The present invention relates to a system and a method for preventing bacteria proliferation, and particularly but not exclusively, the Legionella bacteria, in an electric water heater, by the introduction of hot water from the top of the tank into the bottom of the tank on a predetermined periodic basis as determined by a controller.
Armful bacteria such as the Legionella bacteria live in water that is stagnant and it is known that such bacteria can survive under a wide range of temperatures, typically 65 to 125-130 degrees F. According to the Centers for Disease Control and Prevention, USA, between 8,000 and 18,000 people are hospitalized with Legionnaires disease each year. It is of great public concern as its fatality rate during an outbreak ranges from 5% to 30% in those who contract the disease. Actively managing the risk of Legionella in water systems is more cost effective than responding to an outbreak. Outbreaks of Legionella pneumophila can stem from showers and potable water systems. As water from such sources aerosolized, individuals can inhale the Legionella containing droplets and the organism is aspirated into the lungs. This risk has to be prevented in domestic water heating systems where the hot water becomes in contact with people.
The formation and multiplication of such Legionella bacteria is not only promoted by the temperature in the customary hot water systems, but also by the fact that dead spaces are present in such water distribution systems in which deposits and sediment formation can arise, and typically in the bottom zone of water heater tanks. Deposits therein can represent a culture medium for bacteria growth and proliferation.
Most electric water heaters for domestic use have its water tank constructed with a dome shaped bottom wall. Such dome-shaped bottom walls form a surrounding cavitated zone about the dome-shaped wall where sediments deposit can gather and where water is less agitated. This cavitated zone is spaced from the bottom heating element and thus water therein is less hot creating an ideal location for bacterial proliferation. Should the bottom element fail, then the water temperature at the bottom of the tank will drop. When hot water is not drawn from a water heater, the water inside the tank becomes stagnant and the water temperature stratifies with the cooler temperature being at the bottom region of the tank. Water below the bottom element of the tank can fall to about 85 to 100 degrees F. which is favourable to bacteria growth. Lowering the bottom element to place it close to the bottom wall of the tank has not proven to be a viable solution.
Reference is made to U.S. Pat. Nos. 4,940,024; 5,168,546 and 5,808,277 which disclose various methods and apparatus to prevent bacteria proliferation in electric water heaters. One method teaches adding a heating element in the form of a belt or patch on the outside of the tank against the bottom end of the outer sidewall of the tank to heat the water at the bottom end of the tank to a temperature preferably above 130 degrees F. Accordingly, this proposed solution provides an extra heating element in the form of a patch heater located in an area which is usually filled with insulating foam material and not practical to access should it fail and require replacement or repair. It is also costly and consumes more electricity. In U.S. Pat. No. 5,808,277 a third heating element is added into the tank to periodically raise the water temperature at the bottom of the tank beyond the pre-set consumption temperature, to a sanitizing temperature to destroy bacteria. This is also a costly proposition. U.S. Pat. No. 4,940,024 discloses a method of directing the cold water flow of all consumed drinking or domestically used water through the lower region of the tank wherein there is no stagnant water and wherein no deposits can be formed for bacteria growth. Accordingly, the lower region of the tank is continuously flushed with fresh water. This is a costly solution requiring a new tank design and cold water conduit network and therefore also not a viable solution.
It is a feature of the present invention to provide a system and method for the prevention of armful bacteria, and particularly the Legionella bacteria in a tank of an electric water heater and which system and method is different from the known prior art and which use hot water within the top part of the water tank to elevate the temperature of the water in the lower part of the tank sufficiently high to kill and prevent growth and proliferation of bacteria.
Another feature of the present invention is to provide a pump which is controlled by a programmed controller for periodic operation of the pump whereby to pump hot water from the upper region of the tank to the bottom end to maintain the temperature in the bottom end of the tank at a temperature sufficiently high to prevent bacteria growth.
According to the above features, from a broad aspect, the present invention provides an electric water heater comprising a tank defined by a cylindrical side wall, a top wall and a bottom wall. A cold water inlet is secured to a dip tube which extends in the tank to release cold water under pressure in a lower portion of the tank. A hot water outlet supplies hot water to a hot water distribution conduit. Two or more resistive heating elements heat water in a respective one of an upper and lower region of the tank. Controls having temperature sensors associated with the resistive heating elements is provided for sensing water temperature in the upper and lower regions of the tank and to actuate and de-actuate at least one of the resistive heating elements when the water temperature in at least one of the tank regions falls below a set point temperature value as sensed by the sensors. A pump controlled by a programmed controller is provided to cause heated water from the upper region of the tank to be transferred and released in the lower region of the tank in close proximity to the bottom wall at a preset time and for a preset period of time as determined by the pump controller and at a temperature sufficient to kill and prevent bacteria growth adjacent the bottom wall.
According to the broad aspect mentioned above, the pump has a pressure rating greater than the water pressure of the cold water inlet. The water pump has an inlet end connected to the tank hot water conduit and an outlet end connected to the cold water inlet of the tank to release hot water from the upper region of the tank into the lower region in the immediate area of the bottom wall and into a cavitated zone to raise the water temperature therein.
According to a still further broad aspect of the present invention, there is provided a method of preventing bacterial growth in a bottom end of a water holding tank of an electric water heater. The method comprises mounting a pump on the water heater by connecting an inlet of the pump to the hot water supply conduit and connecting an outlet of the pump to the cold water inlet of the tank. The pump has a pressure rating greater than the domestic water supply connected to the cold water inlet of the tank. An elongated dip tube is mounted in the tank and to which the cold water inlet is connected to. programming a universal time clock of a controller which operates a water pump at a preset time and for a preset period of time. The pump is operated convect heated water from the upper region of the tank to the immediate area of the bottom wall to maintain the temperature in the immediate area at a temperature sufficiently high to prevent harmful bacteria growth.
A preferred embodiment of the present invention will now be described with reference to the examples of the preferred embodiment wherein:
Referring to
As previously described, the Legionella bacteria can survive in stagnant water at temperatures of 65 to about 130 degrees F. but above these temperatures the bacteria is destroyed. Because the tank bottom wall 14 is shaped as a dome, as shown in
Because the pump 27 is connected to existing conduits of the water heater tank 10, it can be easily installed on existing electric water heaters as a retrofit. It is also pointed out that because the pressure of a domestic water supply is usually between 35 to 50 psi, the pressure of 150 psi of the pump 27 will overpower the domestic supply to the water inlet of the dip tube. As shown in
As shown in
As herein illustrated, a temperature detector 33 is mounted on the tank wall to sense the temperature of the water in the lower region of the tank and feeds temperature signals to the controller 32. The controller 32 is programmed to monitor this temperature signal to ensure that the bottom end of the tank was at a temperature of at least 135 degrees F. for the programmed period of time and if not, the pump would continue operation until that predetermined period of time has been achieved.
It is to be noted that by connecting the outlet conduit 35 of the pump 27 directly to the dip tube 25 which extends in the tank in contact with hot water therein, there is substantially no heat loss in the transfer of hot water from the upper region 16 to the bottom end 30 of the tank. The dip tube 25 is also constructed from non-oxidation material, similar to the dip tube 25 and capable of withstanding temperatures well above 140 degrees F. and the pressure of the pump 27 The hot water conduit 31 and the dip tube connection conduit 25″ are removably secured to the top wall 13 of the tank through suitable quick couplings 31′ and 25′, such as cash-acme couplings known by the trade name “SHARK BITE”, which is a registered trademark.
It is within the ambit of the present invention to cover any obvious modifications of the preferred embodiment described herein provided such modifications fall within the scope of the appended claims.
This application is related to U.S. patent application Ser. No. 15/731,021, filed 2017 Apr. 10 and Canadian Application No. 2,963,891, filed of 2017 Apr. 7 and entitled Method and Apparatus for Preventing Bacteria Proliferation in an Electric Water Heater.