a time associated with the request and determining media associated with the identified time based on the association;locating a plurality of media files that each match the at least two of social criteria, topical criteria, or temporal criteria included in the request based on the determined media associated with the one or more people or types of people, media associated with the identified topics, or media associated with the identified time; andtransmitting the plurality of media files over the network to the requesting device.
  • 11. The non-transitory computer-readable storage medium of claim 10 wherein the social criteria comprise criteria that match a plurality of users within a social network, and the preferences of the plurality of users are used when determining media associated with the one or more people or types of people defined by the social criteria.
  • 12. The non-transitory computer-readable storage medium of claim 10 wherein the request for media related to a context has a trigger condition and the request is not processed until the trigger condition occurs, wherein the trigger condition is selected from the group consisting of a time, a date, a calendar event, the presence of the requesting device in a physical location, display of an advertisement on the requesting device, selection of an advertisement on the requesting device.
  • 13. The non-transitory computer-readable storage medium of claim 10 wherein the request is transmitted from the requesting device when an advertisement is displayed or selected on the requesting device.
US Referenced Citations (443)
Number Name Date Kind
5446891 Kaplan et al. Aug 1995 A
5493692 Theimer et al. Feb 1996 A
5583763 Atcheson et al. Dec 1996 A
5651068 Klemba et al. Jul 1997 A
5761662 Dasan Jun 1998 A
5764906 Edelstein et al. Jun 1998 A
5781879 Arnold et al. Jul 1998 A
5784365 Ikeda Jul 1998 A
5794210 Goldhaber et al. Aug 1998 A
5802510 Jones Sep 1998 A
5835087 Herz Nov 1998 A
5903848 Takahashi May 1999 A
5920854 Kirsch et al. Jul 1999 A
6014638 Burge et al. Jan 2000 A
6021403 Horvitz et al. Feb 2000 A
6047234 Cherveny et al. Apr 2000 A
6098065 Skillen et al. Aug 2000 A
6112181 Shear et al. Aug 2000 A
6157924 Austin Dec 2000 A
6169992 Beall et al. Jan 2001 B1
6212552 Biliris et al. Apr 2001 B1
6266667 Olsson Jul 2001 B1
6314365 Smith Nov 2001 B1
6314399 Deligne et al. Nov 2001 B1
6324519 Eldering Nov 2001 B1
6327590 Chidlovskii et al. Dec 2001 B1
6446065 Nishioka et al. Sep 2002 B1
6490698 Horvitz et al. Dec 2002 B1
6502033 Phuyal Dec 2002 B1
6523172 Martinez-Guerra et al. Feb 2003 B1
6571279 Herz et al. May 2003 B1
6601012 Horvitz et al. Jul 2003 B1
6662195 Langseth et al. Dec 2003 B1
6665640 Bennett et al. Dec 2003 B1
6694316 Langseth et al. Feb 2004 B1
6701311 Biebesheimer et al. Mar 2004 B2
6701315 Austin Mar 2004 B1
6708203 Makar et al. Mar 2004 B1
6731940 Nagendran May 2004 B1
6741980 Langseth et al. May 2004 B1
6757661 Blaser et al. Jun 2004 B1
6773344 Gabai et al. Aug 2004 B1
6781920 Bates et al. Aug 2004 B2
6785670 Chiang et al. Aug 2004 B1
6789073 Lunenfeld Sep 2004 B1
6813501 Kinnunen et al. Nov 2004 B2
6816850 Culliss Nov 2004 B2
6829333 Frazier Dec 2004 B1
6834195 Brandenberg et al. Dec 2004 B2
6842761 Diamond et al. Jan 2005 B2
6845370 Burkey et al. Jan 2005 B2
6850252 Hoffberg Feb 2005 B1
6853913 Cherveny et al. Feb 2005 B2
6853982 Smith et al. Feb 2005 B2
6882977 Miller Apr 2005 B1
6904160 Burgess Jun 2005 B2
6931254 Egner et al. Aug 2005 B1
6961660 Underbrink et al. Nov 2005 B2
6961731 Holbrook Nov 2005 B2
6985839 Motamedi et al. Jan 2006 B1
7010492 Bassett et al. Mar 2006 B1
7027801 Hall et al. Apr 2006 B1
7058508 Combs et al. Jun 2006 B2
7058626 Pan et al. Jun 2006 B1
7062510 Eldering Jun 2006 B1
7065345 Carlton et al. Jun 2006 B2
7065483 Decary et al. Jun 2006 B2
7069308 Abrams Jun 2006 B2
7073129 Robarts et al. Jul 2006 B1
7110776 Sambin Sep 2006 B2
7143091 Charnock et al. Nov 2006 B2
7149696 Shimizu et al. Dec 2006 B2
7181438 Szabo Feb 2007 B1
7185286 Zondervan Feb 2007 B2
7194512 Creemer et al. Mar 2007 B1
7203597 Sato et al. Apr 2007 B2
7209915 Taboada et al. Apr 2007 B1
7219013 Young et al. May 2007 B1
7236969 Skillen et al. Jun 2007 B1
7254581 Johnson et al. Aug 2007 B2
7257570 Riise et al. Aug 2007 B2
7305445 Singh et al. Dec 2007 B2
7320025 Steinberg et al. Jan 2008 B1
7343364 Bram et al. Mar 2008 B2
7395507 Robarts et al. Jul 2008 B2
7404084 Fransdonk Jul 2008 B2
7437312 Bhatia et al. Oct 2008 B2
7451102 Nowak Nov 2008 B2
7461168 Wan Dec 2008 B1
7496548 Ershov Feb 2009 B1
7522995 Nortrup Apr 2009 B2
7529811 Thompson May 2009 B2
7562122 Oliver et al. Jul 2009 B2
7577665 Rameer et al. Aug 2009 B2
7584215 Saari et al. Sep 2009 B2
7624104 Berkhin et al. Nov 2009 B2
7624146 Brogne et al. Nov 2009 B1
7630972 Ott et al. Dec 2009 B2
7634465 Sareen et al. Dec 2009 B2
7657907 Fennan et al. Feb 2010 B2
7681147 Richardson-Bunbury et al. Mar 2010 B2
7725492 Sittig et al. May 2010 B2
7729901 Richardson-Bunbury et al. Jun 2010 B2
7769740 Martinez Aug 2010 B2
7769745 Naaman Aug 2010 B2
7783622 Vandermolen et al. Aug 2010 B1
7792040 Nair Sep 2010 B2
7802724 Nohr Sep 2010 B1
7822871 Stolarz et al. Oct 2010 B2
7831586 Reitter et al. Nov 2010 B2
7853881 Aly Assal et al. Dec 2010 B1
7865308 Athsani Jan 2011 B2
7925708 Davis Apr 2011 B2
8024223 Cradick et al. Sep 2011 B2
8024317 Nair et al. Sep 2011 B2
8032508 Martinez et al. Oct 2011 B2
8055675 Higgins et al. Nov 2011 B2
8060492 Nair et al. Nov 2011 B2
8069142 Davis et al. Nov 2011 B2
8086700 Davis et al. Dec 2011 B2
8108778 Athsani et al. Jan 2012 B2
8150967 King et al. Apr 2012 B2
8166016 Higgins et al. Apr 2012 B2
8166168 Hayashi et al. Apr 2012 B2
8271506 Martinez et al. Sep 2012 B2
8281027 Martinez et al. Oct 2012 B2
8307029 Davis et al. Nov 2012 B2
8364611 Tendjoukian et al. Jan 2013 B2
8386506 Martinez et al. Feb 2013 B2
8402356 Martinez et al. Mar 2013 B2
8452855 Higgins May 2013 B2
8538811 Higgins et al. Sep 2013 B2
8554623 Higgins et al. Oct 2013 B2
8560390 Higgins et al. Oct 2013 B2
8583668 Higgins et al. Nov 2013 B2
8589486 Martinez et al. Nov 2013 B2
8594702 Naaman et al. Nov 2013 B2
8671154 Davis et al. Mar 2014 B2
8706406 Kalaboukis et al. Apr 2014 B2
8745133 Martinez et al. Jun 2014 B2
8762285 Davis et al. Jun 2014 B2
8769099 Kalaboukis et al. Jul 2014 B2
8799371 Davis et al. Aug 2014 B2
8813107 Higgins et al. Aug 2014 B2
8914342 Kalaboukis et al. Dec 2014 B2
9158794 Higgins Oct 2015 B2
20010013009 Greening et al. Aug 2001 A1
20010035880 Musatov et al. Nov 2001 A1
20010047384 Croy Nov 2001 A1
20010052058 Ohran Dec 2001 A1
20020014742 Conte et al. Feb 2002 A1
20020019849 Tuvey et al. Feb 2002 A1
20020019857 Harjanto Feb 2002 A1
20020023091 Silberberg et al. Feb 2002 A1
20020023230 Bolnick et al. Feb 2002 A1
20020035605 McDowell et al. Mar 2002 A1
20020049968 Wilson et al. Apr 2002 A1
20020052786 Kim et al. May 2002 A1
20020052875 Smith et al. May 2002 A1
20020054089 Nicholas May 2002 A1
20020065844 Robinson et al. May 2002 A1
20020069218 Sull et al. Jun 2002 A1
20020099695 Abaijian et al. Jul 2002 A1
20020103870 Shouji Aug 2002 A1
20020111956 Yeo et al. Aug 2002 A1
20020112035 Carey Aug 2002 A1
20020133400 Terry et al. Sep 2002 A1
20020138331 Hosea et al. Sep 2002 A1
20020138839 Nihal Sep 2002 A1
20020152267 Lennon Oct 2002 A1
20020169840 Sheldon et al. Nov 2002 A1
20020173971 Stirpe et al. Nov 2002 A1
20020178161 Brezin et al. Nov 2002 A1
20020198786 Tripp et al. Dec 2002 A1
20030008661 Joyce et al. Jan 2003 A1
20030009367 Morrison Jan 2003 A1
20030009495 Adjaoute Jan 2003 A1
20030027558 Eisinger Feb 2003 A1
20030032409 Hutcheson et al. Feb 2003 A1
20030033331 Sena et al. Feb 2003 A1
20030033394 Stine et al. Feb 2003 A1
20030065762 Stolorz et al. Apr 2003 A1
20030069877 Grefenstette et al. Apr 2003 A1
20030069880 Harrison et al. Apr 2003 A1
20030078978 Lardin et al. Apr 2003 A1
20030080992 Haines May 2003 A1
20030126250 Jhanji Jul 2003 A1
20030149574 Rudman Aug 2003 A1
20030154293 Zmolek Aug 2003 A1
20030165241 Fransdonk Sep 2003 A1
20030191816 Landress et al. Oct 2003 A1
20040010492 Zhao et al. Jan 2004 A1
20040015588 Cotte Jan 2004 A1
20040030798 Andersson et al. Feb 2004 A1
20040034752 Ohran Feb 2004 A1
20040043758 Sorvari et al. Mar 2004 A1
20040044736 Austin-Lane et al. Mar 2004 A1
20040070602 Kobuya et al. Apr 2004 A1
20040139025 Coleman Jul 2004 A1
20040139047 Rechsteiner Jul 2004 A1
20040148341 Cotte Jul 2004 A1
20040152477 Wu et al. Aug 2004 A1
20040183829 Kontny et al. Sep 2004 A1
20040201683 Murashita et al. Oct 2004 A1
20040203851 Vetro et al. Oct 2004 A1
20040203909 Koster Oct 2004 A1
20040209602 Joyce et al. Oct 2004 A1
20040243623 Ozer et al. Dec 2004 A1
20040260804 Grabarnik et al. Dec 2004 A1
20040267880 Patiejunas Dec 2004 A1
20050005242 Hoyle Jan 2005 A1
20050015451 Sheldon et al. Jan 2005 A1
20050015599 Wang et al. Jan 2005 A1
20050050027 Yeh Mar 2005 A1
20050050043 Pyhalammi et al. Mar 2005 A1
20050055321 Fratkina Mar 2005 A1
20050060381 Huynh et al. Mar 2005 A1
20050065950 Chaganti et al. Mar 2005 A1
20050065980 Hyatt et al. Mar 2005 A1
20050076060 Finn et al. Apr 2005 A1
20050086187 Grosser et al. Apr 2005 A1
20050105552 Osterling May 2005 A1
20050108213 Riise et al. May 2005 A1
20050120006 Nye Jun 2005 A1
20050131727 Sezan et al. Jun 2005 A1
20050149397 Morgenstern et al. Jul 2005 A1
20050151849 Fitzhugh et al. Jul 2005 A1
20050159220 Wilson et al. Jul 2005 A1
20050159970 Buyukkokten et al. Jul 2005 A1
20050160080 Dawson Jul 2005 A1
20050165699 Hahn-Carlson Jul 2005 A1
20050166240 Kim Jul 2005 A1
20050171955 Hull et al. Aug 2005 A1
20050177385 Hull et al. Aug 2005 A1
20050182824 Cotte Aug 2005 A1
20050183110 Anderson Aug 2005 A1
20050187786 Tsai Aug 2005 A1
20050192025 Kaplan Sep 2005 A1
20050203801 Morgenstern et al. Sep 2005 A1
20050216295 Abrahamsohn Sep 2005 A1
20050216300 Appelman et al. Sep 2005 A1
20050219375 Hasegawa et al. Oct 2005 A1
20050234781 Morgenstern Oct 2005 A1
20050273510 Schuh Dec 2005 A1
20060020631 Cheong Wan et al. Jan 2006 A1
20060026013 Kraft Feb 2006 A1
20060026067 Nicholas et al. Feb 2006 A1
20060031108 Oran Feb 2006 A1
20060040719 Plimi Feb 2006 A1
20060047563 Wardell Mar 2006 A1
20060047615 Ravin Mar 2006 A1
20060053058 Hotchkiss et al. Mar 2006 A1
20060069612 Hurt et al. Mar 2006 A1
20060069616 Bau Mar 2006 A1
20060069749 Herz et al. Mar 2006 A1
20060074853 Liu et al. Apr 2006 A1
20060085392 Wang et al. Apr 2006 A1
20060085419 Rosen Apr 2006 A1
20060089876 Boys Apr 2006 A1
20060116924 Angeles et al. Jun 2006 A1
20060123053 Scannell, Jr. Jun 2006 A1
20060129313 Becker Jun 2006 A1
20060129605 Doshi Jun 2006 A1
20060161894 Oustiougov et al. Jul 2006 A1
20060168591 Hunsinger et al. Jul 2006 A1
20060173838 Garg et al. Aug 2006 A1
20060173985 Moore Aug 2006 A1
20060178822 Lee Aug 2006 A1
20060184508 Fuselier et al. Aug 2006 A1
20060184579 Mills Aug 2006 A1
20060212330 Savilampi Sep 2006 A1
20060212401 Ameerally et al. Sep 2006 A1
20060227945 Runge et al. Oct 2006 A1
20060235816 Yang et al. Oct 2006 A1
20060236257 Othmer et al. Oct 2006 A1
20060242139 Butterfield et al. Oct 2006 A1
20060242178 Butterfield et al. Oct 2006 A1
20060242259 Vallabh et al. Oct 2006 A1
20060258368 Granite et al. Nov 2006 A1
20060282455 Lee Dec 2006 A1
20070013560 Casey Jan 2007 A1
20070015519 Casey Jan 2007 A1
20070043766 Nicholas et al. Feb 2007 A1
20070067104 Mays Mar 2007 A1
20070067267 Ives Mar 2007 A1
20070072591 McGary et al. Mar 2007 A1
20070073583 Grouf et al. Mar 2007 A1
20070073641 Perry et al. Mar 2007 A1
20070086061 Robbins Apr 2007 A1
20070087756 Hoffberg Apr 2007 A1
20070088852 Levkovitz Apr 2007 A1
20070100956 Kumar May 2007 A1
20070112762 Brubaker May 2007 A1
20070121843 Atazky et al. May 2007 A1
20070130137 Oliver et al. Jun 2007 A1
20070136048 Richardson-Bunbury et al. Jun 2007 A1
20070136235 Hess Jun 2007 A1
20070136256 Kapur et al. Jun 2007 A1
20070136689 Richardson-Bunbury et al. Jun 2007 A1
20070143345 Jones et al. Jun 2007 A1
20070150168 Balcom et al. Jun 2007 A1
20070150359 Lim et al. Jun 2007 A1
20070155411 Morrison Jul 2007 A1
20070161382 Melinger et al. Jul 2007 A1
20070162850 Adler Jul 2007 A1
20070168430 Brun et al. Jul 2007 A1
20070173266 Barnes Jul 2007 A1
20070179792 Kramer Aug 2007 A1
20070185599 Robinson et al. Aug 2007 A1
20070189333 Naaman et al. Aug 2007 A1
20070192299 Zuckerberg et al. Aug 2007 A1
20070198506 Attaran Rezaei et al. Aug 2007 A1
20070198563 Apparao et al. Aug 2007 A1
20070203591 Bowerman Aug 2007 A1
20070219708 Brasche et al. Sep 2007 A1
20070233585 Ben Simon et al. Oct 2007 A1
20070239348 Cheung Oct 2007 A1
20070239517 Chung et al. Oct 2007 A1
20070259653 Tang et al. Nov 2007 A1
20070260508 Barry et al. Nov 2007 A1
20070260604 Haeuser et al. Nov 2007 A1
20070271297 Jaffe et al. Nov 2007 A1
20070271340 Goodman et al. Nov 2007 A1
20070273758 Mendoza et al. Nov 2007 A1
20070276940 Abraham et al. Nov 2007 A1
20070282621 Altman et al. Dec 2007 A1
20070282675 Varghese Dec 2007 A1
20070288278 Alexander et al. Dec 2007 A1
20080005071 Flake Jan 2008 A1
20080005313 Flake et al. Jan 2008 A1
20080005651 Grefenstette et al. Jan 2008 A1
20080010206 Coleman Jan 2008 A1
20080021957 Medved et al. Jan 2008 A1
20080026804 Baray et al. Jan 2008 A1
20080028031 Bailey et al. Jan 2008 A1
20080040283 Morris Feb 2008 A1
20080046298 Ben-Yehuda et al. Feb 2008 A1
20080070588 Morin Mar 2008 A1
20080086356 Glassman et al. Apr 2008 A1
20080086431 Robinson et al. Apr 2008 A1
20080091796 Story et al. Apr 2008 A1
20080096664 Baray et al. Apr 2008 A1
20080102911 Campbell et al. May 2008 A1
20080103971 Lukose et al. May 2008 A1
20080104061 Rezaei May 2008 A1
20080104227 Birnie et al. May 2008 A1
20080109761 Stambaugh May 2008 A1
20080109843 Ullah May 2008 A1
20080114737 Neely May 2008 A1
20080114751 Cramer et al. May 2008 A1
20080117201 Martinez et al. May 2008 A1
20080120178 Martinez et al. May 2008 A1
20080120183 Park May 2008 A1
20080120308 Martinez et al. May 2008 A1
20080120690 Norlander et al. May 2008 A1
20080126960 Naaman et al. May 2008 A1
20080133593 Clark Jun 2008 A1
20080133750 Grabarnik et al. Jun 2008 A1
20080147655 Sinha et al. Jun 2008 A1
20080147743 Taylor et al. Jun 2008 A1
20080148175 Naaman et al. Jun 2008 A1
20080154720 Gounares Jun 2008 A1
20080163284 Martinez et al. Jul 2008 A1
20080172632 Stambaugh Jul 2008 A1
20080177706 Yuen Jul 2008 A1
20080201310 Fitzpatrick et al. Aug 2008 A1
20080268772 Linnamaki Oct 2008 A1
20080270579 Herz et al. Oct 2008 A1
20080285886 Allen Nov 2008 A1
20080301250 Hardy et al. Dec 2008 A1
20080320001 Gadd Dec 2008 A1
20090005987 Vengroff et al. Jan 2009 A1
20090006336 Forstall et al. Jan 2009 A1
20090012934 Yerigan Jan 2009 A1
20090012965 Franken Jan 2009 A1
20090024452 Martinez et al. Jan 2009 A1
20090043844 Zimmet et al. Feb 2009 A1
20090044132 Cambel et al. Feb 2009 A1
20090063254 Paul et al. Mar 2009 A1
20090070186 Buiten et al. Mar 2009 A1
20090073191 Smith et al. Mar 2009 A1
20090076889 Jhanji Mar 2009 A1
20090089296 Stemeseder et al. Apr 2009 A1
20090100052 Stern et al. Apr 2009 A1
20090106356 Brase et al. Apr 2009 A1
20090125517 Krishnaswamy et al. May 2009 A1
20090132941 Pilskalns et al. May 2009 A1
20090144141 Dominowska et al. Jun 2009 A1
20090150501 Davis et al. Jun 2009 A1
20090150507 Davis et al. Jun 2009 A1
20090165022 Madsen et al. Jun 2009 A1
20090165051 Armaly Jun 2009 A1
20090171939 Athsani et al. Jul 2009 A1
20090176509 Davis et al. Jul 2009 A1
20090177603 Honisch Jul 2009 A1
20090177644 Martinez et al. Jul 2009 A1
20090182618 Higgins et al. Jul 2009 A1
20090182631 Higgins et al. Jul 2009 A1
20090182810 Higgins et al. Jul 2009 A1
20090183112 Higgins et al. Jul 2009 A1
20090187637 Wu et al. Jul 2009 A1
20090204484 Johnson Aug 2009 A1
20090204672 Jetha et al. Aug 2009 A1
20090204676 Parkinson et al. Aug 2009 A1
20090216606 Coffman et al. Aug 2009 A1
20090222302 Higgins Sep 2009 A1
20090222303 Higgins Sep 2009 A1
20090222551 Neely et al. Sep 2009 A1
20090234814 Boerries et al. Sep 2009 A1
20090234909 Strandeil et al. Sep 2009 A1
20090249482 Sarathy Oct 2009 A1
20090265431 Janie et al. Oct 2009 A1
20090281997 Jain Nov 2009 A1
20090299837 Steelberg et al. Dec 2009 A1
20090313546 Katpelly et al. Dec 2009 A1
20090320047 Khan et al. Dec 2009 A1
20090323519 Pun Dec 2009 A1
20090328087 Higgins et al. Dec 2009 A1
20100002635 Eklund Jan 2010 A1
20100014444 Ghanadan et al. Jan 2010 A1
20100027527 Higgins et al. Feb 2010 A1
20100063993 Higgins et al. Mar 2010 A1
20100070368 Choi et al. Mar 2010 A1
20100082403 Higgins et al. Apr 2010 A1
20100082427 Burgener et al. Apr 2010 A1
20100082688 Davis et al. Apr 2010 A1
20100118025 Smith et al. May 2010 A1
20100125563 Nair et al. May 2010 A1
20100125569 Nair et al. May 2010 A1
20100125604 Martinez et al. May 2010 A1
20100125605 Nair et al. May 2010 A1
20100138491 Churchill et al. Jun 2010 A1
20100185509 Higgins et al. Jul 2010 A1
20100185517 Higgins et al. Jul 2010 A1
20100185518 Higgins et al. Jul 2010 A1
20100185642 Higgins et al. Jul 2010 A1
20100228582 King et al. Sep 2010 A1
20100241689 Davis et al. Sep 2010 A1
20100241944 Athsani et al. Sep 2010 A1
20100280879 O'Sullivan et al. Nov 2010 A1
20100280913 O'Sullivan et al. Nov 2010 A1
20110035265 King et al. Feb 2011 A1
20110040691 Martinez et al. Feb 2011 A1
Foreign Referenced Citations (16)
Number Date Country
1362302 Nov 2003 EP
2002312559 Oct 2002 JP
1020000036897 Jul 2000 KR
1020000054319 Sep 2000 KR
1020000064105 Nov 2000 KR
1020030049173 Jun 2003 KR
10-0801662 Feb 2005 KR
1020060043333 May 2006 KR
102007034094 Mar 2007 KR
1020070073180 Jul 2007 KR
1020080048802 Jun 2008 KR
2006116196 Nov 2006 WO
2007022137 Feb 2007 WO
2007027453 Mar 2007 WO
2007070358 Jun 2007 WO
2007113546 Oct 2007 WO
Non-Patent Literature Citations (119)
Entry
“Companies add new communication features to photo sharing.”, Digital Imaging Digest, Feb. 2006, pp. 1-2.
“Dave.TV and Eye Music Network Empower Users to Create Their Own Music TV Channel on Their Sites With New IPTV Channel”, www.davenw.com/2006, Sep. 13, 2006, pp. 1-2.
“Digital rights management: a primer: developing a user-friendly means of protecting content. (Profile)”, Screen Digest, No. 420, p. 305, Sep. 2006, (pp. 1-9 of attached).
“Digital rights management: a primer: developing a user-friendly means of protecting content.(Profile)”, Screen Digest, No. 420, p. 305, Sep. 2006, (pp. 1-9 of attached).
“Emerging Markets: What media 2.0 can offer advertisers.”, Campaign, Oct. 27, 2006, p. 26, (pp. 1-5 of attached).
“Gutenkarte” Book Catalog, 2006 MetaCarta, Inc., www.gutenkarte.org 11 pgs.
“Reality Digital—Making Media Move”, www.realitydigital.com, Nov. 28, 2006, pp. 1-2.
“Reality Digital Debuts Opus”, www.lightreading.com. Sep. 25, 2006, pp. 1.
“Semacode-URL Barcodes-practical ubiquitous computing”, located at http://semacode.org visited on Apr. 13, 2007; 3 pages.
“Technical White Paper: Choosing the best 2D barcode format for mobile apps, ”Semacode, Jul. 15, 2006; pp. 1-7 located at http://semacode.org/abouUtechnical/whitepaper/best2—d—code.pdf.
Allen James F., “Maintaining Knowledge About Temporal Intervals”, Communications of the ACM, Nov. 1983, vol. 26, No. 11 pp. 832-843; 12 pages.
Almieda, R.B. et al. “A Community-Aware Search Engine,” WWW2004, New York., NY, May 17-22, 2004, pp. 413-421.
Anonymous. (2007). “Ask.com Maps & Directions,” located at <http://maps.ask.com/maps>, last visited on Mar. 3, 2008, one page.
Anonymous. (2007). “Wayfaring Follow You, Follow Me,” located at <http://www.wayfaring.com/>, last visited on Mar. 3, 2008, three pages.
Anonymous. (2008). “Platial the People's Atlas,” located at <www.platial.com >, last visited on Mar. 3, 2008, one page.
Anonymous. (2008). “Wikimpaia.org ,” located at <http://wikimpaia.org/>, last visited on Mar. 3, 2008, one page.
Anonymous. (Date Unknown). “CommunityWalk—About,” located at <http://www.communitywalk.com/about >, last visited on Mar. 3, 2008, one page.
Anonymous. (Date Unknown). “CommunityWalk Mapping Made Easy,” located at <http://www.communitywalk.com>, last visited on Mar. 3, 2008, one page.
Anonymous. (Date Unknown). “Google Earth—Wikipedia, the Free Encyclopedia,” located at <http://en.wikipedia.org/wiki/Google—earth >, last visited on Mar. 3, 2008, fourteen pages.
Anonymous. (Date Unknown). “Google Earth User Guide—Using Image Overlays and 3D Models,” Jul. 3, 2006, located at <http://earth.google.com/userguide/v4/ug—imageoverlays.html >, 9 pages.
Anonymous. (Date Unknown). “Google Earth User Guide” located at <http://earth.google.com/userguide/v4/>, last visited on Feb. 27, 2008, twelve pages.
Anonymous. (Date Unknown). “Google Maps,” located at <http://en.wikipedia.org/wiki/Google—maps >, last visited on Feb. 27, 2008, eleven pages.
Anonymous. (Date Unknown). “Live Search Maps,” located at <http://en.wikipedia.org/wiki/Windows—live—maps >, last visited on Mar. 3, 2008, six pages.
Anonymous. (Date Unknown). “WikiMapia,” located at <http://en.wikipedia.org/wiki/WikiMapia >, last visited on Mar. 3, 2008, three pages.
Anonymous. (Jul. 16, 2006). MyFantasyLeague Fantasy Football League Management-Features, located at <http://web.archive.org/web/20060716072900/www.myfantasyleague.eom/features.htm >, last visited on Feb. 10, 2009, four pages.
Anonymous. (Jul. 17, 2006). “Fantasy Football Lineup Analyzer—Tips for Who to Start & Who to Bench each Week,” located at http://web.archive.org/web/200607171633529/www.fantasyfootballstarters.com/lineupAnalyzer.jsp >, last visited on Feb. 10, 2009, one page.
Axup, Jeff et al., “Conceptualizing New Mobile Devices by Observing Gossip and Social Network Formation Amongst the Extremely Mobile”, ITEE Technical Report #459, Dec. 19, 2005, pp. 1-71.
Backstrom et al., Spatial Variation in Search Engine Queries, WWW•2008, Beijing, China (Apr. 21-25, 2008).
Baron, N.S. et al. (Aug. 30, 2005). “Tethered or Mobile? Use of Away Messages in Instant Messaging by American College Students,” Chapter 20.1 in Mobile Communication, Springer: London, England, 31:293-297.
Bharat, K. (Date Unknown). “SearchPad: Explicit Capture of Search Context to Support Web Search,” located at <http://www9.org/w9cdrom/173/173.html >, last visited Aug. 1, 2007, 13 pages.
Brunato, M; Battiti R. “Pilgrim: A Location Broker and Mobility-Aware Recommendation System”; Technical report DIT-02-0092, Universita di Trento, Oct. 2002; 8 pages.
Budzik, J. et al. (2000). “User Interactions with Everyday Applications as Context for Just-in-Time Information Access,” Proceeding of the 2000 Conference on Intelligent User Interfaces, eight pages.
Carbonell, J. et al. (Aug. 24-28, 1998). “The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing Summaries,” SIGIR '98: Proceedings of the 21 S Annual International ACM SIGIR Conference on Research and Development in Information Retrieval: Melbourne, Australia W.B. Croft et al. eds., pp. 335-336.
Conhaim, Wallys W., “Social networks: the Internet continues to evolve: where is the money in all this? That is what venture capitalists are asking. (Perspectives)”, Information Today, 22, 9, 35(2), Oct. 2005, (pp. 1-5 of attached).
Cooper, M. et al. (Nov. 2-8, 2003). “Temporal Event Clustering for Digital Photo Collections,” MM'03 Berkeley, California, pp. 364-373.
Davis, M. et al. “From Context to Content: Leveraging Context for Mobile Media Metadata,” Proceedings of the 12th annual ACM international conference on Multimedia, Oct. 2004, pp. 188-195.
Davis, M. et al. “Mobile Media Metadata for Mobile Imaging.” Jun. 27-30, 2004; 4 pages.
Davis, M. et al. “Using Context and Similarity for Face and Location Identification.” In Proceedings of the IS&T/SPIE 18th Annual Symposium on Electronic Imaging Science and Technology, 2006, 10 pages.
Davis, M. et al. (Oct. 10-16, 2004). “From Context to Content: Leveraging Context to Infer Media Metadata,” MM'04 New York, New York. 9 pages.
Davis, Marc et al., “From Context to Content: Leveraging Context to Infer Media Metadata”, ACM Press, Oct. 10, 2004, pp. 1-8.
Davis. M. et al. (Apr. 2-7, 2005). “MMM2: Mobile Media Metadata for Media Sharing,” CHI 2005 Portland, Oregon. 4 pages.
Finkelstein, L. et al. (2001). “Placing Search in Context: The Concept Revisited,” WWW/O, Hong Kong, May 2-5, 2001, pp. 406-414.
Helm Welcome to Flickr—Photo Sharing, located at <http://www.flickr.com >visited on Feb. 26, 2007, one page.
Freyne, J. et al. (2004). “Further Experiments on Collaborative Ranking in Community-Based Web Search,” Artificial Intelligence Review, pp. 1-23.
Gan et al., Analysis of Geographic Queries in a Search Engine Log, LocWeb 2008, Beijing, China (Apr. 22, 2008).
Gargi, U. (Aug. 7, 2003). “Consumer Media Capture: Time-Based Analysis and Event Clustering,” Technical Report HPL-2003-165 HP Laboratories Palo Alto, pp. 1-15.
Geographical Information Science, vol. 22, No. 3, pp. 1-20 (Jul. 2008).
Go With the Flow, The Economist Technology Quarterly, vol. 382, Issue 8519, 4 pages, (Mar. 10, 2007).
Goldberger, J. et al. The Hungarian Clustering Method, located at <http://scholar.googles.com/scholar?num=20&hl=en&1r=&9=cache:vbwslsmlCisJ:www.openu.acil/Personal—sites/tarnirtassa/Publications/hcm.pdf+goldberger+clustering+method+hungarian> visited on Mar. 1, 2007, twelve pages.
Graham, A. et al, (Jul. 13-17, 2002). Time as Essence for Photo Browsing Through Personal Digital Libraries, JCDL '02 Portland, Oregon. 11 pages.
International Preliminary Report on Patentability (PCT/US2007/084807) dated May 26, 2009; 5 pages.
International Search Report (PCT/US2007/084807) dated May 27, 2008; 3 pages.
International Search Report (PCT/US2009/030405) dated Sep. 23, 2009; 2 pages.
International Search Report (PCT/US2009/055503) dated Apr. 8, 2010; 3 pages.
International Search Report (PCT/US2009/060379) dated Apr. 30, 2010; 3 pages.
International Search Report (PCT/US2010/026063) dated May 27, 2008; 3 pages.
International Search Report and Written Opinion (PCT/US2008/085135) dated May 25, 2009; 7 pages.
International Search Report and Written Opinion (PCT/US2009/046258) dated Dec. 23, 2009; 7 pages.
International Search Report and Written Opinion (PCT/US2009/060374) dated Apr. 30, 2010; 12 pages.
International Search Report and Written Opinion (PCT/US2009/060476) dated May 4, 2010; 12 pages.
International Search Report and Written Opinion PCT/US2009/034445 dated Oct. 12, 2009; 7 pages.
International Search Report PCT/US2008/088228 dated Sep. 30, 2009—2 pages.
International Search Report PCT/US2009/030406 dated Sep. 29, 2009; 5 pages.
International Search Report PCT/US2009/034444 dated Sep. 18, 2009; 2 pages.
Jaffe, A. et al. (May 23-26, 2006). “Generating Summaries for Large Collections of Geo-Referenced Photographs,” WWW 2006 Edinburgh, Scotland. 2 pages.
Jaffe, A. et al. (Oct. 26-27, 2006). “Generating Summaries and Visualization for Large Collections of Geo-Referenced Photographs,” MIR '06 Santa Barbara, California. 11 pages.
Jones et al., “Geographic Intention and Modification in Web Search,” International Journal of Geographical Information Science, 22(3):229-246, Mar. 2008.
Jones, C. et al. (2004). “Ad-Hoc Meeting System,” Final Presentation from Project Group #7, SIMS 202, Fall 2004 Class, UC Berkley School of Information Management & Systems, located at <http://www2.sims.berkeley.edu/academics/courses/is202/f04/phone—projecUGroup7/ >, last visited on Feb. 2, 2010, thirteen pages.
Joshi, D. et al. (Oct. 15-16, 2004). “The Story Picturing Engine: Finding Elite Images to Illustrate a Story Using Miitual Reinforcement,” MIR '04 New York, New York. 9 pages.
Kaasinen, E., “Behaviour & Information Technology”, Taylor & Francis, vol. 24, No. 1, Jan./Feb. 2005, pp. 37-49, (Abstract only attached).
Konomi, Shin'ichi et al., “Supporting Colocated Interactions Using RFID and Social Network Displays”, Pervasive Computing, Jul.-Sep. 2006 , vol. 5, No. 3, pp. 48-56 (pp. 1-4 of attached).
Konomi, Shin'ichi et al., “Supporting Colocated Interactions Using RFID and Social Network Displays”, Pervasive Computing, Jul.-Sep. 2006, vol. 5, No. 3, pp. 48-56 (pp. 1-4 of attached).
Lieberman, H. (1995) “Letizia: An Agent that Assists Web Browsing,” Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, Aug. 20-25, 1995, six pages.
Lin, F. et al., “A unified framework for managing Web-based services.”, Information Systems and e-Business Management, vol. 3, Oct. 2005, p. 299, (pp. 1-15 of attached).
Lin, F. et al., “A unified framework for managing Web-based services.” Information Systems and e-Business Management, vol. 3, Oct. 2005, p. 299, (pp. 1-15 of attached).
Manguy, L. et al. (2006). “iTour—Packing the World Into Your Mobile Device,” Final Presentation from Project Group #6, SIMS 202, Fall 2004 Class, UC Berkley School of Information Management & Systems, located at <http://www2.sims.berkeley.edu/academics/courses/is202/f04/phone—projecUGroup6/index.h > . . . , last visited on Feb. 2, 2010, ten pages.
MediaFlo, FLO Technology Overview, Qualcomm Inc. Copyright 2007; 24 pages.
Metz, Cade, “MySpace Nation”, PC Magazine, Jun. 21, 2006, pp. 1-10 attached.
Mitnick, S. et al. (2004). “Pillbox,” Final Presentation from Project Group #8, SIMS: 02: Fall 2004 Class, UC Berkley School of Information Management & Systems, located at <http://www2.sims.berkeley.edu/academics/courses/is202/f04/phone—projecUGroup8/about.p . . . ,> last visited on Feb. 2, 2010, seventeen pages.
Mitra, M. et al. (1998). “Improving Automatic Query Expansion,” Proceedings of the AMC SIGIR, nine pages.
Naaman, M. et al. (Jun. 7-11, 2004). “Automatic Organization for Digital Photographs with Geographic Coordinates” Proceedings of the Fourth ACM/IEEE Joint Conference on Digital Libraries Global Reach and Diverse Impact: Tucson, Arizona, pp. 53-62.
Naaman, M. et al. (Nov. 2003). “From Where to What: Metadata Sharing for Digital Photographs with Geographic Coordinates,” In on the Move to Meaningful Internet Systems 2003: Coop/S, DOA, and Odbase R. Meersman et al. eds., pp. 196-217.
Nair, R. et al. (Nov. 6-11, 2005). “Photo L01: Browsing Multi-User Photo Collections,” MM'05 Singapore, pp. 223-224.
Nedos, A; Singh K., Clarke S, Proximity Based Group Communications for Mobile Ad Hoc Networks; Proximity-Based Group Communication; Global Smart Spaces; D.14; Oct. 3, 2003; 31 pages.
Notification of Transmittal of The International Search Report and the Written Opinion of the International Search Authority, or Declaration (PCT/US2007/084797) dated Mar. 21, 2008; 11 pages.
O'Hare, N. et al. “Combination of Content Analysis and Context Features for Digital Photograph Retrieval.” Integration of Knowledge, Semantics and Digital Media Technology, 2005. EWIMT 2005. The 2nd European Workshop on the, pp. 323-328, Dec. 2005.
Office Action U.S. Appl. No. 12/041,054 dated Oct. 27, 2010; 15 pages.
Office Action U.S. Appl. No. 12/041,062 dated Oct. 28, 2010; 12 pages.
Office Action U.S. Appl. No. 12/041,088 dated Oct. 4, 2010; 18 pages.
Perkowitz, Mike et al., “Utilizing Online Communities to Facilitate Physical World Interactions”, The International Conference on Communities and Technologies, Sep. 19, 2003, Amsterdam, pp. 16.
Pigeau, A. et al. (Jun. 17, 2005). “Organizing a Personal Image Collection with Statistical Model-Based ICL Clustering on Spatio-Temporal Camera Phone Meta-Data.” 25 pages.
Press Release, “Qualcomm Conducts First Live Demonstration of FL Technology on a Wireless Handset”, Qualcomm Inc., San Diego, Sep. 27, 2005; 3 pages.
Rekimoto, et al., “CyberCode: designing augmented reality environments with visual tags.” Proceedings of DARE 2000 on Designing augmented reality environments, Elsinore, Denmark, pp. 1-11Apr. 12-14, 2000.
Rhodes, B.J. et al. (1996). “Remembrance Agent: A Continuously Running Automated Information Retrieval System,” Proceedings of the First International Conference on the Practical Application of Intelligent Agents and Multi Agent Technology (PAAM), pp. 487-495, located at <http://www.cc.gatech.edu/fac/Thad.Starner/p/032—40—agents&ubicomp/remembrance-agent . . . >, last visited Aug. 1, 2007, six pages.
Roush, Wade, “Social Machines”, Continuous Computing Blog, Jul. 5, 2005, pp. 1-21.
Roush, Wade, “Social Machines”, Technology Review, Aug. 2005, pp. 45-51.
Sanderson et al., “Analyzing Geographic Queries,” in SIGIR Workshop on Geographic Information Retrieval, 2 pages, 2004.
Sansbury, C. (Sep. 13, 2005). “Yahoo! Widget for BBC Sports News—Scotland,” 32. Located at <http://widgets.yahoo.com/gallery/view.php?widget=37220 >, last visited on Feb. 7, 2007, one page.
Sarvas, R. et al. (Jun. 6-9, 2004). “Metadata Creation System for Mobile Images,” MobiSys'04 Boiton, Massachusetts, pp. 36-48.
Sheppard, Brett, “The Rights Stuff: The Integration of Enterprise Digital Rights Management Into an Enterprise Architecture”, ECantent, vol. 29, No. 9, Nov. 2006, p. 38, 40-44, (pp. 1-7 of attached).
Toyama, K. et al. (Nov. 2-8, 2003). “Geographic Location Tags on Digital Images,” MM ‘03’Berkeley: California. 12 pages.
U.S. Appl. No. 12/041,054 file history dated Mar. 3, 2008; 64 pgs.
U.S. Appl. No. 12/041,062 file history dated Mar. 3, 2008; 66 pgs.
U.S. Appl. No. 12/041,088 file history dated Mar. 3, 2008; 66 pgs.
U.S. Appl. No. 12/169,931 file history dated Jul. 9, 2008; 66 pgs.
U.S. Appl. No. 12/170,025 file history dated Jul. 9, 2008; 67 pgs.
U.S. Appl. No. 12/180,486 file history dated Jul. 25, 2008; 65 pgs.
U.S. Appl. No. 12/180,499 file history dated Jul. 25, 2008; 67 pgs.
U.S. Appl. No. 11/593,668, filed Nov. 6, 2006 for Naaman, et al.
U.S. Appl. No. 11/593,869, filed Nov. 6, 2006 for Naaman, et al.
U.S. Appl. No. 12/407,681, filed Mar. 19, 2009; 56 pages.
U.S. Appl. No. 12/407,690, filed Mar. 19, 2009; 50 pages.
Voight, Joan et al., “Lessons for Today's Digital Market”, Adweekcom, Oct. 2, 2006, pp. 1-6.
Wooldridge, M. et al. (2005). “STALK. The Camera-phone Scavenger Hunt!” located at <http://www.stalk.com >, last visited on Dec. 28, 2009, two pages.
Written Opinion (PCT/US2008/085915) dated Jun. 29, 2009; 4 pages.
Written Opinion (PCT/US2008/086948) dated May 21, 2009; 5 pages.
Written Opinion PCT/US2008/088228 dated Sep. 30, 2009—5 pages.
www.stalk.com (retrieved on Dec. 29, 2009) pp. 1-2.
Yahoo! Inc. (Dec. 7, 2005). “Yahoo! Widget Engine 3.0 Reference Manual Version 3.0,” 300 pages.
Continuations (2)
Number Date Country
Parent 13901938 May 2013 US
Child 14834863 US
Parent 12163314 Jun 2008 US
Child 13901938 US